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Abstract - This paper presents an overview of the applications of
intelligent control techniques on local and hierarchical control of
FACTS devices. These control techniques are superior to the
conventional linear/nonlinear control schemes in the sense that they
are independent of any mathematical model of the power system to
be controlled. In addition, they do not depend on the operating
conditions and the configuration of the system to which the FACTS
device is connected. A Static Compensator (STATCOM) is used as
the example in order to compare the performances of the proposed
intelligent controllers with those of their linear counterparts.
Nevertheless, the ideas put forth in this paper are applicable to
other shunt or series FACTS devices as well. Two different control
schemes are evaluated: a fuzzy logic based local controller and a
neuro-fuzzy hierarchical controller for a STATCOM in a
multimachine power system.

I. INTRODUCTION

It is widely known that the power transfer limit and the
quality of supply in a power system can be improved by
inserting voltages or currents into the system. This can be
achieved by using power electronics switches and converters.
This technology is referred to as Flexible AC Transmission
Systems (FACTS) [1]. FACTS devices can be connected to
the power system in series or shunt and have the ability to
behave like an inductor or a capacitor. However, they have
several advantages over traditional reactive compensators
such as capacitor banks used in a power system: application
of electronic switches enables FACTS devices to respond to
the faults and disturbances that occur in the power system
considerably faster than mechanically switched capacitors
and inductors. In addition, FACTS devices are more compact
compared to their mechanical counterparts. This is due to the
fact that no energy storage devices are used in the structure of
FACTS devices. This is of particular importance when real
estate for installing the compensator is limited.

Efficiency in controlling FACTS devices is a major aspect
of their performance. Linear techniques are the most common
schemes used, mostly due to their simple structure [1], [2].
However, these control schemes are highly dependent on the
operating conditions of the power system. Any change in the
configuration or loading level of the power system changes
its operating condition, which in turn degrades the

performance of any linear controller. Moreover, the
parameters of these linear controllers are mostly obtained
using trial and error techniques, which even at best, do not
necessarily lead to the optimal solution. Nonlinear schemes,
on the other hand, are able to efficiently control the plant over
a wide range of operating conditions. However, they have
more sophisticated structures and are more difficult to
implement. The disadvantages of the linear and nonlinear
controllers become more significant as the dimensions of the
control problem increase, e.g., controlling a FACTS device
from a supervisory level. Intelligent controllers can be
solutions to the above problems. Unlike traditional
approaches, intelligent control techniques are mostly
independent of any mathematical model of the plant to be
controlled and/or its operating conditions. Moreover, they
have the ability to deal with a nonlinear non-stationary
system such as the power network in the presence of noise
and uncertainties.

This paper focuses on intelligent local and multi-level
hierarchical control of a FACTS device. The proposed
controllers in this paper are designed for a Static
Compensator (STATCOM), a power electronic converter
based shunt FACTS device. Nevertheless, the ideas put forth
can be effectively applied to other families of FACTS devices
as well.

In general, various linear control schemes can be applied
for controlling the STATCOM. The control objective of the
STATCOM local controllers are normally considered to be
regulating the voltage at the point of common coupling
(PCC) or regulating the reactive power injection to the
network, as well as regulating the dc link voltage [1]-[3].

The capabilities of the STATCOM can be improved by
adopting supervisory level hierarchical controllers that
provide the local controller with auxiliary control signals.
Different hierarchical controllers have been proposed in the
literature, which enable the STATCOM to improve the
dynamic and/or transient stability of the power system [1],
[2]. Such supervisory controllers are slower in nature and are
often designed to adjust the voltage/power reference set-point
of the STATCOM local controller.

The objective of this paper is to design two intelligent
controllers for a STATCOM in a multimachine power
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system: a fuzzy controller that performs as the STATCOM
local controller and regulates the line voltage at PCC, and a
neuro-fuzzy controller that provides the STATCOM with an
auxiliary control signal in such a way that it improves the
dynamic stability of the power system. The performances of
these controllers are compared with those of their linear
counterparts. Ultimately, this paper points out that intelligent
techniques can be effectively applied to implement local
and/or hierarchical controllers for FACTS devices. These
intelligent techniques enable FACTS devices to respond to
dynamic/transient disturbances faster, more efficient, and
with less control effort exerted. Therefore, they are effective
alternatives that can replace the linear controllers currently
employed in power systems.

