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Scaling relations and the role of bond-charge to the electron transmission
through two coupled Aharonov-Bohm rings

C. H. Wu, L. Tran, and C. A. Cain
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 301 W
16th St., Rolla, Missouri 65409, USA

(Received 28 October 2011; accepted 23 March 2012; published online 4 May 2012)

Electron transport and the exact scaling relations for two irreducibly coupled Aharonov-Bohm

(AB) rings with two external terminals attached are investigated. In coupled AB rings, a center

common path exists where the phase of the electron wave function can be modulated by two

applied fluxes simultaneously. The two coupled rings can be considered as two coupled atoms

where Fermi level crossings exist not only between bonding states but also between bonding and

anti-bonding states when the applied flux is varied in one of the two cases studied. We show that

when the smallest atomic-sized coupled rings are scaled up any odd number of times, an identical

electron transmission is preserved. When two terminals are attached to isolated coupled AB rings,

there is a further redistribution of bond-charge stored within the center common path. The shift of

the electron charge distribution to favor one end of the common path is accompanied by the

redistribution of the two partial waves that traverse through the two arms from the input to the

output terminal. The flux can control which arm the electron traverses through more favorably, and

hence, the center path behaves like a flux-controlled charge reservoir for the electron transport. The

unbalanced charge in the entire structure creates a space-charge effect much like a p-n junction.

The paradox of the delocalization of the electron wave when two AB rings are coupled

and the subsequent localization effect of the electron transport in a quantum network are described.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705513]

I. INTRODUCTION

In the mesoscopic and microscopic world, it can be use-

ful to investigate strictly one-dimensional networks in order

to gain physical insights. An Aharonov-Bohm (AB) ring of

this size with two terminals was first investigated experimen-

tally over two decades ago and the effect has since been

studied extensively.1–8 While there are several allowed one-

dimensional paths that can be embedded into a mesoscopic

ring of small cross section, it has been calculated and experi-

mentally shown that only one dominant path will persist.9–15

The behavior of this dominant class is of key interest. There

are similarities between classical waveguides and the elec-

tron waveguides presented here in a two-terminal AB ring.

In a rectangular waveguide (in the microwave region) with

cross-sectional dimensions a and b, there are two distinctive

classes of propagation, transverse electric (TEmn) and trans-

verse magnetic (TMmn), described by zero electric and mag-

netic fields in the direction of wave vector ~k, respectively.

Each propagation mode (mn) within the TE or TM class is

then determined by how many half-integer wavelengths can

fit within the cross section. The higher divisions are the

high-frequency modes while the lowest division (fundamen-

tal mode) is simply a and b. In the corresponding electron

waveguide situation, this is reversed. The minimum division

of an AB ring is the atomic spacing, with the lowest-order

mode corresponding to an atomic-sized ring. In principle,

rings of a higher-order can exist in a larger structure, such as

in carbon nanotubes or graphene lattice structures.16,17

Mesoscopic rings will possess small cross-sectional areas

consisting of several embedded one-dimensional rings. This

raises an important question of the scaling relations between

the lowest division AB ring and its higher-order counter-

parts. In a one-dimensional AB ring, the total number of

atoms, M, is large but finite. Even when the value of M is

approaches very large values, it is not valid to assume the

M !1 limit. This is because three distinctive classes of

propagation exist, much like the TE and TM classes in

microwaves. It has been shown18 that the value of M is one

of the determining parameters for this classification. In

strictly one-dimensional rings with two terminals, the total

number of atoms is denoted by M ¼ mþ n, where m is the

number of atoms in the upper arm, while n is the correspond-

ing number in the lower arm. In Class I, m and n are both

even numbers. Class II is when m and n are both odd, making

M even. Lastly, Class III is when M is odd, which constricts

m and n to differ in parity. The asymmetrical result is that

the upper arm and the lower arm must differ by at least one

atomic spacing and hence, the flux periodicity is doubled at

ðU0=2Þ. This is the universal double periodicity for any com-

bination of an odd-numbered ring.18 The important result is

that this finiteness prevents one from treating the network as

a continuum. Therefore, a mesoscopic ring consists of 1D

rings, which propagate like a TEmn or TMmn class at a high-

frequency mode or at a higher-order division of the length a
or b. To demonstrate a lower-order mode, an AB ring has to

