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Microwave Near-Field Reflection Property Analysis
of Concrete for Material Content Determination

Karl. J. Bois, Member, IEEE, Aaron D. Benally, and Reza Zoughi, Senior Member, IEEE

Abstract—One of the most important parameters associated
with concrete is its compressive strength. Currently, there is no
reliable nondestructive testing technique that is capable of robust
determination of this parameter. Concrete is a heterogeneous
mixture composed of water, cement powder, sand (fine aggre-
gate), rocks of various size or grade (coarse aggregate), and air
(porosity). Water and cement powder chemically combine into a
cement paste binder which, in due curing time (28 days), produces
concrete with its specified compressive strength. Compressive
strength of concrete is strongly influenced by its water-to-cement
(w/c) ratio as well as its coarse aggregate-to-cement (ca/c) ratio.
Therefore, if these two parameters are determined using a
nondestructive testing technique, then they may be correlated to
the compressive strength. Near-field microwave nondestructive
testing techniques, employing open-ended rectangular waveguide
(OERW) probes, have shown tremendous potential for evaluating
concrete constituent make-up. In this paper, the results of an
extensive set of measurements, using these probes, are presented.
The results demonstrate that the statistical distribution of the mul-
tiple measurements of the magnitude of reflection coefficient of
concrete specimens with various constituent make-ups follows two
well-known distributions as a function of frequency. It is shown
that for the specimens investigated this distribution is Gaussian
at 10 GHz and uniform at 3 GHz. Furthermore, the standard
deviation of the measured magnitude of reflection coefficient at 10
GHz is shown to correlate well with concrete (ca/c) ratio, whereas,
the mean of this parameter at 3 GHz is correlated well with
concrete (w/c) ratio. Subsequently, these parameters may be used
in conjunction with well established formulae or a look-up table to
determine the compressive strength of a given concrete specimen.

Index Terms—Aggregate content, compressive strength, con-
crete, near-field microwaves, nondestructive testing.

I. INTRODUCTION

CONCRETE is the most common material used in many
structures. Concrete is a heterogeneous material com-

posed of cement powder, water, fine aggregate (sand), coarse
aggregate (rocks), and air (porosity). The aggregates act as inert
filler materials while the cement and water chemically react
and form into cement paste binder. The individual proportion
of each constituent in the mixture directly influences the
physical, chemical and mechanical properties of concrete (e.g.,
cure-state and compressive strength). Therefore, a means for
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predicting the constituent make-up of concrete is continuously
sought (preferably nondestructive) by the construction industry.
Currently, there are several approaches for evaluating various
properties of concrete [1], [2]. When interested in determining
the compressive strength of concrete, which is considered one
of its most important parameters, the most common testing
approach involves drilling out a cylindrical core from a concrete
structure and subsequently testing it in the laboratory. This
method is destructive, time consuming, costly, not extremely
accurate and operator skill dependent [1], [2]. This technique
alters the appearance and the physical properties of the tested
structure. Moreover, it only provides information about the
specific location from which the core is drilled out.

Alternatively, microwave near-field testing and evaluation
techniques are shown to overcome most of these limitations [3].
Microwave signals can penetrate inside a dielectric medium,
such as cement-based materials, and interact with its inner
structure. One of the most important parameters influencing
this interaction is the dielectric properties of the medium. The
direct influence of the dielectric properties of a medium on
microwave signals in turn influences the reflection properties
of the medium measured by a probe. Dielectric properties of
cement-based materials continuously change during the period
in which the curing process takes place. Curing provides for
cement-based structures to gain the final strength they are
designed for (usually considered complete after 28 days) [4],
[5]. During the curing process the water and cement molecules
chemically combine into a binder, transforming the initial free
water into bound water. The water-to-cement (w/c) ratio is one
the most influential factors in determining the cured strength
of cement-based materials [4], [5]. Consequently, during the
curing process the dielectric properties of a cement based
material change. Thus, the curing process can be monitored
by measuring the reflection properties of the material using an
appropriate microwave measurement technique. Subsequently,
one may correlate this temporal reflection property change
to the cure-state and compressive strength of the material.
When interested in inspecting concrete with microwave tech-
niques, one must also be cognizant of the interaction of the
signal with the aggregates, particularly the coarse aggregate.
The degree to which microwave signals scatter/reflect off of
aggregates is a function of the operating frequency, aggregate
size, volume distribution and dielectric properties. Therefore,
it is expected that the (statistical) characteristics of reflected
microwave signals from concrete should provide information
about the aggregate size and volume distribution as well. These
two parameters are also shown to influence the compressive
strength of concrete [4], [5]. Thus, a comprehensive evaluation