The rest of this paper is organized as follows: Section II
provides a brief introduction of intelligent control schemes.
Section III presents the multimachine power system studied
in this paper and the STATCOM benchmark linear
controllers. Section IV discusses the proposed intelligent
control structure for the STATCOM. Typical simulation
results appear in section V. Finally, section VI summarizes
the results and conclusions.

II. INTELLIGENT CONTROL TECHNIQUES

Intelligent controllers are constructed based on the
mathematical models of the psychological, biological or
social concepts of life in humans and animals. Various
controllers based on intelligent techniques have been
designed and implemented for engineering applications,
among which neural networks and fuzzy systems are the most
common techniques employed.
A neural network is an interconnected group of biological

neurons that forms the fundamental block of the nervous
system, specifically the brain. Serious efforts have been
carried out during the past 100 years to find a mathematical
model for the behavior of the neurons and the nervous
system. These models are referred to as artificial neural
networks, which are intelligent systems based on simplified
computing models of the biological structure and
functionality of the human brain. Artificial neural networks
are connectionist learning systems that are constituted of
artificial neurons. These networks have been used in the
literature for a variety of applications such as system
identification, function approximation, pattern recognition,
control and prediction [4].

Fuzzy systems have also been used as alternatives for
designing intelligent controllers in engineering applications.
These systems mathematically model the heuristic reasoning
used by human beings in the decision making process. In
general, fuzzy controllers provide a nonlinear mapping from
a set of crisp inputs to a set of fuzzy values. These values are
processed using fuzzy rules and the resultant fuzzy output is
converted to a crisp fuzzy output. A term set and a universe
of discourse are associated with every fuzzy variable, also
known as a linguistic variable. Normally the linguistic

variables in a fuzzy system are the state, the state error, the
state error derivative or the state error integral [5], [6]. Figure
1 illustrates the schematic diagram of a fuzzy controller.

Fig. 1. Schematic diagram of a fuzzy logic based controller.

Fuzzy controllers perform as nonlinear gain scheduling
controllers and have the ability of dealing with nonlinear
systems in the presence of uncertainties. The performance of
a fuzzy controller can be further improved by incorporating
the rules governing the connectionist learning systems into its
design [6], [7].

Adaptive Critic Designs (ACD) theory can be applied to
neural network and/or fuzzy logic based controllers in order
to provide optimal control over the infinite horizon of the
problem in the presence of noise and uncertainties [8]. The
parameters of the controllers designed using the ACD theory
are adjusted based on reinforcement learning, hence, making
the controller insensitive to the size of the control problem.
This proves to be specifically useful for power system
applications where the process to be controlled is a nonlinear
non-stationary multi-input multi-output process, whose
operating conditions change continuously with time.
ACD controllers are capable of optimizing a measure of

utility or goal satisfaction, over multiple time periods into the
future [9], [10]. In other words they perform maximization or
minimization of a predefined utility function over time. A
utility function U(t) along with an appropriate choice of a
discount factor should be defined for the ACD controller. At
each time step t, the plant output (a vector of measured
variables) X(t) are fed into the controller, which in turn
generates a policy (control signal) A(t) in such a way that it
optimizes the expected value function over the horizon time
of the problem which is known as the cost-to-go function J
given by Bellman's equation of dynamic programming [11]
as:

(1)J(t)=ykxU(t+k)
k=O

where U(.) is the utility function and yis a discount factor for
finite horizon problems (0<y<1). A discount factor of zero
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uses the present value of the utility function as the
optimization objective (similar to the minimization of one
step ahead error), while a discount factor of unity considers
all the future values of the utility function equally important
and is more suitable for the infinite horizon problems.

Figure 2 shows the schematic diagram of a model free
ACD controller, referred to as an Action Dependent Adaptive
Critic Designs (ADACD) controller. It consists of:
* An Action network, which can be a neural network or a

fuzzy system, and functions as the controller, and is
trained to send the optimum control signals to the plant,
resulting in minimization or maximization of the function
J over the time horizon of the problem,

* A Critic network, which is a neural network trained to
accomplish the task of dynamic programming by
approximating the true cost-to-go function J with no prior
knowledge of the system.

