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Abstract-- Power system networks are complex systems that 

are highly nonlinear and non-stationary, and therefore, their 
performance is difficult to optimize using traditional 
optimization techniques. This paper presents an enhanced 
particle swarm optimizer for solving constrained optimization 
problems for power system applications, in particular, the 
optimal allocation of multiple STATCOM units. The study 
focuses on the capability of the algorithm to find feasible 
solutions in a highly restricted hyperspace. The performance of 
the enhanced particle swarm optimizer is compared with the 
classical particle swarm optimization (PSO) algorithm, genetic 
algorithm (GA) and bacterial foraging algorithm (BFA). Results 
show that the enhanced PSO is able to find feasible solutions 
faster and converge to feasible regions more often as compared 
with other algorithms. Additionally, the enhanced PSO is capable 
of finding the global optimum without getting trapped in local 
minima. 

 
Index Terms—Flexible AC Transmission Systems (FACTS), 

Static VAR compensators, Particle Swarm Optimization, Genetic 
Algorithm, Bacterial Foraging Algorithm. 

I.  INTRODUCTION 
The optimization of power system performance can be 

accomplished by improving the voltage profile, increasing the 
power transmission capability, controlling power flow and 
others. Flexible AC Transmission System (FACTS) devices, 
such as the STATCOM, SVC and SSSC, can be used for these 
purposes due to their capability to achieve numerous control 
functions fast and accurately [1]. 

In order to obtain the maximum benefit for each FACTS 
device, the optimal location and size of each unit have to be 
carefully determined. This problem is particularly challenging 
since power system networks are complex systems that are 
highly nonlinear and non-stationary. Additionally, some of the 
decision variables can only take integer values and the 
constraints given by the desired system performance make it 
difficult to find feasible solutions. 

Simple heuristic approaches are traditionally applied for 
determining the location and size of FACTS devices in small  
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power systems. However, more scientific methods are 
required for larger power networks. 

Traditional optimization techniques such as mixed integer 
linear and non-linear programming have been investigated to 
solve this problem. Unfortunately, difficulties arise due to 
multiple local minima and the overwhelming computational 
effort [2], [3]. 

Evolutionary Computation Techniques (ECT) have been 
recently employed to solve the optimal allocation of FACTS 
devices. Different algorithms such as Genetic Algorithms 
(GA) [2], [4], [5], Evolutionary Programming (EP) [6] and 
Particle Swarm Optimization (PSO) [7], [8], have been tested 
with promising results. Nevertheless, the canonical versions of 
these algorithms sometimes do not provide an efficient search 
mechanism to find feasible solutions fast and easily. 

The purpose of this paper is to show the application of an 
enhanced particle swarm optimizer for power system 
applications, in particular, for the optimal location and sizing 
of multiple STATCOM units in a power system. The criterion 
used in finding the best solution is to improve, at minimum 
cost, the voltage profile of the system such that the voltage 
deviations at each bus do not exceed a predefined set value. 

A statistical analysis is performed to show that the 
enhancement applied to the PSO algorithm allows the search 
process to be more efficient in finding feasible solutions and 
global minimum as compared with the canonical PSO version 
and other evolutionary computation techniques. 

Section II briefly presents the fundamentals of each 
optimization method, while section III describes the 
characteristics of the optimization problem to be solved. 
Section IV presents simulation results, statistical analysis and 
comparison between methods. Finally section V states all 
concluding remarks. 

II.  OPTIMIZATION ALGORITHMS 

A. Particle Swarm Optimization (PSO) 
PSO uses the concept of swarm intelligence to obtain an 

optimal solution. It does so by searching the feasible space 
with several particles that each represents a possible solution 
to the problem. Their positions are updated using both the 
individual particle’s knowledge as well as the combined 
knowledge of the entire swarm [9], [10]. 

