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FAST POWER FLOW WITH CAPABILITY OF CORRECTIVE CONTROL

USING A NEURAL NETWORK
Badrul H. Chowdhury, Member, IEEE Bogdan M. Wilamowski, Senior Member, IEEE
Electrical Engineering Department
University of Wyoming

Laramie, WY 82071-3295

ABSTRACT

It is common practice for the power system dispatcher before taking any action
to precede it with power flow analysis so as to avoid costly experimentation with
the real system. Hence speed of power flow solutions is an extremely important
factor for real-time implementation of corrective actions. The advantage of fast
computation of Artificial Neural Network (ANN) is used for obtaining power flow
solutions in real time. The input to the ANN are the real and reactive power
generations and demands in the system, and the output data are the complex bus
voltages. A few configurations of the neural network are experimented with, and
the best results are achieved with a single-layer feedforward neural network with
nonlinear feedback. Using the trained neural network, an approximate solution of
power flow can be obtained almost immediately. One particular configuration of
the ANN can be used for determining corrective strategies during abnormal
conditions of the power system.

INTRODUCTION

Undoubtedly, the importance of power flow analysis in modem-day power
system operation and planning is one of monumental proportions. It provides
snapshots in time of the system behavior under both normal and abnormal
conditions. Operators depend on it i) for performing security assessment under
normal system operation and ii) for applying appropriate corrective strategies
under emergency conditions.

A typical power system is modeled by a large set of non-linear equations
which are normally solved by using any of the widely acclaimed power flow
solution techniques viz., the Gauss-Seidel method, the Newton-Raphson method or
the fast-decoupled method. Of these three, the fast-decoupled method provides the
fastest solutions. However, all of these methods require significant computational
effort and are therefore difficult to use in real time applications. This paper presents
arguments that the conventional tedious approach to obtaining solutions of power
flow by using numerical methods can be avoided by using simulated neural
computing.

In the recent past, several attempts have been made to investigate the
suitability of artificial neural networks in power system applications [1-3]. All of
the authors have reported relative success with their formulations. This paper
presents a number of different configurations of the neural network and identifies a
particular case which is most suitable for power flow analysis in real-time
applications.

THE ONE LAYER NEURAL NETWORK
A one layer neural network is characterized by a layer of input neurons and a

layer of output neurons interconnected to one another by weights to be determined
by the training process. This process is illustrated in Fig, 1.

Fig. 1. One Layer Neural Network

For application to power flow, the power system is linearized and then
modeled by one layer of the forward neural network, as shown in Fig. 2. The input
data are the real and reactive power generations and demands in the system, and the
output data are the complex bus voltages.
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Single layer neural network represents a linear system and it is obvious that
results obtained for a nonlinear system such as a power system can not be accurate.
One possible solution is to introduce additional input layers to generate second and
higher order nonlinear terms. This approach however, will result in significant
increase of the size of a neural network and it will be impractical for large power
systems to be analyzed.

PREINEAND
Ip[EE ofEp

Fig. 2. Linear Neural Network for Power Flow

ONE LAYER NEURAL NETWORK WITH
NON-LINEAR FEEDBACK

A possible approach to increase accuracy is to use a feedback loop, as shown
in Fig. 3. Line power vector can be directly computed from bus voltages and line
impedances. Using simple summation with complex arithmetic, the input vector
INF (bus powers) can be obtained from line powers summation. At the initial
state, the vector of line powers S is zero and there is no feedback - INF is zero.
Therefore in the first step the input vector IN alone, is applied to the neural
network and an approximate initial vector of bus voltages Vg is obtained. In the
second step the difference between input vector IN and feedback vector INF is
computed from line powers Sy and bus voltages V. Therefore the neural network
operates on the difference (error) and the vector of line powers is corrected.

BUS VOLTAGES
VECTOR

Fig. 3. Neural Network With Feedback for Power Flow Analysis
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By adding the non-linear feedback, we can obtain significant improvement over
the case with no feedback. Usually a few iterations are enough to obtain
convergence as shown in the results section. The results are very much comparable
with those from a rigorous mathematical analysis, but the computational effort is
negligibly smaller in comparison.

