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Abstract - The operation of high energy loads on Navy's future 

electric ships, such as directed energy weapons, will cause 
disturbances in the main bus voltage and impact the operation of 
the rest of the power system when the pulsed loads are directly 
powered from the main dc bus. This paper describes an online 
design and laboratory hardware implementation of an optimal 
excitation controller using an artificial immune system (AIS) 
based algorithm. The AIS algorithm, a clonal selection algorithm 
(CSA), is used to minimize the effects of pulsed loads by improved 
excitation control and thus, reduce the requirement on energy 
storage device capacity. The CSA is implemented on the MSK2812 
DSP hardware platform. A comparison of CSA and the particle 
swarm optimization (PSO) algorithm is presented. Hardware 
measurement results show that the CSA optimized excitation 
controller provides effective control of a generator’s terminal 
voltage during pulsed loads, restoring and stabilizing it quickly. 
 

Index Terms - Clonal selection algorithm (CSA), Electric ship, 
optimal excitation controller, particle swarm optimization (PSO), 
pulsed loads. 

I. INTRODUCTION 
The Navy's future electric ship power system is based on the 

integrated  power system1  (IPS)  architecture  consisting of 
power generation, propulsion systems, hydrodynamics, and DC 
zonal electric distribution system (DC-ZEDS) [1]. In order to 
maintain power quality in IPS, immediate energy storage 
devices with their corresponding charging systems are proposed 
to make the pulsed power required compatible with the supply 
system [16]. However, this will increase the system weight and 
volume. To some extent, the generator field excitation control 
can be used along with energy storage to maintain the system 
voltage. The excitation control is one of the most effective and 
economical techniques for stabilizing the terminal voltage of the 
synchronous generators [17]. Excitation control elements 
mainly include an automatic voltage regulator (AVR) which 
senses and maintains the terminal voltage of the generator and a 
power system stabilizer (PSS) which provides the required 
auxiliary control signal to improve the dynamic performance. 
The key element in the design of the optimal excitation 
controller is finding the controller parameters (gain and time 

 
1 The financial support for this research from the US Office of Naval 

Research 2007 Young Investigator Award to Dr. Venayagamoorthy (The 
Intelligent All Electric Ship Power System) is gratefully acknowledged 
(contracting number – N00014-07-1-0806). 

constants) to provide optimal performance during normal and 
pulsed loads. In order to optimize these parameters, many 
intelligent algorithms are extended to the design of the optimal 
excitation controller for the synchronous generator including 
fuzzy set theory [2, 3], finite-time approach [4], adaptive 
control theory [5, 6] and PSO [7], all of which have good 
performance at maintaining the terminal voltage. However, 
none have been implemented online for electrical machine 
excitation system. Therefore, the online hardware 
implementation is needed to show the stability and adaptability 
of the proposed algorithms. 
 Artificial immune system (AIS) can be defined as 
computational systems that are inspired by theoretical 
immunology. Clonal selection algorithm (CSA) is a member of 
the family of AIS techniques. In the past few years, CSA has 
been gradually used to solve the optimal control problems 
[16]-[18]. In this paper, an online CSA-based optimal excitation 
controller for the electric ship is implemented on the MSK2812 
DSP hardware platform to minimize the voltage deviations 
when high power pulsed loads are directly powered from the dc 
side; exploring the possibility of reduced energy storage.  The 
hardware results show that the on-line CSA-based controller 
improves the dynamic performance of the synchronous 
generator with stability and adaptability. 

This paper is organized as follows: Section II provides a 
power system model for the electric ship and a description of its 
hardware implementation. Section III provides a detailed 
description of the DSP based hardware implementation of a 
CSA-based optimal excitation controller. Section IV presents 
the experimental results and finally, the conclusion is given in 
section V. 