0018–9456/00$10.00 © 2000 IEEE
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of the characteristics of a reflected signal from a concrete
structure is expected to provide information about its com-
pressive strength. Consequently, in the past few years several
research efforts have focused on characterizing the near-field
microwave reflection properties of cement-based materials for
determining their constituent make-up, cure-state properties
and compressive strength. A succinct overview of the outcome
of these investigations is presented here.

A. Cement Paste (Water and Cement)

• Near-field microwave reflection property analysis of
cement paste specimens with various (w/c) ratios was
conducted during the 28-day prescribed curing period,
using open-ended rectangular waveguide (OERW) probes
at several frequencies [6]. The results showed a correlation
between the magnitude of reflection coefficient, , ref-
erenced to the waveguide aperture and the (w/c) ratio as
well as the compressive strength of the cured specimens. A
similar investigation was also conducted on cured cement
paste specimens using monopole probes, and a similar
correlation was obtained [7].

• Later it was shown that using the OERW probe, cure-state
monitoring of cement paste specimens, with varying (w/c)
ratios, can be conducted at all stages of the curing process
[8].

B. Mortar (Water, Cement, Sand, and Air)

• A simple relationship between the standard deviation of the
magnitude of reflection coefficient, , and sand-to-cement
(s/c) ratio in mortar, was obtained using the OERW probe at
10 GHz. It was also shown that information about the (w/c)
ratio of mortar can be obtained when using the average value
of at lower microwave frequencies, in particular at 3 GHz
[9].

• A three-phase dielectric mixing model was also derived to
predict the constituent volume content of a mortar specimen.
Consequently, porosity (volume content of distributed air) in
a mortar was shown to be easily determined using this mixing
model [10].

C. Concrete (Water, Cement, Sand, Coarse Aggregate, and Air)

• The polarization properties of OERW probes operating at 4
GHz were used to detect the location of a steel reinforcing bar
in a concrete slab, and a break in the bar [11]. Later, it was
demonstrated that manipulation of the operating frequency
using the same probe can yield information about the aggre-
gate size distribution in concrete [12].

• Through extensive measurements using concrete specimens
with various (w/c) ratios and constituent make-up, it was re-
cently demonstrated that concrete cure-state, which is an im-
portant issue in construction industry, can be unambiguously
determined when making daily measurements of[8].

• Determination of fresh concrete (w/c) ratio, was also ad-
dressed and shown to be unambiguously determined inde-
pendent of (s/c) ratio and coarse aggregate-to-cement (ca/c)
ratio [8]. This is an important finding and has significant
practical and process control ramifications since with this

information an operator is capable of determining the (w/c)
ratio of a batch plant concrete at the time of pouring [3].

• The extent of aggregate segregation in concrete placement
is also shown to be evaluated using the statistics of the mea-
sured at frequencies greater than 8 GHz. This information
can be easily obtained for concrete members such as walls
and columns in which aggregate segregation (an undesirable
feature) is likely to occur [3].

D. Masonry (Hollow Mortar Brick)

• Using a simple near-field and nondestructive microwave in-
spection technique employing an OERW probe at 3 GHz
(S-band), it is possible to distinguish between empty and
grout-filled (grout is a very high (w/c) ratio form of mortar)
masonry cells [13].