Training of the Neural Network

For a given power system such a network can be trained using, for example
the back propagation algorithm, where the error between the actual and the desired
outputs is fed back to the neuron to adjust its weights. The projection algorithm
based on the least squares approximation technique can also be used for training and
was also found to be efficient and reliable.

For supervised training the exact solutions obtained from a conventional
power flow program was used. The training procedure was verified on the IEEE-24
bus test system [4]. The latter system was slightly modified for the purpose of
demonstrating corrective control. Relevant data for the system pertinent to power
flow are shown in Table A1 of the appendix. A training set consisting of 96 input
and 96 output vectors was used to train the neural network for the test system. The
input training data is comprised of:

(i) net real bus powers (real power generations minus the real power demands) at
all buses except the slack bus,

(i) net reactive bus powers (reactive power generations minus the reactive power
demands) at load buses only,

(iii) the voltage magnitudes at voltage-controlled buses only.

The output vectors consisted of:

(i) bus voltage angles at all buses except the slack bus,

(ii) voltage magnitudes at load buses,

(iii) reactive power generations at voltage-controlled buses.

After training is completed, the ANN was tested for validation. Sets of new
input test patterns were applied to the neural network. Comparisons of the
performance of the ANN relative to a fast-decoupled solution showed an acceptable
degree of accuracy. These comparisons are tabulated in the next section.

RESULTS

Figure 4 shows the IEEE 24-bus test system used in the analysis.
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BUS-12
~
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BUS-3 }
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BUS4
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i
|
4_‘\‘_l BUS-1 Us-2 BUS7

Fig. 5. The Modified IEEE 24-Bus Test System

Table 1 shows results of using the one-layer neural network without the
feedback for predicting power flow results for the test system. The table shows bus
voltage magnitudes and angles and real and reactive power generations after the first
iteration. Before the next iteration, a non-linear feedback as mentioned in an earlier
section, is employed, and results after the first iteration following the application
of the feedback are shown in Table 2. The instant increase in accuracy due to the
feedback is obvious from the data. Table 3 shows the same after the second
iteration following feedback. This table should be compared with Table 4 which
shows results of applying the fast-decoupled method on the test system. It can be
observed from these tables that the ANN solution approaches the numerically
found accurate values within only two iterations.

Table 1. Results From the ANN Without Feedback

Type Voltage Power generated

[P.U] [deg] MW] [MVAR]
BUS- 1 slack 1.00000 0.0000 5222 70.67
BUS- 2 [|v-cont  1.00000 -0.0039 192.00 64.05
BUS- 3 load 0.93111 15279 0.00 6.54
BUS- 4 load 0.94321 23291 0.00 5.01
BUS- 5 load 097315 -2.4885 0.00 20.60
BUS- 6 load 0.96663 -5.0386 0.00 3.16
BUS- 7 |V|-cont  0.96000 1.6768 300.00 53.07
BUS- 8 load 0.93704 -3.1830 0.00 4414
BUS- 9 load 0.94240 1.2245 0.00 1.08
BUS- 10  load 0.96485 -1.0000 0.00 3.29
BUS- 11  load 097516 8.5366 0.00 36.58
BUS- 12 load 0.96463 9.9677 0.00 28.54
BUS- 13 -cont  0.99000 14.8287 591.00 117.46
BUS- 14 -cont  1.00000 10.7915 0.00 126.67
BUS- 15 -cont  1.01000 18.2637 215.00 100.69
BUS- 16 -cont  1.01000 17.7543 155.00 7713
BUS- 17  load 1.01897 21.7430 0.00 55.20
BUS- 18 [M-cont  1.01500 22.8606 387.89 27.39
BUS- 19 load 1.00376 17.3551 0.00 28.40
BUS-20 load 1.00825 19.3239 0.00 61.89
BUS- 21 -cont  1.02500 23.8085 386.42 78.47
BUS- 22 -cont  1.04500 29.6516 296.09 30.94
BUS- 23 -cont 101000 21.2384 660.00 2371
BUS-24  load 0.98753 12,0867 0.00 20.79