be reduced in atomic size and hence, there must be fewer

embedded one-dimensional rings. In this case, three distinc-

tive classes of AB rings can be exhibited separately. At a

low-order propagation mode, an AB ring appears as a 1D

atomic-sized ring with small M, while at a higher-order

mode, a collection of integrated one-dimensional rings.
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When M is monotonically increased the electron transport

cycles through three different classes of propagation or three

different transmissions and two flux periodicities, and hence

uniquely distinguishes mesoscopic from macroscopic sys-

tems. Scaling relations exist, which demonstrate a preserva-

tion of transmission behavior within each class if the value

of M (m,n) is scaled up properly. The scaling relations for

simple two-terminal rings will be briefly revisited first before

we present relations for coupled AB rings.

Earlier investigations by one of us has shown18 that the

electron transmission through a two-terminal AB ring is

physically equivalent to a chain of flux-assisted harmonic

oscillators of the same topology (see Fig. 2 in Ref. 21) when

subjected to an external perturbation by using a set of linear

node equations described in Sec. II. Therefore, intuitively, it

is very easy to visualize that a four-atom AB ring (M¼ 4)

can have equal arm lengths (two atomic spacings) between

the input to the output terminals. At zero flux, the two partial

waves scattered at the input will arrive at the output in phase,

resulting in total transmission. However, at the flux value of

U ¼ 6ðU0=2Þ, where U0 is the elementary flux quanta hc=e,

the two partial waves will arrive with a phase difference

jdj ¼ p, resulting in a total reflection. If the number of atoms

were doubled (M¼ 8), phase conditions will remain the

same. The harmonic oscillators are topologically equivalent

in both cases (the scaling relation), hence the flux depend-

ence of the electron transmission from zero at U ¼ 6ðU0=2Þ
to 1 at U ¼ 0 remains unchanged. The governing set of equa-

tions for the network are unchanged except the atomic spac-

ing a is changed to 2a in all the cosðkaÞ terms (the Mb term

in Eq. (36) of Ref. 18 is an invariant quantity). Thus, an M ¼
400 AB ring with m ¼ n ¼ 200 corresponds to an arbitrary

higher-order mode of Class I, whose fundamental mode is

given by M ¼ 4 (m ¼ n ¼ 2). The importance consequence

of this argument is that there is no need to investigate the

electron transmission through a large structure. An equiva-

lent small-scale toy model, corresponding to the fundamental

propagation mode, is sufficient due to the manifestation of

the scaling relations.