In each of these studies, the measured mean ofrefer-
enced to the OERW probe aperture or its standard deviation,

, was correlated to a particular parameter of interest such
as cure-state or compressive strength. Concrete coarse aggre-
gate-to-cement (ca/c) ratio determination is also possible using
near-field microwave nondestructive evaluation techniques em-
ploying OERW probes. Even though coarse aggregate primarily
acts as inert filler material in a concrete mixture (replacing the
more expensive cement), its proportion in the mixture can sig-
nificantly impact the compressive strength of the concrete [14].

Consequently, the results of an extensive investigation on
determining concrete (ca/c) ratio, using the statistical proper-
ties of the measured near-field for several specimens with
varying (w/c) ratios and constituent make-ups, as a function
of frequency are presented in this paper. The specimens used
in this study contained in-grade aggregate in addition to
fine aggregate (sand). Specimens with 0.5 in-grade aggregate
were also examined and similar results to those presented here
were obtained [3]. It will be shown that the point-to-point
variation in the measured , at relatively high microwave
frequencies, can be used as a means for predicting the (ca/c)
ratio in concrete. At these frequencies the scattering from the
coarse aggregate influences the measured properties of.
However, at lower frequencies the variations in the measured

are expected be less sensitive to scattering from the coarse
aggregate. To this end, the probability density function (pdf)
and the cumulative distribution function (cdf) of the measured

are studied at 3 GHz (S-band) and 10 GHz (X-band). The
ultimate goal of this study is to be able to classify concrete
material constituents in distinct groups using the statistical
properties of their measured so that this information can be
used to estimate the compressive strength [4], [5], [15]. This
is to say that if such measured data are shown to possess a
well-known distribution (e.g., Gaussian, uniform or Laplacian),
existing statistically based decision schemes can be used to
determine the constituent make-up of a concrete specimen
from a collection of measurements of reflection coefficient at
different microwave frequencies [3].

II. A PPROACH

Several sets ofin in in cubic concrete specimens were
produced. The dimensions of the specimens were chosen such
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TABLE I
CONSTITUENT MIXING PROPORTIONS OFCONCRETESPECIMENSCONTAINING 3=8in-GRADE AGGREGATE

Fig. 1. Experimental setup.

that the OERW probe sees an infinite half-space of concrete at
the operating frequencies of interest; namely, 3 GHz and 10
GHz. The material composition of each concrete specimen is
shown in Table I. The specimens were left in the hydration room
for three days and in room temperature thereafter during the re-
maining 28-day curing period. The measurements reported here
were conducted after day 28. The (w/c) ratios of 0.5 and 0.6
were chosen since they allow for a maximum range of (ca/c) ra-
tios without presenting workability problems ([4], p. 80). The
measurements of the reflection coefficient of the OERW probe,
referenced to the probe aperture, in contact with the concrete
specimens were conducted using an HP8510B vector network
analyzer, as shown in Fig. 1. To obtain the mean and standard de-
viation of the measured magnitude of reflection coefficient for
these specimens, 20 and 160 independent measurements were
conducted on four sides (excluding the top and bottom) of each
specimen at 3 GHz and 10 GHz, respectively. To ensure that the
measurements were uncorrelated (i.e., independent) the spacing
between each measurement was at least equal to that of the
waveguide aperture dimension [16]. This is the reason for the
greater number of independent measurements performed at 10
GHz compared to that at 3 GHz. Consequently, for each spec-
imen the average and standard deviation of these independent
measurements were obtained.