In a real-number space, the PSO algorithm considers that 
each particle’s position is defined by a vector ix

r
∈ ℜn. At 
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iteration t, the particle’s position vector ( )ix t
r

, is determined by 
adding the previous position vector ( 1)ix t −

r
 and the particle’s 

velocity )(tvi , as shown in (1). 

( ) ( 1) ( )x t x t v ti i i= − +
r r r

 (1) 
 

The velocity of the particle is determined by both the 
individual and group experiences: 

 

))1(·(·
...))1(·(·)1()(

22
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−−
+−−+−⋅=

txprc
txprctvwtv

ig

iiiii  (2) 
 

where, 
iw  is a positive number between 0 and 1, 

1 2c and c  are two positive numbers called the cognitive 
and social acceleration constants, respectively, 

1r  and 2r  are random numbers with uniform distribution in 
the range of [0, 1], 

pi  is the individual best position found by the particle, 
pg  is the global best position found by the entire swarm. 
 

In order to avoid the divergence of the swarm, the 
maximum allowable velocity for the particles is controlled by 
the parameter vmax. A different value of vmax can be defined for 
each dimension of the problem hyperspace. 

In the case where integer variables are included in the 
optimization problem, the PSO algorithm can be reformulated 
by rounding off the particle’s position to the nearest integer. 

 

B. Enhanced Particle Swarm Optimization 
For this particular application, the canonical PSO 

algorithm described in the previous section is enhanced by 
adding a basic logic to the particles to facilitate the search 
through the problem hyperspace. 

The additional logic in each individual is defined by the 
following rules: 

 

• If the corresponding particle’s pbest and the gbest 
positions are both feasible solutions (i.e. solutions that 
satisfy all the constraints of the problem), then the velocity 
update is performed according to (2). 

 

• If the particle has not found a feasible solution yet, then 
the velocity update equation is replaced by: 
 

))1(·(·)1()( −−+−⋅= txprandctvwtv igiii  (3) 
 

where, 
c  is a single acceleration constant: c  =c1 + c2, 
rand is a random number with uniform distribution in the 

range of [0, 1]. 
 

In the case when the particle has not found a feasible 
solution by itself then it is better to rely on the social rather 
than the self knowledge, thus the particle follows the best 
particle in the swarm. 
 

• If none of the particles have found a feasible solution (the 
gbest value and the pbest value are both infeasible) then 

the velocity of the particles are updated using a random 
value of the maximum velocity as shown in (4). 
 
 

where, 
rh is a random number with uniform distribution in the 

range of [0, 1]. 
vmax(h) is the maximum velocity in the hth dimension of the 

problem hyperspace. 
 

In this last case, when a feasible solution has not been 
found by any member of the swarm, the particles may get 
confused by following the directions represented by the 
gbest and pbest positions. As a consequence the particles 
move erratically in the problem hyperspace. Therefore, it 
is advantageous to assign random values to the velocity 
component so that only the limits represented by the 
maximum velocity are considered. 
 

C. Genetic Algorithm (GA) 
GA is an evolutionary computation technique that patterns 

itself after Charles Darwin’s “survival of the fittest” concept. 
Each individual, in this case a chromosome, represents a 
possible solution to the problem. Through selection of parents, 
crossover between them, and mutation of the offspring, the 
population evolves and, after a number of generations, it 
approaches an optimal solution [11], [12]. 

After the population data is initialized randomly, the 
fitness of each chromosome is evaluated through the use of a 
fitness function. Higher ranking individuals have fitness 
values that are closer to the optimal fitness value and vice 
versa. After the fitness of each chromosome has been 
assessed, a subgroup of chromosomes is selected to become 
the parents for the next generation. 

There are several ways to determine which members of the 
population will produce offspring. For this application, elitism 
and “roulette wheel” are used. Elitism copies a percentage of 
the highest ranking members of the current population into the 
new population, the rest of the chromosomes are then selected 
using the “roulette wheel”, a method where higher-ranking 
individuals receive higher probabilities of being selected as 
parents. 