Table 2. Results From the ANN With Non-Linear Feedback After
One Iteration
Type Voltage Power generated

P.U] [deg] MW] [MVAR]
BUS- 1 slack 1.00000 0.0000 254.14 40.72
BUS- 2 |v]-cont  1.00000 -0.1558 192.00 26.83
BUS- 3 load 0.95837 -0.2835 0.00 0.00
BUS- 4 load 0.96995 -1.8450 0.00 0.00
BUS- 5 load 0.98891 -1.8256 0.00 0.00
BUS- 6 load 1.00920 -3.5718 0.00 0.00
BUS- 7 [vl-cont  0.96000 0.4373 300.00 37.07
BUS- 8 load 0.95182 23122 0.00 0.00
BUS- 9  load 0.96951 -0.5304 0.00 0.00
BUS- 10  load 0.99624 -1.5948 0.00 0.00
BUS- 11 load 0.98755 2.7948 0.00 0.00
BUS- 12 load 0.98508 3.6223 0.00 0.00
BUS- 13 -cont  0.99000 6.1452 591.00 18.95
BUS- 14 -cont  1.00000 3.7534 0.00 88.03
BUS- 15 -cont  1.01000 7.3503 215.00 225
BUS- 16 -cont  1.01000 7.1286 155.00 104.51
BUS- 17  load 1.01559 9.0756 0.00 0.00
BUS-18 |M-cont  1.01500 9.6873 387.89 -84.52
BUS- 19  load 1.00413 7.0270 0.00 0.00
BUS-20  load 1.00631 8.1231 0.00 0.00
BUS- 21 -cont  1.02500 10.1649 386.42 170.04
BUS- 22 -cont  1.04500 12.9786 296.09 81.94
BUS- 23 -cont  1.01000 9.2032 660.00 78.28
BUS-24  load 1.00422 45016 0.00 0.00
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Table 3. Results From the ANN With Non-Linear Feedback After

Two Iterations
Type Voltage Power generated
P.U] [deg] mMw] [MVAR]
BUS- 1 slak 1.00000 0.0000 194.31 51.59
BUS- 2 |d-cont  1.00000 -0.0627 192.00 25.88
BUS- 3 load 0.95868 0.5812 0.00 0.00
BUS- 4  load '0.97035 -1.2976 0.00 0.00
BUS- 5 load 0.98903 -1.4075 0.00 0.00
BUS- 6 load 1.00951 29111 0.00 0.00
BUS- 7 |-cont  0.96000 1.4201 300.00 35.76
BUS- 8 load 0.95199 -1.3848 0.00 0.00
BUS- 9 load 0.96985 0.3613 0.00 0.00
BUS- 10  load 0.99652 -0.8065 0.00 0.00
BUS- 11  load 0.98731 3.8174 0.00 0.00
BUS- 12 load 0.98486 4.5582 0.00 0.00
BUS- 13 -cont  0.99000 7.1108 591.00 20.08
BUS- 14 -cont  1.00000 4.9288 0.00 88.54
BUS- 15 - cont 1.01000 8.6599 215.00 -4.82
BUS- 16 -cont  1.01000 8.4001 155.00 100.26
BUS- 17  load 1.01562 10.3777 0.00 0.00
BUS- 18 M -cont 1.01500 10.9673 387.89 -90.48
BUS- 19  lad 1.00419 8.2201 0.00 0.00
BUS-20 load 1.0063S 9.2323 0.00 0.00
BUS- 21 -cont  1.02500 11.4018 386.42 16548
BUS- 22 -cont  1.04500 14.1829 296.09 81.30
BUS- 23 - cont 1.01000 10.2304 660.00 75.71
BUS-24  load 1.00386 5.5917 0.00 0.00
Table 4. Results From the Fast-Decoupled Power Flow
Type Voltage Power generated
[P.U] [deg] Mw) [MVAR]
BUS- 1  slack 1.00000 0.0000 166.76 57.24
BUS- 2 |f|-cont  1.00000 -0.0173 152,00 25.81
BUS- 3 load 0.95883 0.9976 0.00 0.00
BUS- 4 load 0.97041 -1.0363 0.00 0.00
BUS- § load 0.98914 -1.2158 0.00 0.00
BUS- 6 load 1.00972 -2.6025 0.00 0.00
BUS- 7 |v-cont  0.96000 1.8815 300.00 35.12
BUS- 8 load 0.95207 -0.9556 0.00 0.00
BUS- 9 load 0.96997 0.7806 0.00 0.00
BUS- 10  load 0.99671 -0.4394 0.00 0.00
BUS- 11 load 0.98721 43018 0.00 0.00
BUS- 12 load 0.98477 5.0025 0.00 0.00
BUS- 13  V-cont  0.99000 7.5685 591.00 20.52
BUS- 14 V] - cont 1.00000 5.4819 0.00 88.65
BUS- 15 V| - cont 1.01000 9.2781 215.00 -6.27
BUS- 16 |vj-cont  1.01000 8.9984 155.00 97.81
BUS-17  load 1.01561 10.9951 0.00 0.00
BUS-18  |]-cont  1.01500 11.5735 387.89 93.03
BUS- 19  load 1.00420 8.7829 0.00 0.00
BUS-20 load 1.00635 9.7558 0.00 0.00
BUS- 21 V| - cont 1.02500 11.9861 38642 163.28
BUS- 22 V] - cont 1.04500 14.7520 296.09 81.04
BUS-23 |v|-cont  1.01000 10.7158 660.00 74.61
BUS-24  load 1.00369 6.1056 0.00 0.00