III. RESULTS

A. X-Band Measurements Results

Fig. 2(a) shows the pdf of the 160 measurements conducted
for specimen no. 6 at 10 GHz (X-band) in histogram form. The

(a)

(b)

Fig. 2. (a) Histogram of the magnitude of reflection coefficient (160
measurements) at 10 GHz (X-band) for a concrete specimen possessing
w=c = 0:60; s=c = 1:5 andca=c = 2:0. (b) Cumulative distribution function
of the magnitude of reflection coefficient (160 measurements) at 10 GHz
(X-band) for a concrete specimen possessingw=c = 0:50; s=c = 1:5 and
ca=c = 2:0.

results for this specimen are specifically shown here since the
influence of scattering by the aggregate is most significant for
this specimen (i.e., ). The results show a pdf that fits
the characteristics of a Gaussian distribution. To verify this, the
cdf of this specimen was calculated and is plotted in Fig. 2(b).
The cdf of a Gaussian distribution has an exponential behavior
which when plotted in a logarithmic scale, it results in a line with
a slope proportional to its standard deviation. Fig. 2(b) clearly
shows this characteristic trend. All specimens listed in Table I
resulted in a similar pdf at 10 GHz [3]. For brevity the results
of the measured mean and standard deviation offor the re-
maining specimens are listed in Table II. Therefore, the process
describing the statistical distribution of the measuredat 10
GHz (or higher) is thought to be a Gaussian distribution. This
is also expected since at higher frequencies, where the wave-
length of the exciting wave is comparable in size to the dimen-
sions of the scatterers, the scattering (direct and multiple) by
uniformly distributed scatterers (e.g., aggregate) results in the
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TABLE II
MEAN AND STANDARD DEVIATION OF REFLECTIONCOEFFICIENTMEASUREMENTCONDUCTED AT 10 GHz (X-BAND) FORALL CONCRETESPECIMENS

TABLE III
MEAN AND STANDARD DEVIATION OF REFLECTIONCOEFFICIENTMEASUREMENTCONDUCTED AT 3 GHz (S-BAND) FORALL CONCRETESPECIMENS

reflected signal to possess a Gaussian distribution [17]. As the
volumetric concentration of coarse aggregate in the specimen
increases (i.e., higher (ca/c) ratio) for samples with the same
(w/c) and (s/c) ratios, the scattering from the coarse aggregate
is expected to increase as well. The corresponding increase in
the standard deviation of the measured magnitude of the reflec-
tion coefficient shown in Table II clearly corroborates this fact.

The results of these measurements are very encouraging.
First, the statistical distribution of the measuredat 10 GHz
(X-band) follows a Gaussian distribution.A priori knowledge
of the statistical distribution of a random event greatly enhances
the implementation of a decision process (i.e., maximum
likelihood scheme) for determining the constituent make-up
of the random event [18]. Consequently, the knowledge of
the statistical distribution of the measured magnitude of
for concrete can provide information about its (ca/c) ratio.
Additionally, per a given (s/c) ratio, there seems to be a linear
trend between the standard deviation of reflection coefficient
and the (ca/c) ratio, irrespective of the (w/c) ratio as indicated
in Table II. This indicates that if one is only interested in
concrete specimens with (s/c) ratio of 1.5 and in-grade
aggregate (a common mixture in many practical applications),
the determination of (ca/c) is a straightforward task using this
approach.

B. S-Band Measurement Results

Again for brevity, Fig. 3(a) presents the pdf of the 20 mea-
surements conducted for specimen no. 6 at 3 GHz (S-band) in
histogram form. As for the measurements conducted at 10 GHz,
the measured mean and standard deviation offor all speci-
mens at 3 GHz are presented in Table III. At this frequency the
dielectric properties of these specimens were also measured, re-
sulting in an average value of [3]. This shortens the
wavelength of 60 mm in free-space, to approximately 30 mm
in these specimens. Comparing the aggregate size of 9.5 mm
( in-grade) with this wavelength, it is expected that the scat-
tering produced by the aggregate will be less compared to 10
GHz. Previous measurements conducted at this frequency pro-
vided information about the background material (i.e., cement
paste which is an indication of (w/c) ratio), more so than the
aggregate content [3], [8], [9]. The pdf for these measurements

(a)

(b)

Fig. 3. (a) Histogram of the magnitude of reflection coefficient (20
measurements) at 3 GHz (S-band) for a concrete specimen possessing
w=c = 0:60; s=c = 1:5 andca=c = 2:0. (b) Cumulative distribution function
of the magnitude of reflection coefficient (20 measurements) at 3 GHz (S-band)
for a concrete specimen possessingw=c = 0:60; s=c = 1:5 andca=c = 2:0.

corresponds to a uniform distribution unlike the results at 10
GHz. To verify this, the cdf of the measured for this spec-
imen was calculated, and subsequently plotted in Fig. 3(b). The
cdf of a uniform distribution is a line whose slope indicates the
minimum and maximum values of the data set. Fig. 3(b) clearly
demonstrates such a characteristic trend.