In this paper, we investigate the electron transmission

through two irreducibly coupled AB rings in terms of the

added scaling relations (Sec. III) and the important role

played by the bond-charge storage behavior within the center

common path (Sec. IV). An isolated AB ring can be consid-

ered a man-made atom with a circulating persistent current

playing the role of the orbiting electron, except the positive

charge is uniformly distributed in the ring. When two AB

rings are irreducibly coupled by a center common path, the

situation is similar to that of two coupled atoms where bond-

ing and anti-bonding effects are present.19 The persistent

currents are now controlled by the two external fluxes U1

and U2. The clockwise (counter-clockwise) persistent current

is analogous to spin-up (spin-down) states, so that computing

networks comprised of AB rings can be described in a simi-

lar manner as spintronics.20 Therefore, correlating the charge

storage behavior within the network to the electron transport

is of significant interest. As we will show later, there is a

charge redistribution along the center path that becomes

asymmetrical when two terminals are attached as a result of

the perturbation. Our investigation is motivated by the possi-

ble applications of using coupled AB rings for computing in

place of two equivalent coupled spins.21

II. NODE EQUATION APPROACH

In our work, we used the quantum network approach

developed earlier18,21–24 to calculate the one-dimensional

electron transport of a given network with elastic scatterings

at the node points. A quantum network is composed of nodes

and bond lengths that connect adjacent nodes. Within a

bond, the Schrödinger equation is satisfied. Furthermore, at

each node point, the Kirchhoff law for conservation of cur-

rent must also hold.25 The resulting linear set of node equa-

tions is an exact relationship between the electron wave

function at a given node with all neighboring nodes. This is

physically similar to a network of coupled harmonic oscilla-

tors of the same topology with masses and springs, except

the value of the spring constant is flux-modulated. The

equivalence this method compared to the traditional

S-matrix approach has been established.18 The set of node

equations for a network can then be written as

hX
y

cotðklxyÞ� iD
i
WðxÞ�

X
y

½cscðklxyÞexp½i/lxy�WðyÞ� ¼ 0;

(1)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mE=

p
�h, and E is the electron energy. The phase

modulation between atoms in the ring is defined as

/ ¼ ð2p=MÞðU=U0Þ. D ¼ ð1� RÞ=ð1þ RÞ, where R is the

reflection amplitude if node x is an input, D ¼ �1 if node x

is an output, and D ¼ 0 otherwise. This set of node equations

allows one to solve for all the electron wave functions at

each node in the network and determine the transmission

probabilities Tsum ¼ 1� jRj2 if there are external terminals

attached. The transmission probability is then used to calcu-

late the conductance as described in the Landauer-Büttiker

formalism.26–31 Note that Eq. (1) is not a tight-binding

approximation, but an exact solution.

III. SCALING RELATIONS FOR IRREDUCIBLY
COUPLED AB RINGS

When two simple AB rings are merged together where

they share a finite center common path,16,19,21,24 they are

referred to as irreducibly coupled. We examined two cases: a

single bond and a double bond. In this configuration, the

electron wave function along the center common path can be

modulated by two fluxes U1 and U2. There are three primary

classes of electron transmission: when the number of atoms

in each ring of (I) are even, (II) odd, and (III) odd-even

pairs.21 We investigated the validity of extending the scaling

relations from a simple ring to coupled AB rings. Two

coupled rings can be generally described as (l,m,n), which

defines the atomic spacings in the left ring, right ring, and

center path, respectively. Starting with the smallest M3S AC

case, where (l,m,n)¼ (2,2,1) and M3 stands for a total of

three atoms (the smallest odd number) in each ring coupled

together by a single center path with terminals at A and C as

shown in Fig. 1, we demonstrate that the transmission is
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exactly preserved when the network is scaled up by any

odd n-factor, with a half-period flux shift depending if

the particular scaled up rings are classified as M¼ [5,9,

13,17,21,…,4Nþ 1] or M¼ [3,7,11,15,19,…,4Nþ 3]. The

results are shown in Fig. 2. There is a difference of a half-

period flux shift between M¼ 4Nþ 1 and M¼ 4Nþ 3 in

odd-numbered coupled rings which is not observed for a sin-

gle odd ring. If a second center path is added to the M3S

structure, the network now has a double bond and is denoted

by M3D. This additional path does not alter the flux period

or possible flux shift, but does affect the transmission.

The M4S AD network is shown in Fig. 3, where

(l,m,n)¼ (3,3,1). This is the smallest even coupled ring con-

figuration. Like the M3 structure, a double bond M4D net-

work can be created by simply inserting another common path

into an M4S. The transmission behavior is again preserved in

Fig. 4 when scaling by any odd n-factor of M4. While the M3

scaling cases exhibit a half-period flux shift, such a difference

disappears in even networks, since the total atoms always

remain within the same M¼ [4,8,12,16,20,…,4N] group,

never crossing into M¼ [6,10,14,18,22,…,4Nþ 2]. The same

would hold true if one were scaling a coupled network ini-

tially falling into the 4Nþ 2 group.