Fig. 2. Schematic diagram of a ACD based controller.

It is assumed in this paper that the reader has some basic
knowledge of intelligent control using fuzzy logic and neural
networks. For more details, the reader is referred to [4] for an

elaborate description of neural networks, [5] for an

introduction on implementing fuzzy controllers, and [12] for
mathematical explanations and step by step design
procedures of ACD controllers.

III. STATCOM IN A MULTIMACHINE POWER SYSTEM

Two multimachine power systems are considered in this
paper: a 9-bus 2-generator power system [13] for studying the
STATCOM internal controller and a 12-bus 3-generator
benchmark power system [14] for studying the STATCOM
external controller. Both power systems have been modeled
in the PSCAD/EMTDC® environment, with the dynamics of
the generators AVRs, exciters and governors taken into
account.

Figure 3 illustrates the schematic diagram of the first
system. A STATCOM is connected to bus 5 in order to
provide extra voltage support for the load area. Traditionally,
The STATCOM is primarily controlled using two PI
controllers in order to regulate the voltage at the PCC. The
first controller, i.e., PIv, controls the line voltage at the PCC,
while the second controller, i.e., PIDC, regulates the dc link

voltage inside the STATCOM. The deviations in the line
voltage at the PCC and the dc link voltage are passed through
these two PI controllers to generate the inverter modulation
index ma and the phase shift a respectively. The main
objective of the STATCOM local controller is to control the
voltage at the PCC.

| ~~~ ~~~~~~~53 Gen 3

i ~~~~~~~~Pointof Co:mmon <I

" ~ ~~4Coupling](PCC) <

Gen 2
2 2 Load Area~~~~~~~~~~~ I

I 10 +~~~~~~~STATCOMInfinite Transmission Lines r I

Firing Pulses

I~~~~~~~V. P PM I

L
PLANT +d ¢ n

Fig. 3. STATCOM in a 9-bus 2-generator power system.

Figure 4 illustrates the schematic diagram of the second
power system considered in this study, the 12-bus benchmark
system. Preliminary simulation results by the authors showed
that the uncompensated power system has low voltages at
buses 4 and 5 (in the load area). A STATCOM was therefore
installed at bus 4 in order to give extra voltage support for the
load area.

fiTATCOM External STATC MInternal
__

--
___4=_ Controller Vd. C-ontroller

I u

IV. P

B u9 Infinite

Bus 6
iIIl Bus 2 Bus 1D Gen Gn

Bus 12 4| | ~~~~~~~~~~~~~~~~~~~Bus 3r , ;. N~~~en4 t ~Ge
Buis7 Bus 8

Fig. 4. STATCOM multi-level hierarchical control scheme.

In addition to the internal controller for the STATCOM in
Fig. 4, a linear supervisory level (external) controller is added
that generates auxiliary control signals for the STATCOM
line voltage reference. This enables the STATCOM to
improve the dynamic stability of the power system by
providing additional damping for the rotor speed deviations
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of the two generators neighboring it, i.e., generators 3 and 4.
The structure of the linear external controller is illustrated in
Fig. 5. The external controller, together with the internal
controllers, form a multi-level hierarchical controller for the
STATCOM.

Damping
Filter Controller

A4-

Fig. 5. Schematic diagram of the STATCOM linear external controller.

Fore more details on the design of the linear controllers,
and selection of the control parameters, the reader is referred
to the authors' previous work in [15].

IV.STATCOM INTELLIGENT CONTROLLERS

The objective of this paper is to design two intelligent
controllers for the STATCOM: a fuzzy logic based controller
that replaces the line voltage Plv controller (Fig. 3), a neuro-
fuzzy controller that replaces the linear external controller
(Fig. 4).

A. Fuzzy Internal Controller

The proposed fuzzy controller for regulating the line
voltage at the PCC has two inputs, the line voltage error AV(t)
and the change in the line voltage error AE(t), which is
defined as AV(t)-AV(t-1). Adding the latter helps the
controller to respond faster and more accurately to the
disturbances in the system. A time step of 2.0 ms is selected
for calculating the change in error. Figure 6 shows the
schematic diagram of the proposed fuzzy controller.

u(t) Power System
(PLANT)

Fig. 6. Schematic diagram of the STATCOM fuzzy logic internal
controller to regulate the line voltage.