Upon a closer look at Table III, we notice that the mean of
magnitude of reflection coefficient is consistently higher for the
specimens with lower (w/c) ratio than those with higher (w/c)
ratio. This is consistent with the results of previous experiments
for mortar and cement paste, which indicates the process of free
water transforming into bound water and evaporation during
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Fig. 4. Measured (discrete points) standard deviation of the magnitude of
reflection coefficient at 10 GHz and linear fits (solid lines) through them as a
function of (w/c) and (ca/c) ratios.

the curing process has been well documented [3], [6], [8]. These
phenomena result in lower cured measurement as a func-
tion of higher (w/c) ratio. More importantly, there is almost no
overlap between the measured mean offor the specimens
with 0.50 (w/c) ratio and those with 0.60 (w/c) ratio. For these
specimens, this will greatly facilitate the implementation of a
decision process for determining the constituent make-up of a
specimen from the collection of multiple measurements of.
In addition, it is very encouraging to note that the measured mean
of remains relatively constant for a given (w/c) ratio and as a
function of increasing (ca/c) ratio. As mentioned previously, this
further facilitates the implementation of the decision process,
for determining the constituent make-up of a concrete specimen
using the statistics of previously measured specimens [3].

C. Discussion

For the set of specimens considered in this section, the mea-
sured mean of at 3 GHz was shown to be consistently higher
for specimens with 0.50 (w/c) ratio than for those with 0.60
(w/c) ratio, when considering specimens of identical (s/c) and
(ca/c) ratio. This measured mean of remained fairly constant
as a function of (s/c) and (ca/c) ratios. Additionally, at 10 GHz
the standard deviation of , consistently increased as a
function of (ca/c) ratio for specimens of identical (w/c) and (s/c)
ratios. To clearly demonstrate this, Fig. 4 shows the standard de-
viation of the measurements at 10 GHz for all specimens listed
in Table I. The discrete points are the measured values (from
Table II), and the lines are linear fits through the points for each
(w/c) ratio. The results show the correlation mentioned above.
Hence, the measured mean of at 3 GHz and standard devi-
ation of at 10 GHz are shown to potentially be able to pro-
vide for an indication of (w/c) and (ca/c) ratio, respectively. The
ramification of these findings is that making several measure-
ments at two frequencies and studying the statistical distribution
of their measured can provide valuable information about
the important parameters of concrete, such as the (w/c) and the
(ca/c) ratios, both of which influence its compressive strength
significantly.

IV. M EASUREMENTREPEATABILITY

Since the potential follow-up to this study, as it relates to de-
termining the constituent make-up of a concrete specimen in a

(a)

(b)

Fig. 5. (a) Histogram of the magnitude of reflection coefficient (160
measurements) at 10 GHz (X-band) for a concrete specimen possessing
w=c = 0:50; s=c = 1:5 andca=c = 1:5 produced at the Terracon Consultants
Western facilities. (b) Cumulative distribution function of the magnitude of
reflection coefficient (160 measurements) at 10 GHz (X-band) for the Terracon
specimen.