II. POWER SYSTEM MODEL FOR THE ELECTRIC SHIP AND ITS 
HARDWARE IMPLEMENTATION 

A. IPS for the Electric Ship 
The power system of the all-electric ship system mainly 

consists of four parts: prime movers, advanced propulsion 
induction motors, dc zonal distribution loads, and other 
auxiliary loads which are shown in Fig. 1 (a). All prime mover 
power is first converted into electric power, and then it is 
distributed and allocated between propulsion, pulsed power 
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weapons, ship service power and other electrical loads as 
required. In the laboratory setup, these four parts are separately 
implemented. 

B. Laboratory Setup: Power Generation 
The DDG-1000 proposed electric ship power system 

architecture consists of four gas turbine-generator sets. Two 
main 36MW and two auxiliary 4MW generator sets, generate a 
total of 80MW of electric power [11]. In the laboratory setup 
(Fig. 1 (b)), a small-scale power generation system is used to 
emulate the gas turbine-generator sets of the electric ship. This 
small-scale system consists a three-phase 60Hz 5kVA 
synchronous generator and a 15kW dc motor to supply 
mechanical torque for the synchronous generator. The 
command line-to-line voltage of the generator is set to 180V. 
The parameters for the synchronous generator are shown in the 
Table I. Since the propulsion load and pulsed loads are 
proportionally reduced, the proposed system is a scaled down 
laboratory implementation of the IPS in an electric 
ship.

 
 

C. Laboratory Setup: Propulsion System  
In the notional electric ship, a propulsion system consists of a 

transformer, a rectifier, an inverter, and a propulsion motor [11]. 
In the laboratory setup, a 1.62kW resistive load in the dc side is 
used to simulate the load impact of the propulsion motors on the 
IPS. 

 
TABLE I 

PARAMETERS OF SYNCHRONOUS MACHINE 

Horsepower 3.00 Lls 1.12e-3H 

GEN 2.5KVA Lmq 24.9e-3H 
Armature Voltage 230V Lmd 39.3e-3H 
Field Voltage 150VMAX Rkq1 5.07Ω 

Full Load Amps of 
Armature 6.28A Lkq1 4.21e-3H 

Full Load Amps  
Field 1.05A rkq2

 1.06Ω 

RPM 1800 Lkq2 3.5e-3H 
POLES 4 rkq3 0.447Ω 
rkd1 128.25Ω Lkq3 26.2e-3H 
Lkd1 7.902e-3H rkd2 1.77e3Ω 
rfd 0.11Ω Lkd2 4.828e-3H 
Lfd 1.497e-3H rs 0.382Ω 

 

D. Laboratory Setup: DC Zone Distribution Load 
In the electric ship, there are many different pulsed loads of 

various energy levels and variable durations [12]. In the 
laboratory setup, a diode rectifier is used along with a passive 
filter to realize the power conversion model and three 
IGBT-controlled resistive loads are used to represent three 
different energy-level loads on the dc side (1.62kW, 3.24kW, 
3.24kW). By switching on different IGBTs over time the effects 
of a time varying power profile which represent the pulse power 
consuming load can be studied [1]. Compared with the pulsed 
loads, the impact of other auxiliary load to the IPS can be 
neglected.  

E. Laboratory Setup: Excitation System 
In the laboratory setup, the excitation controller consists of a 

sensor board, an A/D conversion board, a MSK2812 DSP board 
consisting of the TMS320F2812 processor, and a D/A 
conversion board. The A/D conversion board receives terminal 
voltage signal form the sensor board and output digital signal to 
the central controller. The D/A conversion board receives the 
PWM signals from the central controller and outputs them to the 
IGBTs. The field of the synchronous generator is connected 
with a four-quadrant PWM dc drive supplied by 200-V dc. 

III. IMPLEMENTATION OF AN ONLINE CSA BASED OPTIMAL 
EXCITATION CONTROLLER 

A. Excitation System 
The synchronous generator excitation system includes a 

terminal voltage transducer and load compensator, excitation 
control elements and an exciter [11]. Since the proposed 
excitation system is simplified, some parts such as power 
system stabilizer and under-excitation limiter are not 
considered. A simple functional block diagram for excitation 
controller is shown in Fig. 2. 