It was felt that a good indicator of relative speeds of solution would be the
time it took for solutions to converge for both the ANN and the conventional
methods viz., the Gauss-seidel and the fast-decoupled methods. Fig. 6 shows a
comparison of these factors. Two cases for the fast-decoupled method are shown in
the figures. These are:

FD-I: Solution by the fast decoupled method with the Jacobian matrix already
calculated and inverted.

FD-IL: Solution by the fast decoupled method before the Jacobian matrix has been
calculated and inverted.

The time shown is that on an "80286" IBM-compatible hine r

FD-1
FD-ll
G-S

ANN

8 ——r—r———
CPUTimt:10

15

Fig. 6. Comparison of Errors vs. CPU Time or "'80286" IBM
Machine at 12 MHz.

CORRECTIVE CONTROL WITH THE TRAINED ANN

It is not unusual for a power system to reach an abnormal condition during
daily operations. A situation where certain lines or transformers become overioaded
or bus voltages tend to drift outside the set upper or lower limits, can be considered
as abnormal operating conditions from system security point of view. Such
situations can be brought about by unexpected variations in demands or the
occurrences of disturbances, such as the opening of a line due to a fault. If the
abnormality exists for only a brief period , the system operator may overlook the
problem. However, if the condition persists for longer periods of time than allowed
by equipment tolerances, the operator has to make decisions on remediating the
problems. Fast control strategies have to be implemented to bring the system
back to its normal operating regime. The operator has several options in making
the corrective control. These options range from parametric changes to certain
control elements such as, reactive compensators, generator real powers, etc. to
more drastic measures such as, line switching and load shedding,

The neural network described in this paper can be trained to yield
recommendations for corrective control under system emergencies. Of course, the
ANN has to be trained with control elements as inputs and the controlled quantities
as outputs. For instance, capacitor switching at certain buses can correct a low
voltage problem at a bus which is sensitive to the var injections at those buses.
Therefore, such information has to be fed to the neural network during training.
However, before using the trained network for corrective control, the operator must
have information on sensitivities of controlled quantities such as, voltages, to the
corresponding controlling elements such as, capacitors or synchronous condenser
outputs.

Table 5 shows results of using real power generation change at buses 15 and 2
in order to bring about a reduction in line flow in the branch between buses 14 and
16. The table shows a comparison of the neural network output with a fast
decoupled load flow output. The bus loads and generations used for the results
shown in the table are somewhat different from that shown in the appendix.