Combining these results with previous works, it can be

sufficiently stated that a fixed quantum network can be

scaled any odd number of times and exhibit identical

FIG. 1. M3S AC network where two odd M¼ 3 rings are coupled together.

If a second center path was connected between B and D, then the network

would be considered a double bond, denoted by M3D. The areas for each

ring are implied to be equal.

FIG. 2. Transmission results when the smallest (2,2,1) structure for M3S (a) and M3D (c) networks is scaled up by an odd n-factor leading to each ring having

M¼ [3,7,11,15,19,…,4Nþ 3] atoms. If the n-factor leads to M¼ [5,9,13,17,21,…,4Nþ 1], then M3S is depicted by (b) and M3D by (d). Note the half-period

flux shift of ð3=4ÞU0 between the two classifications for both bonds.
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transmission behavior, i.e., changing the atomic spacings in

the network from (3,3,1) to (9,9,3) and so on has no effect on

the transmission. These observations are very important

because together they state that an atomic-scale network can

be scaled-up to a mesoscopic size as long as the electron co-

herence is maintained. Since there are only three classes of

coupled rings, the scaling relations imply that any fabricated

mesoscopic structure of small cross section will exhibit the

dominant electron transmission mode present in one of the

three classes.

IV. CHARGE DISTRIBUTION AND ITS RELATION
TO THE ELECTRON TRANSMISSION IN TWO
COUPLED AB RINGS

In an isolated situation of two even coupled AB rings,

the total amount of electron charge accumulated along the

center common path can be varied by the applied fluxes U1

and U2 to reach a peak value or total depletion. In our study,

we examine when fluxes U1 ¼ U2 ¼ U only. As the electron

charge starts to be depleted with an increasing value of the

applied flux U, the electron density is redistributed, so that

the outer loop of the weakened bonding orbital get more

share of the electron density as one expects. The correspond-

ing electron density profiles are plotted in Figs. 5(a) and 5(b)

for the entire flux period. The electron charge is integrated

over the entire center path and then evaluated as a fraction of

the total charge in the normalized unit of a single electron e,

shown in Fig. 5(c). In the double bond situation, the electron

charge is depleted monotonically as the flux increases due to

the Fermi level residing at a bonding orbital over the entire

flux period (Fig. 6(a)). The average charge at the center path

over the entire flux period is calculated to be 0.2355e of the

total charge in the entire structure, which is less than the

value of 0.25e in the uniform charge distribution for two

bonds out of the 8 total. However, for the single bond situa-

tion, the Fermi level of the coupled rings starts at an anti-

bonding orbital, rather than a bonding orbital, with a small

electron density along the center path at zero flux. There is

then a Fermi level crossover to a lower energy bonding or-

bital at U ¼ 6ð2=9ÞU0 as the applied flux is increased where

there is a sudden inrush of charge into the common path, as

shown in Figs. 5(b)–5(d) and 6(b). The average electron

charge for the single bond case is 0.1112e of the total charge.

Again this value is less than one expects (0.143e) from a uni-

form charge distribution for one bond out of 7 total. The

Fermi level crossing uniquely defines where uniform charge

distribution takes place between all bonds in the network.

The discontinuity in our calculations can be attributed to the

charge instantly being depleted from a higher energy anti-

bonding orbital to fill the lower bonding orbital at this Fermi

level crossing. Note that right at the crossing, electron den-

sity will be adjusted to a uniform distribution first before any

further changes. At flux values less than the crossing, there is

no net current flowing through the center path, since there is

no electron density at the midpoint. Once the Fermi level

crosses into the bonding orbital, the net current remains zero,

since the directional derivative of the electron density van-

ishes. It is obvious that whenever two AB rings are coupled,

FIG. 3. M4S AD network where two even M¼ 4 rings are coupled together.