 
(a) 

 
(b) 

 
Fig. 1. Laboratory implementation with (a) simplified IPS of an electric ship

and (b) laboratory hardware implementation. 
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In this case, the key element in the design of the optimal 

excitation controller is finding the optimal controller parameters 
(Ka, Ta, Tb and Tc) to provide optimal performance during the 
pulsed loads.  As is shown in Fig. 2, Vs

* is the rms terminal 
voltage reference of the synchronous generator which is set to 
be 180V and Vs is the measured value. The rms line-to-neutral 
terminal voltage is calculated in terms of instantaneous 
quantities using 

 
2 2 2

3
as bs cs

s

v v v
V

+ +
=

           (1) 

B. Clonal Selection Algorithm and its Application to Optimal 
Excitation Controller 
The clonal selection algorithm is a biologically motivated    

computational intelligent algorithm developed by Castro and 
Zuben in 2001 [19]. The clonal selection principal based 
immune response generated when a non-self antigenic pattern is 
recognized by the B cells (antibodies) is explained in [19]. Just 
like the GA, the CSA is shown to be an evolutionary strategy 
capable of solving complex machine learning and pattern 
recognition tasks by adopting the clonal operator and also the 
problem of global optimization with high convergence speed, 
emphasizing multimodal and combinatorial optimization [17]. 
The detailed operation of CSA in optimization is shown in Fig. 
3 and explained briefly below..  

Initialization: Randomly choose a population N of antibodies 
(Ab). Since there is no explicit antigen population (Ag) to be 
recognized, the objective function is to be optimized as the Ag. 
In the laboratory setup, N is set to be 20. 

Evaluation: In the excitation control loop of Fig. 2, the 
proportional gain Ka and time constants Ta, Tb and Tc have to be 
carefully selected to provide satisfactory performance under 
normal and pulsed load conditions. The objective of the CSA 
algorithm is to find these parameters in order to restore and 
stabilize the terminal voltage quickly especially after pulsed 
loads of different magnitudes and durations. In the laboratory 
setup, a sampling period of 2ms is used and total sampling 
points are 500. The performance of the optimal excitation 
controller in the design stage is evaluated by the objective 
function given in (2). 

 
(a) 

(b) 
Fig. 3. Flowchart of the CSA-based optimal excitation controller design with (a) 

Main Flowchart and (b) Flowchart of Evaluation Operation 
 

( ) ( ){ }( )
500 2 2* *

  1

1 - - 1
2 s s s s

i
Fitness V V i V V i i t t

=
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Fig. 2. Simple functional block diagram for synchronous machine excitation 

control system. 
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Where i = the number of sampling points 
ts = the settling time of the terminal voltage 

Δt = the sample time 
iΔt = the weighting factor which aims to punish 

disturbance while time varying. 
The affinity could be evaluated by using the following 

equation: 
 

1 = 
1 + i

i

Affinity
Fitness

                                  (3)   

 
Where i = the number of antibodies with the range of 1~20  
           Fitnessi = the fitness of the i antibody 
Cloning: Sort all antibodies based on high to low affinity. 

Generate a set C of clones proportionally to the affinity. The 
number of clones generated is described by the equation 

 

 
n

i 1

* = roundc
NN

i
β

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                                  (4) 

 
Where β= multiplying factor and is taken to be 0.5 
             i = 1 for highest affinity and 2 for second highest 

affinity. 
             n = the number of selected highest antibodies and is 

taken to be 5 
Mutation: The mutation rate is proportional to the 

individuals’ affinities described in (5) 
 

( ) = exp -  * fα ρ                                              (5) 

 
Where α= mutation rate 
             ρ= decay factor of the mutation rate 
              f = antigenic affinity 
The antigenic affinity and mutation rate are both normalized 

over the interval [0, 1]. 
The process of mutation uses (6) developed in [18] 
 

( )* =  *  *  *  +  *  *  bestC C randn C randn C - Abα α    (6) 

 
Where C* = the matured clones 
       Abbest = the antibody with highest affinity 
In the laboratory setup, the stability constraints for Ka, Ta, Tb, 

Tc were determined by testing the synchronous generator 
manually. Choose the antibodies that satisfy the constraints in 
set C* to generate a set C*

new . 
Selection: reselect N antibodies with highest affinity from 

clones C* and C*
new  and update Ab. 