A proportional-integrator approach is applied in order to
enable the fuzzy controller to deal with the actual signals
rather than deviation signals. This is achieved by adding the
instantaneous controller output Au(t) to the previously
accumulated total control signal (Fig. 6). The final control
output u(t) replaces the inverter modulation index ma(t) in
Fig. 3.

Seven membership functions are considered for the line
voltage deviation AV(t) and the controller output Au(t). These
membership functions are associated with the terms Negative
Big, Negative Medium, Negative Small, Zero, Positive Small,
Positive Medium and Positive Big for each variable. Also
three membership functions, i.e., Positive, Zero and Negative
are assigned to the line voltage error AE(t). Triangular
functions are used for the fuzzy membersip functions of the
input and output variables. For details of the fuzzy
membership functions and the rule base, the reader is referred
to the authors' previous work in [16].

The Takagi-Sugeno (TS) model, with singleton output
membership functions, is selected in this paper for the
inference mechanism of the fuzzy controller. This is due to
the fact that it requires less processing time [5] and is faster in
responding to disturbances and therefore, is more useful for a
power system with fast transients.

Since the output of each rule in the fuzzy controller rule
base has a fuzzy membership function, the overall output of
the controller is obtained using the centroid defuzzification
[5] in order to provide a smoother result. The instantaneous
output of the controller can be written as in (2).

wi xfj
A..1,+ i toAUtt) = -

i.

(L)

where wj is the firing strength of rule j andfj is the crisp value
of the output membership function of the jth rule respectively.

B. Neuro-Fuzzy External Controller

Figure 7 shows the schematic diagram of the proposed
STATCOM neuro-fuzzy external controller. The plant in Fig.
7 consists of the multimachine power system (Fig. 4) and the
STATCOM internal controller. The input to the plant is the
modulation index ma generated by the PIv controller, and its
output X(t) is the vector of the speed deviations of generators
3 and 4. The proposed external controller consists of two
main components: the neuro-fuzzy controller and a Critic
neural network, which is trained to approximate the cost-to-
go function J.

1) Neuro-Fuzzy Controller

A first order Takagi-Sugeno fuzzy model is used for
implementing the controller, which is a special case of the
Mamdani model [7]. The input to the fuzzy controller is the
vector of the selected states of the power system as in (3):
X(t) = [Aco3(t),A 4 (t)]T (3)
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The neuro-fuzzy controller in return generates a control
signal AVref, which is added to the line voltage reference of
the local PIv controller (Fig. 4). At steady state, the PIv has a
line voltage reference of 1.0 p.u. Therefore, the output of the
neuro-fuzzy controller is clamped at ±0.05 p.u., such that the
voltage at bus 4 does not fall outside the acceptable range of
[0.95, 1.05] p.u.

Two sub-Critic networks are therefore used, where each
one learns one part of the cost-to-go function. Utility function
decomposition speeds up the process of Critic network
learning, since each sub-Critic is estimating a simpler
function [12]. Figure 8 shows the schematic diagram of the
Critic network. It consists of two separate multilayer
perceptron (MLP) neural networks [4], with 10 neurons in the
hidden layer of each one and the same input from the Action
network, i.e., the neuro-fuzzy controller. The hyperbolic
tangent is used as the activation function of the hidden
neurons.

Fig. 7. Schematic diagram of the STATCOM ACD based neuro-fuzzy
external controller.