If a second center path was connected between C and F, then the network

would be considered a double bond, denoted M4D. The areas of each ring

are implied to be equal.

FIG. 4. Transmission results for M4S AD (a) and M4D AD (b) networks. The transmission remains exact for any odd n-factor, without a flux shift since all

odd scaling configurations fall into the same 4N group.
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FIG. 5. Isolated M4D (a) and isolated M4S (b) common path densities. (c) Total density along common path. (d) Total density for all bonds in M4S network.

At the Fermi level crossing, there is uniform distribution and is the cause of the discontinuity.

FIG. 6. (a) M4D and (b) M4S band structures, also shown as part of Fig. 4 in Ref. 21. The Fermi level for the M4S network encounters a crossover between an

anti-bonding to bonding orbital, not present for M4D. Reprinted with permission from J. Appl. Phys. 110, 054315 (2011). Copyright 2011 American Institute

of Physics.
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FIG. 7. M3D (a) and M3S (b) band structures. Note that the Fermi level for the M3S network encounters a crossover to a stronger bonding orbital, which is

not present for M3D.

FIG. 8. Isolated M3D (a) and isolated M3S (b) common path densities. (c) Total density along common path. (d) Total density for all bonds in M3S network.

A uniform distribution exists at the Fermi crossing, leading to the discontinuity.
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there is an equilibrium redistribution of electron charge at

the center common path, which can result in a fractional

electron charge circulating around the larger outer loop. This

space-charge effect is no different from bringing an n-type

and a p-type semiconductor together to form a classical

diode at equilibrium, except now the space-charge is from

two metallic rings. This origin is of course from the delocali-

zation tendency when two rings (two atoms) are coupled and

the degree of which depends whether the Fermi level resides

at a bonding or anti-bonding orbital.

There is an opposite effect in odd coupled AB rings.

That is, as flux is increased, there is now a monotonic

increase in charge accumulation along the common path. As

in the transmission perspective, this fundamental difference

in charge accumulation behavior between even and odd net-

works is very interesting. The M3S (single bond) network

possesses a Fermi level crossing at U � 60:522U0 where a

stronger bonding orbital is then encountered out to the zone

boundary, as depicted in Fig. 7(b). The existence of this

Fermi crossover can be further explained by the sudden burst

of charge at the center common path, leading to the average

charge of the single-bond to possess 0.1296e, dominating the

double bond network (lacking such a crossing), which only

has an average of 0.0407e. These results are shown in Fig. 8.

At the Fermi level crossing for the M3S case, there is again a

uniform charge distribution among all of the bonds in the

network, even though this crossing is between two like

(bonding) orbitals, unlike the M4S case discussed previ-

ously. The discontinuity in this region is again a signature of

the Fermi level crossing.

We further examined the situation when two externals

terminals are attached to even coupled rings and study the

relation between the electron transport and the behavior of

the electron density at the center common path. In Fig. 9, we

show the corresponding electron densities of Fig. 5 when

two terminals are attached at nodes A and D. There is now

an asymmetry between the upper and lower branches of the

ring. The two electron partial waves scattered at the input

terminal A are unequal in amount and now favor passing

more through node C and less through node F to arrive at the

FIG. 9. M4D AD (a) and M4S AD (b) common path densities. (c) Total density along common path. (d) Total density for all bonds in M4S AD network. Note

that while there are no electron density discontinuities at the Fermi crossing flux, the uniform density distribution is achieved at the crossing nonetheless.
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output D. This bond charge redistribution within the com-