Table 6 shows the effect of capacitor switching at buses 4 and 8 separately,
and also when they are switched on simultaneously. Voltages corrections are
observed in buses 3, 4, 8 and 9. Once again, comparisons are shown with the
output from a fast decoupled load flow,

Table 5. Branch Overload Relief by Generators

MHz. From the figure, it is obvious that the Gauss-Seidel method is not
appropriate for real-time applications. The ANN solutions compare very well with
the fast-decoupled method. In fact, the ANN solution approaches the actual
solution faster. However, no significant improvement in the iteration errors are
observed in the ANN case after the initial iterations.
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APPENDIX
Table 6. Voltage Correction by Capacitor Switching

Table Al. Power flow data for the IEEE-24 bus test system
Load Capacitor Bus Voltage Bus Voltage

) X Type Voltage Power generated Power demand
Scenario Switching (Fast Decoupled) (Neural Network) [P.U.] [deg] MW] [MVAR] [MW] [MVAR]
BUS- 1 slack 1.0 0.0 185.91 97.28 115.0 320
Bus-3: 0.93036 Bus-3: 0.930213 BUS- 2 |[-cont 1.0 - 1920 -1491 117.0 350
)i None Bus-4: 0.95037 Bus-4: 0.950412 BUS- 3 load - - 0.0 0.0 208.0 38.0
Bus-8: 0.92653 Bus-8: 0.926623 BUS- 4 load - - 0.0 0.0 90.0 23.0
Bus-9: 0.94716 Bus-9: 0.947233 BUS- 5§ load - - 0.0 0.0 85.0 220
BUS- 6 load - - 0.0 0.0 151.0 350
Bus-3: 0.93132 Bus-3: 0.931031 BUS- 7 |[M-cont 096 - 300.0 00 1550 450
I Bus 4: 15 MVAR Bus-4: 0.96013 Bus-4: 0.960276 BUS- 8 load - - 0.0 00 2020 45.0
Bus-8: 0.92719 Bus-8: 0.927071 BUS- 9 load - - 0.0 0.0 2180 52.0
Bus-9: 0.94972 Bus-9: 0.949570 BUS- 10 load - - 0.0 00 2500 65.0
BUS- 11 load - - 0.0 0.0 0.0 0.0
Bus-3: 093172 Bus-3: 0.932086 BUS- 12 load - - 0.0 0.0 0.0 0.0
I Bus8:4SMVAR  Bus4: 095237 Bus-4: 0.952415 BUS-13 |q-cont 099 - 5910 00 3050 740
Bus-8: 0.94342 Bus-8: 0.943528 BUS- 14 -cont 1.0 - 0.0 0.0 215.0 49.0
Bus-9: 0.95072 Bus-9: 0.951071 ggg— 1.2 - cont i.gig - ﬁgg g.g i;g.g ;g.g
- - con K - . . J X
Bus-3: 0.93277 Bus-3: 0.933454 ggg' }; |13|ad 1. 015 . 38708'2 gg 383.8 7(9)8
o Bus4:15SMVAR  Bus4: 0.96216 Bus-4: 0.962550 ; ~oont 1 i : y ; y
g . . BUS- 19 load - - 0.0 0.0 2120 53.0
Bus 8: 45 MVAR Bus-8: 0.94410 Bus-8: 0.944533
Bus-9: 0.95329 Bus-9: 0.953632 BUS- 20  load - - 00 00 150 360
o BUS- 21 -cont 1.025 - 386.42 0.0 0.0 0.0
BUS- 22 -cont 1.045 - 296.09 0.0 0.0 0.0
BUS- 23 -cont 1.01 - 660.0 0.0 0.0 0.0
BUS- 24 load - - 0.0 0.0 0.0 0.0
CONCLUSION
LINE DATA
The advantage of fast analog computing is taken for power system analyses. From To R X B MVA Rat
Such analog neural network with single layer performs linear operation and 1 BUS-1 BUS-2 0026 0139 23055 140.0 ’
therefore limited accuracy can be obtained for a nonlinear system such as a power 2 BUS-1 BUS-3 '05 46 '21 12 '02860 1 40‘0
system. To increase accuracy, the nonlinear feedback to evaluate an error canbe 3 gys.] BUS-5 0218 0845 01145 140.0