Five membership functions are considered in Fig. 7 for the
rotor speed deviations of each generator, which are associated
with the fuzzy terms Negative Big, Negative Small, Zero,
Positive Small and Positive Big; while the output variable
AVref has seven fuzzy membership functions associated with
it, namely Negative Big, Negative Medium, Negative Small,
Zero, Positive Small, Positive Medium and Positive Big.
Gaussian and Singleton membership functions [5] are used
for fuzzy input and output variables respectively. Similar to
the previous section, centroid defuzzification is used for
deriving the crisp output of the controller. For more details,
the reader is referred to [15].
2) Critic Neural Network

An adaptive critic designs based approach is applied in
order to provide appropriate training signals for the
parameters of the neuro-fuzzy controller. A Critic network is
trained in order to learn the cost-to-go function associated
with the power system. The utility function for the Critic
network is comprised of two terms (decomposed utility
function):
U(t) Ut)+ U2(t), (4)
where:

Ul (t) =1 A3 (t) + A)3 (t - 1) + Ao3 (t - 2) 1, (5)
U2 (t) =1 A4 (t) + Aw4 (t - 1) + Aw4 (t - 2) 1. (6)
The two terms are necessary because the rotors of

generators 3 and 4 have different swings and therefore, the
STATCOM should try to improve the performance of both
generators at the same time. The cost-to-go function
estimated by the Critic network is:

t .U(t + i), (7)
i=O

Fig. 8. Schematic diagram of the STATCOM Critic network.

For details on the step by step training procedure of the
Critic network and the neuron-fuzzy controller, the reader is
referred to the authors' previous work in [15].

V. SIMULATION RESULTS

The performances of the intelligent controllers proposed in
section IV are compared with those of their linear
counterparts in Figs. 3 and 5. The intelligent and linear
controllers are compared in the following two stages.

A. STATCOM Local Control

In the first stage, the performance of the STATCOM PIv
controller in Fig. 3 is compared with the fuzzy controller
proposed in Fig. 6. The ability to control the line voltage at
the PCC, and the control effort provided by the STATCOM
are the basis of comparison for the two controllers at this
stage.

1) Case Study 1: Short Circuit at the PCC

A 100 ms three phase short circuit is applied at bus 5 in
Fig. 3. Figure 9 compares the performances of the two
STATCOM controllers. It can be seen that the fuzzy
controller damps out the oscillations faster and with less
overshoot.
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The performances of the two controllers can also be
compared in terms of the control effort provided by each one.
For each of the controllers, the amounts of the reactive power
injected by the STATCOM during the fault are compared in
Fig. 10. These results show that the Plv controller injects a
considerably larger amount of reactive power into the power
system, which in turn means higher currents through the
inverter switches. Therefore in the case of the conventional
controller, switches with higher current ratings are required.

_

C)
C.)I

a)

in
a)

0

fault, and illustrates the fact that the PIv damps out the
oscillations with a large overshoot, whereas the fuzzy
controller manages to efficiently damp out the oscillations.

1.8
----- Pi Controller

Fuzzy Logic Controller1.6
- 1.4

ID 1.2cm

o 1

.- 0.8
E
T 0.6

m 0.4

a 0.2

0 _

-0.2
2 2.2 2.4 2.6 2.8 3

Time (sec)
3.2 3.4 3.6 3.8

Fig. 11. Voltage at the terminals of generator 3 (Fig. 3)
during case study 2.

2.5 3 3.5 4 4.5
Time (sec)

Fig. 9. Bus 5 voltage (Fig. 3) during case study 1.

100O

Pi Controller-
I v

LI

Fuzzy Logic C

2 3 4 5
Time (sec)

5

It should be noted that the STATCOM PIv controller is
fine tuned at a single operating condition by applying small
step changes to the line voltage reference. Clearly, a large
scale fault such as a three phase short circuit changes the
operating conditions of the system and therefore, reduces the
effectiveness of the PIv controller.

B. STATCOM Hierarchical Control

_In the second stage, the STATCOM is considered to be
internally controlled by the PIv controller. However, it is
considered to be equipped with an external controller as

shown in Fig. 4 that improves the damping capabilities of the
_ STATCOM during disturbances. The performance of the

,ontroller STATCOM hierarchical controller is evaluated when first
using a neuron-fuzzy external controller (Fig. 7) and then
using a linear external controller (Fig. 5). Dynamic damping
provided by the STATCOM for the generator rotor speeds, as

well as the control effort provided, are considered as the main
basis of comparison between these hierarchical controllers.

6 7 8 1) Case Study 3: Short Circuit along the Transmission Line
7-8

Fig. 10. Reactive power injected to the network by the STATCOM
during case study 1.