mon path is closely related to the electron transmission

through the terminals. It implies that when two external ter-

minals are attached the electron charge stored within the seg-

ment of the center path not only redistributes with the outer

loop bonds but also redistributes within the path itself by

shifting more of its share of the charge to one end (at node

C) to accommodate the mode of the electron transport. There

is always a tiny amount of residual charge remaining in the

path for both double and single bond situations at the flux

value of U ¼ ð2=3ÞU0. Thus, whenever two external termi-

nals are attached, the charge at the center common path can-

not be totally emptied as in the case of isolated coupled rings

if transmission is said to be possible. However, the total inte-

grated charge along the common path is very similar to the

situation of the two isolated coupled rings, even though at

the zone boundary (jUj ¼ ð2=3ÞU0), the total charge is not

exactly zero, as shown in Fig. 9(c). As a result of this charge

redistribution behavior, the incoming electron will favor

passing through one of the two arms (nodes ABCD) by

adjusting the amount of the two partial waves in each arm

accordingly. This is in sharp contrast with the situation of

having two equal partial waves in a simple even AB ring of

two equal paths with no center common path. Thus, the net-

work’s classification determines which path the electron will

prefer to take between source and drain. Those classes are

determined by the parameters of (l,m,n) as discussed earlier

in Sec. III. We note there is a similarity between the electron

transport when the Fermi energy is at a bonding orbital at the

range of ð2=9ÞU0 < jUj < ð2=3ÞU0 for a single bond and

0 < jUj < ð2=3ÞU0 for the double bond situation, both

depicted previously in Fig. 4. For the anti-bonding orbital at

0 < jUj < ð2=9ÞU0 in the single bond case, there is a drop in

the electron density along the common path, thus an electron

traverses through the coupled ring in that flux range as if the

two nodes at the ends of the center common path are weak

scattering centers and the transmission probability peak is

reduced to 0.8 from 1 for a simple AB ring. When two termi-

nals are attached, the charge density discontinuities at the

Fermi crossing previously observed in the isolated network

FIG. 10. M3D AC (a) and M3S AC (b) common path densities. (c) Total density at the common path. (d) Total density for all bonds in M3S AC network.

Note that at the Fermi crossing, the uniform distribution that once existed in the isolated network is no longer present.
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(Fig. 5) are removed by the perturbation and a more subtle

change is observed due to the mode of transport now control-

ling how the charge is allocated within the bonds.

When two odd coupled rings have terminals attached at

A and C, forming equal upper and lower arm lengths, a simi-

lar general trend of charge shifting to the upper end (at node

B) of the common path is present, as shown in Fig. 10. The

single bond structure, however, exhibits this behavior up to

the Fermi level crossing to the lower (and hence stronger)

bonding orbital, but the charge then shifts more to the lower

end (at node D) of the common path past this point to the

zone boundary. Since the terminal locations form a symmet-

ric outer loop, there is a corresponding symmetrical charge

distribution at the center common path for zero flux and at

the zone boundary jUj ¼ ð3=4ÞU0, which can be attributed to

a singularity in transmission at this value. Unlike the isolated

odd coupled rings, there is now a clear difference of addi-

tional total charge accumulation in the common path for a

double bond, compared to a single bond. Even though in the

isolated situation the single bond contained a Fermi level

crossing to a stronger (lower) bonding orbital, the sudden

burst of charge (at the discontinuity) for uniform distribution

once present is now mitigated by the network having to

accommodate the mode of transport for symmetric terminals.

Thus, the double bond takes a greater share of the charge,

with an average of about 0.3e, compared to the single bond

taking only about 0.2e. Note how both are very close to uni-

form charge distributions of 1/3 and 1/5, respectively. The

physical significance of this observation is the mode of trans-

port for symmetric terminals forces the charge to redistribute

equivalently across the entire flux period, consistent with

what one might predict. There is not a uniform charge distri-

bution at the Fermi crossing for M3S AC, unlike its corre-

sponding isolated network and the M4S AD case described

earlier (Fig. 9(d)), there is not a uniform charge distribution

in the network for the M3S AC structure’s crossing, unlike

its corresponding isolated network. This is due to its Fermi

crossing being between orbitals of the same type (weaker to

stronger bonding orbital). In other words, for a uniform

charge distribution to exist at some finite flux value within

the flux period for a two-terminal network, there must be a

Fermi level crossing between bonding and anti-bonding orbi-

tals, regardless of terminal arrangement. Additionally, we

can deduce that symmetric terminal arrangements do not in

general indicate a symmetrical charge distribution at the cen-

ter common path, but instead lead to an average uniform

charge distribution between all bonds within a single flux

period.