The detailed training process for each Ab in one iteration is 
shown in Fig. 4.  

 
As is shown in Fig. 4, tstart and tend are the starting and end 

times of the evaluation process respectively; tpulse1_s and tpulse1_s 
are the starting and end times of the first pulsed load 
respectively, which is of duration 0.4s; tpulse2_s and tpulse2_s are the 
starting and end times of the second pulsed load respectively, 
which is of duration 1s. A settling time of 1s and a 2 s is allowed 
before and after each pulsed load respectively. Thus, the total 
time for evaluating each Ab evaluating per iteration is 7.4s. The 
pulsed load magnitudes and duration used in controller 
development and testing are shown in Table II.  

 
TABLE II 

PULSED LOAD TRAINING AND TESTING SETS 
               Duration 
Pulsed load 100 ms 200 ms 400 ms 1000 ms 
1.62 kW Test Test Test Test 
3.24 kW Test Test Test Train 
4.86 kW Test Test Train  
8.10 kW Test Test   

 

IV. HARDWARE RESULTS 
The CSA has been implemented on a MSK2812 DSP 

hardware platform. A comparison of CSA and particle swarm 
optimization (PSO) is carried out for the online excitation 
controller design. The comparison is made under the following 
conditions: same value and dimension of initialized particles or 
antibodies, same training iterations and constrain conditions. 
Thus, the influence introduced by the randomly initialization is 
minimized.  

A. Time Consuming 
Both CSA and PSO are implemented on the hardware 

platform. The computational time taken by CSA and PSO is 
presented in Table III.  

F ig. 4. Evaluation process using two different pulsed loads
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As shown in Table III, the code time of CSA for each 

antibody per generation is nearly three times of the code time of 
PSO for each particle per iteration. However, for this 
application, comparing the total development time between 
CSA and PSO, the difference is negligible.  

B. Convergence Characteristics 
The convergence of the PSO algorithm during the search is 

shown in Fig. 5. The comparative performance of a manually 
designed and CSA designed excitation controllers are shown in 
Figs. 6 to 9 respectively. The parameters of excitation controller 
designed using PSO and CSA optimal strategies are given in 
Table IV. The initially designed controller is tuned manually. 
The comparative performance of the excitation controllers 
under pulsed loads (including search and test sets) is shown in 
Table V. 

 
TABLE IV 

PARAMETERS OF THE EXCITATION CONTROLLERS  

 Ka Ta Tb Tc 

Initial 4000.000 0.300 0.001 0.001 

PSO 4051.000 0.279 0.174 0.928 

CSA 4329.000 0.395 0.621 0.108 

 
Fig. 5. Fitness variations with PSO and CSA algorithms in the first 50 

iterations of the controller developments.

 
 

TABLE V 
COMPARATIVE PERFORMANCE OF THE EXCITATION CONTROLLERS  

 Setting Time  
ts (s) 

Maximum 
Overshoot (%) 