Once the two parents are chosen, crossover between them 
will produce two offspring. After the crossover, there is a 
chance that any number of the offspring’s genes may be 
mutated or altered. Each gene of the new chromosome is 
given the possibility of mutation, in other words, the genes are 
treated independently and this results in anywhere from zero 
to all genes being mutated. 

The previous generation is replaced by the new generation 
and the entire process is repeated until a terminating condition 
is reached. 

 

D. Bacterial Foraging Algorithm (BFA) 
BFA is based on the movement patterns of E. coli in the 

intestines. Each individual, in this case a bacterium, represents 
a possible solution to the problem [13]-[15]. 

The algorithm considers four successive processes: 
Chemotaxis, Swarming, Reproduction and Elimination. 

[ ])4(·)3(·)2(·)1(·)( max4max3max2max1 vrvrvrvrtvi =  (4) 
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a) Chemotaxis: the bacteria move towards better nutrient 
concentrations avoiding noxious substances, and search for 
ways out of neutral media. The bacterium takes a tumble 
followed by a tumble or a tumble followed by a run. For 
Nc number of chemotactic steps the direction of movement 
after a tumble is given by (5). 
 

 

where, 
C(i) is the step size taken in direction of the tumble, 
j is the index for the chemotactic step, 
k is the index for the number of reproduction step, 
l is the index for the number of elimination-dispersal 

event, 
φ(j) is the unit length random direction taken at each step. 
 

If the fitness function value at θi(j+1, k, l) is better than the 
one corresponding to θi(j, k, l) then the bacterium takes 
another step of size C(i) in that direction. This process 
continues until the number of repetitions per chemotactic 
cycle reaches a maximum of Ns. 
 

b) Swarming: the bacteria in times of stress release attractants 
to signal bacteria to swarm together. Each bacterium also 
releases a repellant to signal others to be at a minimum 
distance from it. Thus all the bacteria will have a cell-to-
cell attraction via attractant and cell-to-cell repulsion via 
repellant. The equation involved in the process is: 

 

where, 
dattract is the depth of the attractant, 
wattract is a measure of the width of the attractant, 
hrepellant  is the height of the repellant effect, 
wrepellant is a measure of the width of the repellant, 
p is the number of parameters to be optimized, 
S is the number of bacteria. 
 

The bacteria moving towards better nutrient concentrations 
can be represented by: 
 

 

where, 
J(i,j,k,l) is the fitness function. 
 

c) Reproduction: after Nc chemotactic steps, the population of 
bacteria is allowed to reproduce. Sr (Sr=S/2) bacteria 
having the worst fitness function value die and the 
remaining Sr are allowed to split into two thus keeping the 
population size constant. 
 

d) Elimination-Dispersal: at an elimination-dispersal event, 

each bacterium is eliminated with a probability of ped. This 
probability ped should not be large or it can lead to an 
exhaustive search. 

III.  PROBLEM DESCRIPTION 
The problem to be addressed consists of finding the 

optimal placement (bus number) and power rating (MVA) of 
multiple STATCOM units in a power system, based on its 
steady state performance. Such a problem can be stated as a 
constrained optimization problem where the main objective is 
to find the best positions of the STATCOM units to minimize 
the bus voltage deviations throughout the power system, using 
a minimum (cost efficient) size for each STATCOM. In 
addition, other operating constraints are imposed such as 
keeping all voltage deviations within ±5% of the 
corresponding nominal values. 

A 45 bus system, part of the Brazilian power network, is 
used for this study [8]. This Brazilian system (Fig.1) has two 
distinct load centers, suggesting that the voltage support 
should be done through two STATCOM units. 

 

A. Objective Function 
There are two goals that have to be accomplished: (i) to 

minimize the voltage deviations in the system and (ii) to have 
the minimum possible STATCOM sizes (minimum cost per 
each device). Thus, two metrics J1 and J2 are defined as in (8) 
and (9). 