The significance of a Fermi level crossing is bolstered

by another observable phenomenon related to the transmis-

sion within a given network. By examining the transmission

of structures containing Fermi crossings (M3S and M4S),

shown in Figs. 2 and 4, respectively, it is clear the transmis-

sion probability being driven to zero (excluding zero flux

and the zone boundary) is simply the manifestation of a

crossing itself. Thus, the reflected wave’s magnitude is

always unity in this region. This strong pull-down of the

transmission to zero is similar to having a simple two-

terminal AB ring with a narrowed flux period whose zone

boundary is now at the Fermi level crossing. By being able

to identify Fermi level crossings by observing the trans-

mission in coupled AB ring networks, one can additionally

determine when the center common path has a large por-

tion of the total charge stored within it in the case of

bonding to bonding orbital crossings, or when there is

likely to be a uniform charge distribution throughout all

bonds in the network for bonding to anti-bonding orbital

crossings.

V. CONCLUSIONS

We examine the coupled AB rings from a purely one-

dimensional point of view. In any quantum network for

guided electron partial waves, there cannot be an infinite

number of atoms in the network. Instead, there exist several

different classes of the smallest building blocks. When each

of these smallest structures is magnified properly, an identi-

cal transmission behavior will be preserved for each class.

This is in a reverse trend with respect to classical microwave

waveguides as far as the division of length is concerned. The

finiteness for the value of M, the total number of atoms in

the one-dimensional network, is the same requirement as

that on the finiteness of length in microwave waveguides.

While small atomic-sized AB rings can exist in pure one-

dimensional form, larger 1D rings can be embedded in a

mesoscopic ring of small cross section and are thus experi-

mentally observable. For two coupled AB rings, we showed

that scaling relations exist, which connect the smallest rings

to larger sized rings with an identical electron transmission if

the size is scaled-up any odd number of times, within the co-

herence length limit. The classification is determined by the

parameters (l,m,n), where l¼m for two identical rings and

M¼ lþ n is the total number of atoms. Since M is one of the

classification parameters, mesoscopic rings cannot be treated

as a continuum. The scaling relations presented suggest that

one only needs to investigate the electron transport based on

the smallest atomic-sized structures.

When the two coupled AB rings are fitted with two ter-

minals, the bond-charge stored at the center common path is

further redistributed as compared to the situation of two iso-

lated coupled rings. In general, at zero applied flux, charge

flows to the outer loop to strengthen the anti-bonding orbital,

or weaken the bonding orbital, depending on where the

Fermi level is. Therefore, the space-charge capacitance of

the coupled rings is also continuously varied with respect to

the applied flux. There is now an asymmetry of the charge

storage in the common path that is correlated with the asym-

metry of the two partial waves passing through the two arms

between the input and output terminals. This asymmetry is

flux-controllable, therefore, the electron transport can be

tuned between the two arms for a given network. The net

current passing through the common path is always zero.

The presence or depletion of charge in the common path, paired

with the ability to modulate between both states, has potential

applications in nanoelectronics such as a quantum capacitor or

memory storage element. We have shown the few fundamental

modes that exist for the coupled electron waveguides based on

1D structures. Therefore, experimentally, we expect a dominant
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mode can be observed from mesoscopic-sized coupled AB

rings similar to the verification of a simple two-terminal AB

ring in Ref. 7.

Finally, there is a paradox of electron transport through

a quantum network. When two AB rings are coupled, the

electron wave function is spread out over a larger region.