nondestructive fashion, solely depends on the statistics of the
measured magnitude of reflection coefficient from previously
characterized specimens, it is imperative to determine the re-
peatability of the original results. The initial assumption was
that because all of the measurements were considered indepen-
dent of each other, even though they were obtained from a single
specimen, doing so is analogous to conducting one measure-
ment per specimen on several different specimens of the same
constituent make-up. To verify this assumption, an additional
concrete specimen with 0.5 (w/c) ratio, 1.5 (s/c) and 1.5 (ca/c)
ratios with in-grade aggregate, was produced in the facili-
ties of Terracon Consultants Western (a local civil engineering
surveying company). The reason for producing the new spec-
imen under the supervision of field experts was that it is fair to
assume that the investigating team at Colorado State University
(CSU) might not have been consistent in the way they may have
produced their specimens. The pdf and cdf of these measure-
ments at 10 GHz and 3 GHz after the 28-day curing period are
presented in Figs. 5 and 6. The results of these measurements
clearly follow those reported in the previous two sections. Ad-
ditionally, the measured mean and standard deviation ofare
very close to the previous measurements shown in Tables II and
III. This clearly demonstrates the repeatability of the measure-
ments. To better appreciate the quality of the results, Table IV
shows the results for the measured mean and standard devia-
tion of for a specimen produced at CSU (CSU specimen in
Table IV) with the same constituent make-up as that produced at
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TABLE IV
COMPARISONBETWEEN THEMEASUREDMEAN AND STANDARD DEVIATION OF MAGNITUDE OF REFLECTIONCOEFFICIENTMEASUREMENTS FOR THESPECIMEN

(w=c = 0:50; s=c = 1:5 AND ca=c = 1:5) PRODUCED AT COLORADO STATE UNIVERSITY AND THE SPECIMEN PRODUCED AT TERRACON

CONSULTANTS WESTERNFACILITIES

(a)

(b)

Fig. 6. (a) Histogram of the magnitude of reflection coefficient (20
measurements) at 3 GHz (S-band) for the concrete specimen possessing
w=c = 0:50; s=c = 1:5 andca=c = 1:5 produced at the Terracon Consultants
Western facilities. (b) Cumulative distribution function of the magnitude of
reflection coefficient (20 measurements) at 3 GHz (S-band) for the Terracon
specimen.

the Terracon Consultant Western facilities (Terracon specimen
in Table IV).

Except for the small variation in the value of at 3 GHz, all
the measurements are almost identical. Furthermore, this small
difference is not a concern since at this frequency the mean, not
the standard deviation, of the measuredis correlated to the
(w/c) ratio of the specimen. Therefore, relatively small varia-
tions in this parameter are not as critical as they would be at
10 GHz, which is used for (ca/c) ratio determination.

V. CONCLUSION

In this paper, the statistical distributions of near-field mi-
crowave reflection property measurement of concrete with
varying constituent make-up were conducted at 10 GHz and
3 GHz. These measurements were conducted using OERW
probes in contact with specially prepared concrete specimens.
It was shown that the statistical distribution of the measured

magnitude of reflection coefficient, , corresponds to the
well-known Gaussian and uniform distributions, respectively.
Additionally, it was shown that for the studied set of specimens,
the aggregate content; namely, the (ca/c) ratio, can be corre-
lated to the standard deviation of the measuredat 10 GHz.
Similarly, at 3 GHz the measured mean of was shown
to be correlated to the (w/c) ratio. These results agree with
the understanding that at higher microwave frequencies the
multiple scattering from the coarse aggregate is significantly
higher than that at lower frequencies. This results in the trend
that shows more point-to-point measurement variations at
higher frequencies than at lower frequencies.

The knowledge of (w/c) and (ca/c) ratios is very important
since these two parameters significantly influence the compres-
sive strength of concrete. Having now determined the statistical
distributions of the measured for various concrete speci-
mens, one may employ a simple decision process algorithm for
determining the constituent make-up of a concrete specimen.
Using the measured statistical properties of concrete specimens
possessing different constituent make-ups, the outcome of sev-
eral measurements of the reflection coefficient on an unknown
specimen can be correlated to its material composition, more
importantly to its compressive strength, either through a look-up
table of actual measurements conducted on cylindrical speci-
mens or established Civil Engineering formulae.
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