 

∑ −=
N

kVJ
1

2
1 )1(  (8) 

 

where, 
J1 is a voltage deviation metric, 
Vk is the p.u. value of the voltage at bus k, 
N is the total number of buses, 
 

∑⋅=
M

pJ
1

2 000,100 η  (9) 
 

where, 
J2 is a STATCOM size metric, 
M is the number of STATCOM units to be allocated, 
ηp is the size in MVA of STATCOM unit p. 
 

The STATCOM size metric in (9) considers the cost of a 
typical STATCOM to be roughly 100,000 $/MVA [16]. 

 

The multi-objective optimization problem can now be 
defined using the weighted sum of both metrics J1 and J2 to 
create the overall objective function J shown in (10). 

 

2211 JJJ ⋅+⋅= ωω  (10) 
 

The weight for each metric is adjusted to reflect the 
relative importance of that goal with respect to the other. In 
this case, it is decided to give equal importance to both 
metrics, giving values of ω1 = 1 and ω2 = 2⋅10-8, so that the 
two terms in the objective function are comparable in 
magnitude. 
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Fig. 1. One line diagram of the 45 bus 10 machine section of the Brazilian power system. 

 

B. Decision Variables 
The decision variables are the location of the STATCOM 

units and their sizes.These variables can be arranged in a 
vector as: 

 

[ ] M
iMMi xx 2

11 ,... Ζ∈= ηληλ  (11) 
 

where, 
λp is the location (bus number) of STATCOM unit p, 
ηp is the size (MVA) of STATCOM unit p. 
 

All components of the decision vector are integer numbers, 
thus xi ∈ Z2M. 

 

C. Constraints 
There are several constraints in this problem regarding the 

characteristics of the power system and the desired voltage 
profile. Each constraint represents a limit in the search space, 
which in this particular case corresponds to: 

 Generator buses are omitted from the search process  
since they have voltage regulators to regulate the 
voltage. 

 Bus numbers are limited to the range from 1 to N. 
 Only one STATCOM unit can be connected at each 

bus. 
 The size of each unit is between 0 and 250 MVA. 
 The desired voltage profile requires N additional 

restrictions defined as: 
 

NkVk →≤≤ 1:,05.195.0  (12) 
 

Each solution that does not satisfy the above constraints is 
considered infeasible. 

D. Problem Complexity 
From the optimization point of view, the optimal 

allocation of STATCOM units in the power system is a very 
complex problem since it involves non-linear optimization and 
integer variables. Additionally, the voltage profile constraints 
limit the feasible regions to a small subset of the total problem 
hyperspace. 

In order to determine the feasible regions and global 
optimal solution, an exhaustive search is performed. The 
exhaustive search is based on searching along the extreme 
points of the integral polytope defined by the search space 
constraints. 

One power flow is required to evaluate each possible 
combination of values in the decision vector shown in (11), 
thus the exhaustive search requires 37,187,500 power flows to 
explore the total problem hyperspace. 

Among the complete hyperspace, just 15 pairs of locations 
(λ1, λ2) can provide feasibility to allocate STATCOM units 1 
and 2. This value corresponds to 2.52% of the 595 total 
possible combinations. Considering both locations and sizes, 
there are 414,750 combinations that meet all constraints, 
representing just 1.12% of the total hyperspace. Fig. 2 shows 
graphically the proportion of feasible regions in the total 
problem hyperspace. 

Additionally, the result of the exhaustive search indicates 
that the global optimal solution is to place one STATCOM 
unit of 75 MVA at bus 378 and the second unit of 92 MVA at 
bus 433. After the devices are optimally placed, all voltage 
deviations are in the range of ±5% and the voltage deviation 
metric J1 sees an improvement of 26.5 % from its original 
value of 0.2482. 