applied. Although the method was applied to a power system only, it is obvious 4  BUS.2 BUS4 ‘0328 1267 01715 140.0
that the approach is quite general and can be used for fast analysis of any other 5§ pgys.2 BUS-6 0497 1920 02600  140.0
nonlinear system. 6 BUS-3 BUS-9 . . ) 4 )
The neural network can be trained using operating data such as bus powers, g  BUS4 BUS-9 g;gg }(1)?7) 813(1)(5) }488
bus Yoltages, tap ratios, phase s)]ifter angles and_reactive compensation§ in order 9 BUS-S BUS-10 0228 0883 .0119S 140.0
for it to be used for corrective control during system emergencies. This 10 BUS-6 BUS-10 0139 0605 12295 140.0
approximate solution should be adequate for taking fast control decisions. i1 BUSY BUS-8 0159 0614 .0.0830 140.0
Ack led, - The help of i i 12 BUS-8 BUS-9 0427 1651 02235 140.0
e r:a"v [2 ge‘;nment. e he ff o Mr Soumen Gh_osh in running the neural net 13 BUS-8 BUS-10 0427 1651 02235 140.0
simulations and the ac power flows is greatly appreciated. 18 BUS-11  BUS-13 0061 0476  .04995  240.0
19 BUS-11 BUS-14 0054 0418 .04395 240.0
REFERENCE
20 BUS-12 BUS-13 .0061 0476 04995 240.0
. . N . . 21 BUS-12 BUS-23 0124 0966  .10150 240.0
1. Chowdhlu_'y, B..'H' and B. M Wllax.nowskl, 1991. "Security Afsse.ssmem using 22  BUS-13 BUS-23 0111 0865  .09090 240.0
neural computing.” In Proceeding of First Intern. Forum on Application of Neural 23 BUS-14 BUS-16 0050 0389 04090 240.0
Networks to Power Systems, (Seattle July 23-26), 54-58. 24 BUS-15  BUS-16 ‘0022 0173 01820  240.0
2 BUS- - K R 051 240.0
2. Sobajic, D.J. and Y. H. Pao, 1989. "Artificial Neural Net Based Dynamic > 13 BuS21 0063 0490 05130 0
N ! - 8 26 BUS-15 BUS-21 0063 0490  .05150 240.0
Security Assessment for Electric Power Systems,” IEEE Transaction on Power 27  BUS-15 BUS-24 0067 0519 05455 240.0
Systems, Vol. 4: 220-228. ) ) ; y
: 28 BUS-16 BUS-17 .0033 0259  .02725 240.0
3. Sobajic, D.J.; Y. H. Pao; W. Njo; and J. Dolce, 1990. "Real-time Security :?;g ggg_i: ggg_ig gg?g gﬁi gigg gjgg
Monitoring of Electric Power Systems,” In Proc of the 1990 ISCAS, vol 3. (New 37 pys.17 BUS-22 0135 1053 01106 2400
Orleans, LA, May), 2929-2932. ) ’ ’ .
’ 32 BUS-18 BUS-21 0033 0259 02725 240.0
4. IEEE Committee Report, 1979. "IEEE Reliability Test System", JEEE 33 BUS18 - BUS2] 00330259 02725 240.0
T . P f ds Vol. PAS.98(3): 2047-2054 34 BUS-19 BUS-20 0051 0396  .04165 240.0
ransactions on Power Apparatus and Systems, Vol. PAS-98(3): 2047-2034. 35 BUS-19  BUS20 0051 0396 .04165 2400
36 BUS-20 BUS-23 .0028 0216  .02275 240.0
37 BUS-20 BUS-23 0028 0216 02275 240.0
38 BUS-21 BUS-22 .0087 0678 .07120 240.0
TRANSFORMER DATA
From To Tap Phase X MVA Rat.
7 BUS-3 BUS-24 0.95 0.00000 .0839 400.0

14  BUS9 BUS-11 1.00 0.00000 0839  400.0
15 BUS9 BUS-12 1.00 0.00000 .0839 400.0
16  BUS-10 BUS-11 1.00 0.00000 .0839 400.0
17 BUS-10 BUS-12 1.00 0.00000 .0839 400.0
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