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A Heuristic-Dynamic-Programming-Based Power
System Stabilizer for a Turbogenerator in a

Single-Machine Power System
Wenxin Liu, Student Member, IEEE, Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, and

Donald C. Wunsch, II, Fellow, IEEE

Abstract—Power system stabilizers (PSSs) are used to generate
supplementary control signals for the excitation system in order to
damp the low-frequency power system oscillations. To overcome
the drawbacks of a conventional PSS (CPSS), numerous techniques
have been proposed in the literature. Based on the analysis of ex-
isting techniques, a novel design based on heuristic dynamic pro-
gramming (HDP) is presented in this paper. HDP, combining the
concepts of dynamic programming and reinforcement learning, is
used in the design of a nonlinear optimal power system stabilizer.
Results show the effectiveness of this new technique. The perfor-
mance of the HDP-based PSS is compared with the CPSS and the
indirect-adaptive-neurocontrol-based PSS under small and large
disturbances. In addition, the impact of different discount factors
in the HDP PSS’s performance is presented.

Index Terms—Adaptive critic design (ACD), discount factors,
heuristic dynamic programming (HDP), indirect adaptive control,
neural networks, neuro-control, neuro-identifier, online training,
power system stabilizer (PSS).

I. INTRODUCTION

CURRENTLY, most generators are equipped with voltage
regulators to automatically control the terminal voltage.

It is known that the voltage regulator action had a detrimental
impact upon the dynamic stability of the power system. Oscil-
lations of small magnitude and low frequency often persist for a
long time and in some cases even present limitations on power
transfer capability [1].

In the analysis and control of power system stability, two
distinct modes of system oscillations are usually recognized.
One mode is associated with generators at a generating station
swinging with respect to the rest of the power system. Such
oscillations are referred to as “intra-area” oscillations. The
second mode oscillation is associated with the swinging of
many machines in the one area of the system against machines
in other areas. This is referred to as “inter-area” oscillations.
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Power system stabilizers (PSSs) are used to generate supple-
mentary control signals for the excitation system in order to
damp both types of oscillations.

Conventional power system stabilizers (CPSSs) are designed
using the theory of phase compensation in the frequency do-
main and are introduced as a lead–lag compensator. The param-
eters of CPSS are determined based on a linearized model of the
power system. To have the CPSS provide good damping over a
wide operating range, its parameters need to be fine tuned in re-
sponse to both modes of oscillations. Since power systems are
highly nonlinear systems, with configurations and parameters
that change with time, the CPSS design based on a linearized
model of the power system cannot guarantee its performance in
a practical operating environment. Thus, an adaptive PSS which
caters for the nonlinear nature of the plant by adapting its param-
eters to the changes in the environment is required for the power
system.

To improve the performance of CPSSs, numerous techniques
have been proposed for their design, such as using intelligent
optimization methods (simulated annealing, genetic algorithm,
tabu search) [2]–[4], fuzzy logic [5], [6], neural networks, and
many other nonlinear control techniques [7]–[9]. The intelli-
gent optimization algorithms are used to determine the optimal
parameters for CPSS by optimizing an eigenvalue based cost
function in an offline mode. Since the method is based on a lin-
earized model and the parameters are not updated online, they
lack satisfactory performance during practical operation. The
rule-based fuzzy logic control methods are well known for the
difficulty in obtaining and adjusting the parameters of the rules,
especially online. Recently, more emphasis has been placed on
the combined usage of fuzzy systems and other technologies
such as neural networks to add adaptability to the design [10].
Currently, most of the nonlinear control based methods use sim-
plified models to decrease complexity of the algorithms. Con-
sidering the complexity of practical power systems, a more real-
istic model with less computation time is required for effective
robust control over a wide range of operating conditions.

Since neural networks have the advantages of high com-
putation speed, generalization, and learning ability, they have
been successfully applied to the identification and control
of nonlinear systems. The work on the application of neural
networks to the PSS design so far includes online tuning of
CPSS parameters [11], [12], the implementation of inverse
model control [13], [14], direct control [15], and indirect adap-
tive control [16]–[21]. The online tuning of CPSS parameters

0093-9994/$20.00 © 2005 IEEE
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Fig. 1. System model configuration.

and the inverse model control do not update the weights of
neural networks online, so their performances highly depend
on the quality of offline training samples, which are difficult
to obtain. The indirect adaptive neurocontrol design consists
of two neural networks, namely, the neuro-controller and the
neuro-identifier. The neuro-controller is used to generate the
stabilizing supplementary control signal to the plant and the
neuro-identifier is used to provide a dynamic model of the plant
to evaluate and update the weights of the neuro-controller. Since
the plant model is not used in the direct adaptive neural network
control structure, computation time is decreased. However,
there is no accurate way to directly evaluate the performance
of the controller, especially when the system parameters are
changing over time; therefore, this is not the most effective
control technique, especially for power systems.