2) Case Study 2: Short Circuit at the Generator Terminals

In another test, a 100 ms three phase short circuit is applied
at the terminals of generator 3 in Fig. 3. The generator is
disconnected from the network and 50 ms after the fault is
cleared, the generator is switched back on to the system.
Figure 11 shows the voltage at bus 5 during and after the

A 100 ms three phase short circuit is now applied midway
along the transmission line connecting buses 7 and 8. This
section of the power system is relatively weak and sensitive
to disturbances. Figure 12 illustrates the effectiveness of the
neuro-fuzzy external controller in restoring the system back
to the steady state condition. Figure 13 emphasizes the fact
that the STATCOM, externally controlled by the neuro-fuzzy
controller, injects less initial reactive power into the network
when responding to the fault. Simulation results indicate that

2 80

G)

a
m. 60

40

a)
U
0 0
~20C.

C4) 20
0

-n
-20 _

1
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the STATCOM controlled by the neuro-fuzzy controller
reduces the peak reactive power injection by almost 14 MVar
from 378 MVar to 364 MVar. Based on a typical
conservative price of 50$/kVar of STATCOM rating, this
reduction results in approximate savings of $700,000.

378

377.8

Linear Controller
@ 377.6

377.4-
'a
Cu 377.2-

o 377k
cc

"376.8

a 376.6
a

376.4

VI. CONCLUDING REMARKS

Designing effective controllers for power system
components using traditional linear/nonlinear methods
requires an accurate mathematical model of the system to be
controlled. However, this is often not possible, due to the fact
that a power system is a highly nonlinear, non-stationary
system with uncertainties associated with it. Moreover, the
operating condition of such a system changes continuously as
the transmission lines and loads are switched on and off.

378.51
No External Control

!I tAf Neuro-fuzzy Controller

No ExXernal Control
No External Control

3 4
Time (sec)

6 7

Fig. 12. Rotor speed deviations of generator 4 (Fig. 4)
during case study 3.

400 F

1 2 3 4 5 6 7 8
Time (sec)

375
1 2 3 4 5 6 7 8

Time (sec)

Fig. 14. Rotor speed deviations of generator 3 (Fig. 4)
during case study 4.

378.5

0)a 378-

co

= 377

0

a 376.5

cn

No External Control

Linear Controller

Fig. 13. Reactive power injected by the STATCOM
during case study 3.

2) Case Study 4: Short Circuit along the Transmission Line
3-4

In the next test, a 100 ms three phase short circuit is
applied midway along one of the parallel transmission lines
connecting the STATCOM to generator 3. Figures 14 and 15
show the effectiveness of the proposed neuro-fuzzy controller
in damping out the rotor speed oscillations and indicate that
the proposed neuro-fuzzy controller manages to improve the
dynamic damping of both generators, even though the rotors
of the two machines have different, and at times opposing,
excursions.

376 1
2 3 4 5

Time (sec)
6 7 8 9

Fig. 15. Rotor speed deviations of generator 4 (Fig. 4)
during case study 4.

Intelligent controllers can be alternative solutions to the
above problems. The objective of this paper is to show the
effectiveness of intelligent control techniques for controlling
a FACTS device, both from local (internal) and hierarchical
(supervisory level) aspects. Designing a model based
controller in the latter case is even more challenging, since
the number of parameters to consider is considerably higher.
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A shunt connected FACTS device, i.e., a Static
Compensator (STATCOM), has been used in this paper to
illustrate the above concept. However, the concepts put forth
in this paper can be applied to other shunt or series FACTS
devices as well.

Two intelligent control structures have been proposed in
this paper for controlling a STATCOM in a multimachine
power system: a fuzzy logic based internal controller and a
neuro-fuzzy external controller. The performances of the two
controllers were compared with those of the linear internal
and external controllers. The simulation results indicate that
the intelligent schemes are more effective in damping the
power system oscillations during various faults and
disturbances. In addition, the intelligently controlled
STATCOM is able to exert less control effort in the event of
a disturbance, which means smaller currents would pass
through the converter switches. This in turn leads to selection
of switches with smaller current ratings, and therefore,
savings in the STATCOM installment cost.
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