However, this delocalization of the electron wave is at the

expense of an increase of two more scattering centers created

at the two ends of the common path. Thus, the incoming

electron from the input terminal will suffer more scattering

events compared to when the center common path is

removed. The electron wave is then decomposed into more

partial waves every time a scattering event occurs. More

scattering centers lead to more backscattering and hence to

the Anderson localization for the electron transport.32 There-

fore, at zero applied flux, the forward transmission will suf-

fer generally as compared to the situation when the center

common path is absent. The applied fluxes can reverse the

localization trend (as in M4S and M4D cases where the

bond-charge decreases) or increase the localization (as in

M3S and M3D where the bond-charge increases) by being

able to tune the two partial waves at the output terminal to

be in or out of phase. We have shown even and odd coupled

rings store the bond-charge in an opposite trend with respect

to the increase of the applied flux. Thus, the ideal indicator is

to observe the bond-charge at the center common path. If the

common path has more than a uniform share of bond-charge,

the electron wave is more localized than before and by the

paradox theory stated earlier, the electron transport to the

output terminal will improve. On the other hand, if the bond-

charge is reduced to less than a uniform share, the electron

wave is more delocalized than before and hence, the Ander-

son localization effect prevails and the favorable forward

transmission will be reduced to a smaller flux range.

1A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, and J. Endo, Phys.

Rev. Lett. 56, 792 (1986).
2S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986).
3H. Ajiki and T. Ando, Physica B 201, 349 (1994).

4A. Tonomura, Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 82, 45 (2006).
5R. Jackiw, A. I. Milstein, S. Y. Pi, and I. S. Terekhov, Phys. Rev. B 80,

033413 (2009).
6X. C. Xie and S. D. Sarma, Phys. Rev. B 36, 9326 (1987).
7R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev.

Lett. 54, 2696 (1985).
8N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).
9H. van Houten and C. W. J. Beenakker, Phys. Today 49(7), 22–27

(1996).
10C. W. J. Beenakker and H. van Houten, in Solid State Physics, edited

by Henry Ehrenreich and David Turnbull (Academic, San Diego, 1991),

Vol. 44, pp. 1–228.
11B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson,

L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett.

60, 848 (1988).
12M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R. Fleisch-

mann, E. J. Heller, K. D. Maranowski, and A. C. Gossard, Nature 410, 183

(2001).
13M. P. Jura, M. A. Topinka, M. Grobis, L. N. Pfeiffer, K. W. West, and D.

Goldhaber-Gordon, Phys. Rev. B 80, 041303 (2009).
14P. Havu, M. J. Puska, R. M. Nieminen, and V. Havu, Phys. Rev. B 70,

233308 (2004).
15T. Itoh, N. Sano, and A. Yoshii, Phys. Rev. B 45, 14131 (1992).
16T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha,

Phys. Rev. Lett. 106, 076801 (2011).
17S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani,

L. M. K. Vandersypen, and A. Morpurgo, Phys. Rev. B 77, 085413

(2008).
18C. H. Wu and G. Mahler, Phys. Rev. B 43, 5012 (1991).
19T. Chwiej and B. Szafran, Phys. Rev. B 78, 245306 (2008).
20D. Awschalom, M. Flatte, and N. Samarth, Spintronics (Scientific Ameri-

can, 2002).
21C. A. Cain and C. H. Wu, J. Appl. Phys. 110, 054315 (2011).
22C. H. Wu and D. Ramamurthy, Phys. Rev. B 65, 075313 (2002).
23D. Ramamurthy and C. H. Wu, Phys. Rev. B 66, 115307 (2002).
24L. Tran, M.S. thesis, Missouri University of Science and Technology,

2006.
25S. Alexander, Phys. Rev. B 27, 1541 (1983).
26R. Landauer, Philos. Mag. 21, 863 (1970).
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