 
 

Generation level: 13.8 kV.    
Transmission level: 525 kV, 230 kV.   
Total installed capacity: 8,940 MVA. 

Load Center 1 

Load Center 2 
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IV.  SIMULATION RESULTS 

A.  Convergence into feasible regions 
In order to evaluate the performance of the optimization 

algorithms, 150 trials are carried out for each one of them. At 
each trial, the number of power flow evaluations is recorded 
until the first feasible solution is found. If no feasible solution 
is found, then the algorithms stops automatically when the 
number of power flow evaluations reaches a maximum 
number of 2000 power flows. 

A performance indicator called Success Rate is calculated 
to determine the percentage of time that the algorithm is able 
to converge into feasible regions. 

In order to use statistical parameters to evaluate the 
performance of each optimization technique, the Anderson-
Darling normality test is first performed to measure of how 
likely the data (in this case the number of power flows) come 
from a normal distribution [17]. 

Performing the normality test is necessary in order to 
determine whether or not the means and standard deviations 
of these data sets are valid metrics to assess the differences 
between the techniques. In all cases, the Anderson-Darling p-
values are less than 0.005 indicating that, with better than 
99.5% certainty, the data are not normally distributed; 
therefore other statistical distribution has to be used. 

Fig. 3 shows the histogram for each technique. Based on 
observation, Weibull distribution is considered appropriate to 
analyze the data. This distribution is used extensively to study 
extreme valued data, in this particular case, the number of 
power flows to the first feasible solution [18]. 

 

For each of the four datasets, a two-parameter Weibull 
distribution is fitted to each dataset using a standard statistical 
software package. In each case, the correlation is greater than 
0.95, indicating that the choice of Weibull is suitable. 

Fig. 4 shows the resulting probability plots for each 
technique and Table I shows the corresponding statistical 
parameters. 

 

 
TABLE I: STATISTICAL VALUES TWO-PARAMETER WEIBULL DISTRIBUTION 

 

Enhanced PSO PSO GA BFA
Minimum PF 22 28 67 24
Maximum PF 379 1992 1972 1834
Success Rate 100 20.7 30 100
Scale (α) 147 8650 4329 326
Shape (β) 2.5 0.8 1.1 1.2  
 
Table I indicates that, based on the ranges for the number 

of power flow evaluations, the proposed enhanced PSO is 
faster in finding feasible solutions as compared with all other 
algorithms. Moreover its Success Rates is 100% versus 20.7% 
for canonical PSO and 30% in the case of GA. 

Additionally, the Weibull parameters, α and β, carry 
important physical meanings. The scale parameter, α, 
corresponds to the characteristic time (or number of power 
flows) to find the first feasible solution. This is defined as the 
number of power flows needed to obtain a feasible solution in 
63.2% of the trials. 

The shape parameter, β represents the slope produced by 
data when plotted on a Weibull plot (Fig. 4). More 
interestingly, the shape parameters provide insight into how 
the algorithms are able to seek out feasible solutions. Shape 
parameters greater than one imply increasing ability to locate 
feasible solutions. Enhanced PSO is the only algorithm that 
falls into this category. GA and BFA both have shape 
parameters that are slightly greater than one while PSO is 
slightly less than one. Clearly, the enhanced PSO offers the 
most efficient means of locating the feasible regions. 

Fig. 4 allows one to read off the probability of obtaining a 
feasible solution in any number of power flows (or less) for 
each of the techniques. Equally, the probability may be 
specified and then the maximum number of power flows 
required may be determined. 

Fig. 4 shows that the enhanced PSO distribution has the 
steepest slope followed by BFA. On inspection, it appears that 

 
 
 

Fig. 2(a): Percentage of feasible locations over total possible combinations. 
Fig. 2(b): Percentage of feasible solutions over total problem hyperspace. 
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Fig. 3: Histogram  for each algorithm 
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GA and PSO have very similar slopes indicating that their 
performances in locating their first feasible solutions are 
similar. 