Pulsed load 
1.62kW for 1s 

CSA 0.36 1.33 
PSO 0.44 2.69 

Initial 0.98 5.58 

Pulsed load 
1.62kW for 0.4s 

CSA 0.36 1.27 
PSO 0.60 2.83 

Initial 1.00 5.56 

Pulsed load 
1.62kW for 0.2s 

CSA  0.39 1.75 
PSO 0.59 2.86 

Initial 0.99 5.72 

Pulsed load 
1.62kW for 0.1s 

CSA  0.41 1.52 
PSO 0.54 2.32 

Initial 0.89 5.21 

Pulsed load 
3.24kW for 1s 

CSA  0.49 0.67 
PSO 0.56 1.69 

Initial 0.82 5.28 

Pulsed load 
3.24kW for 0.4s 

CSA  0.47 1.25 
PSO 0.50 2.25 

Initial 1.07 5.39 

Pulsed load 
3.24kW for 0.2s 

CSA  0.35 1.50 
PSO 0.51 2.56 

Initial 0.89 5.28 

Pulsed load 
3.24kW for 0.1s 

CSA  0.50 1.72 
PSO 0.54 2.75 

Initial 1.04 5.50 

Pulsed load 
4.86kW for 0.4s 

CSA  0.49 1.00 
PSO 0.59 1.94 

Initial 0.94 5.44 

Pulsed load 
4.86kW for 0.1s 

CSA  0.49 1.61 
PSO 0.56 2.67 

Initial 1.06 5.50 

Pulsed load 
4.86kW for 0.2s 

CSA  0.45 1.67 
PSO 0.59 2.83 

Initial 0.96 5.56 

Pulsed load 
8.10kW for 0.2s 

CSA  0.34 1.68 
PSO 0.50 3.13 

Initial 0.98 5.75 

Pulsed load 
8.10kW for 0.1s 

CSA 0.50 1.39 
PSO 0.62 2.59 

Initial 1.12 5.42 
 

TABLE III 
PARAMETERS OF SYNCHRONOUS MACHINE 

 PSO CSA 

Code time for each particle/Ab 
(one iteration/genertion) 0.022s 0.064s 

Evaluation time for each 
particle/ Ab 
(one iteration/generation) 

7.4s 7.4s 

Search time for each particle/Ab 
(one iteration/generation) 7.422s 7.464s 

Total development time 
(10 iterations/generations, 20 
particles/antibodies) 

24minutes 
& 44s 

24minutes & 
53s 
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(a) 

(b) 

(c) 
Fig. 6. Pulsed load at 4.86kW with 0.4s duration 

(a) terminal voltage, (b) field voltage, (c) field current. 

(a) 

(b) 

(c) 
Fig. 7. Pulsed load at 4.86kW with 0.2s duration 

(a) terminal voltage, (b) field voltage, (c) field current. 
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(a) 

(b) 

(c) 
Fig. 9. Pulsed load at 3.24kW with 1s duration 

(a) terminal voltage, (b) field voltage, (c) field current. 

(a) 

(b) 

(c) 
Fig. 8. Pulsed load at 1.62kW with 0.2s duration 

(a) terminal voltage, (b) field voltage, (c) field current. 
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C. System Disturbance 
Since all antibodies or particles are randomly initialized in 

the searching space, CSA and PSO have different strategies to 
converge them. CSA discards antibodies with lower affinity and 
only clone those with highest one. PSO involves global best and 
local best to guide the convergence of all particles. A 
comparison of the worst antibody/particle after 2 iterations of 
search is shown in Fig. 10.  

 
Fig 10. Performance comparison of the worst antibody in CSA 

and the worst particle in PSO after the second iteration of the search process. 
 
As is shown in Fig. 10, after the second iteration, the worst 

antibody in CSA has a better performance than the worst 
particle in PSO which means lesser disturbance to the system 
during the search process. A general comparison of CSA and 
PSO algorithms is given in Table VI. 

 

V. CONCLUSION 
An online designed optimal excitation controller using a 

clonal selection algorithm, from artificial immune systems, has 
been presented in this paper. The controller and the CSA has 
been implemented on a MSK2812 DSP hardware platform to 
control a laboratory scaled down version of the Navy’s future 
electric ship power system. The objective for the CSA 
algorithm is to minimize the voltage deviations when pulsed 
loads are directly energized by shipboard power system, thus 
reducing energy storage devices capacity. Comparing CSA with 

PSO, the hardware results show that CSA-based controller can 
restore and stabilize the terminal voltage effectively and quickly 
with little disturbance introduced after high power pulsed loads 
are experienced. 
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complexity 
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division operation” 

Storage space 
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process gradually  
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will be replaced with 
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Computational time Medium Medium
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