In addition, the resulting characteristic time to find a 
feasible solution was 147 and 326 power flows for enhanced 
PSO and BFA, respectively. The canonical PSO and GA were 
only able to find feasible solutions in at most 30% of the trials 
while the rest of the values are censored. This leads to 
characteristic times of 4329 and 8650 for GA and PSO, 
respectively. 

 

B.  Global Optimality 
For further comparison of the performance of enhanced 

PSO and BFA algorithms, their capabilities for finding the 
global optimal solution are investigated. 

Statistical values for the optimal solutions found are 
calculated over a set of 50 trials each. In this case, the 
Anderson-Darling normality test gives p-values grater 0.05, 
indicating that the data have Normal distribution for both 
cases. 

Table II provides the additional indicators to evaluate the 
accuracy in finding the optimal solutions. 

 

TABLE II: STATISTICAL ANALYSIS FOR OPTIMAL SOLUTIONS 
Parameter Enhanced 

PSO 
BFA 

Minimum objective function value (J) 0.51745 0.52441 
Maximum objective function value (J) 0.68390 0.96422 
Average objective function value (J) 0.58791 0.74765 
Standard deviation objective function value (J) 0.04167 0.09654 

 

The accuracy in finding the optimal solution is 
considerably better in the case of the enhanced PSO algorithm 
with a standard deviation of 0.0417 as compared to 0.0965 of 
BFA that is more than two times larger. In terms of the 
maximum and average values of the objective function value 
indicate a clear advantage of the enhanced PSO over BFA. 
Furthermore, the enhanced PSO algorithm finds the global 
optimum for this problem. 

 

V.  DISCUSSION 
The characteristic times to first feasible solution obtained 

from the Weibull analysis indicate that the enhanced PSO 
offers substantial performance gains as compared to the 
canonical PSO. Furthermore, its performance is also superior 
to BFA and GA. 

In addition, the examination of the shape parameters 
indicates that only enhanced PSO has increasing ability to 
locate feasible solutions. 

In terms of Success Rate, both BFA and enhanced PSO 
were 100% successful in obtaining a feasible solution within 
the 2000 power flow horizon. Both canonical PSO and GA 
require substantially more power flows to locate feasible 
regions. 

Considering global optimality, the enhanced PSO is able to 
find the global optimal solution while BFA finds a near 
optimal solution. Since both algorithms have stochastic 
components, the results over 50 trials are calculated indicating 

that the enhanced PSO have smaller range for the objective 
function value, better average value and much higher accuracy 
as compared with BFA. 

Overall, given the statistical analysis presented in this 
paper, the proposed enhanced PSO algorithm clearly 
outperforms the canonical PSO, GA and BFA in converging 
into feasible regions and finding the global optimum. 

 
VI.  APPENDIX 

 
TABLE III: PSO PARAMETERS 

Parameter Optimal value 
Number of particles 20 
Inertia constant (wi) Linear decrease (0.9 to 0.1) 
Individual acceleration constant (c1) 2.5 
Social acceleration constant (c2) 1.5 
Vmax for bus location 9 
Vmax for STATCOM size 50 
Maximum number of iterations 100 
 

TABLE IV: GA PARAMETERS 
Parameter Optimal value 

Number of chromosomes 20 
Percentage of elite members 10% 
Crossover probability 85% 
Mutation probability 5% 
Maximum number of generations 100 

 
TABLE V: BFA PARAMETERS 

Parameter Optimal value 
Number of bacteria 20 
Number of chemotactic cycles (Nc) 30 
Number of swim steps (Ns) 3 
Number of reproductions (Nre) 3 
Number of elimination-dispersal loops (Ned) 2 
Probability of elimination (Ped) 0.5 
Maximum distance (C(i)) 4 
Attraction coefficients dattract and wattract 0.1 
Repellent coefficient drepel and wrepel 0.05 
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