The risk with the indirect adaptive neurocontrol scheme is
that the training of the controller is carried out all the time, which
can lead to instability under large disturbances and unknown
uncertainties. In this paper, a novel heuristic-dynamic-program-
ming (HDP)-based optimal power system stabilizer is proposed.
HDP is a class of adaptive critic designs which provides optimal
control. With adaptive critic designs, neural networks with fixed
weights are used as tools for implementing optimal controllers
which is a potential benefit in overcoming stability issues. The
proposed HDP based PSS is evaluated on a single machine infi-
nite bus power system against those of CPSS and indirect adap-
tive neurocontrol designs. Simulation results are provided to
show the performances of the different controllers. In addition,
the impact of the choice of discount factors on the HDP PSS’s
performance is presented.

The power system model is described in Section II. The in-
troduction to HDP and the design of the HDP-based PSS are
described in Section III. The training process of the HDP PSS
is described in Section IV. Some simulation results are provided
in Section IV. Section V concludes the paper.

II. POWER SYSTEM MODEL

The single-machine infinite bus power system (SMIB) model
used to evaluate the indirect-neural-network-control-based con-
troller (IDNC) is shown in Fig. 1. The SMIB called the plant in

this paper consists of a synchronous generator, a turbine, a gov-
ernor, an excitation system, and a transmission line connected
to an infinite bus. The model is built in MATLAB /SIMULINK
environment using the Power System Blockset [22]. In Fig. 1,

is the mechanical power reference, is the feedback
through the governor, is the turbine output torque,
is the infinite bus voltage, is terminal voltage reference,

is terminal voltage, is the voltage regulator output,
is field voltage, is the excitation system stabilizing signal,

is the speed deviation, is the PSS output signal, is
the active power, and is the reactive power at the generator
terminal.

In Fig. 1, the switch is used to carry out tests on the power
system with HDP-based controller (HDPC), IDNC, and CPSS
and without PSS (with switch at position 1, 2, 3, and 4 re-
spectively). Switch is used to select between normal opera-
tion and training phase (positions 1 and 2, respectively).

The synchronous generator is described by a seventh-order
– -axes set of equations with the machine current, speed, and

rotor angle as the state variables. The turbine is used to drive the
generator and the governor is used to control the speed and the
real power. The block diagram of the turbine and the conven-
tional governor are shown in Fig. 2.

The excitation system for the generator is modeled according
to IEEE Std. 421.5 [23]. The block diagram of the excitation
system is shown in Fig. 3.

The CPSS consists of two phase-lead compensation blocks, a
signal washout block, and a gain block. The input signal is the
rotor speed deviation [24]. The block diagram of the CPSS
is shown in Fig. 4.

The parameters for the generator, automatic voltage regulator
(AVR), excitation system, turbine, and governor are given in the
Appendix [23]–[25].

III. HDP-BASED PSS DESIGN

A. Background

Adaptive critic designs (ACDs) are neurocontrollers capable
of optimization over time, under conditions of noise and uncer-
tainty. A family of ACDs was proposed by Werbos [26] as an
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Fig. 2. Block diagram of the turbine and the governor.

Fig. 3. Block diagram of the excitation system.

Fig. 4. Block diagram of the conventional power system stabilizer.

optimization technique combining the concepts of reinforce-
ment learning and approximate dynamic programming. For a
given series of control actions that must be taken sequentially,
and not knowing the effect of these actions until the end of
the sequence, it is possible to design an optimal controller
using the traditional supervised learning neural network.

The adaptive critic method determines optimal control laws
for a system by successively adapting two artificial neural
networks (ANNs), namely, an action neural network (which
dispenses the control signals) and a critic network (which learns
the desired performance index for some function associated
with the performance index). These two neural networks ap-
proximate the Hamilton–Jacobi–Bellman equation associated
with optimal control theory. The adaptation process starts with
a nonoptimal, arbitrarily chosen control by the action network;
the critic network then guides the action network toward the
optimal solution at each successive adaptation. During the
adaptations, neither of the networks needs any “information” of
an optimal trajectory, only the desired cost needs to be known.
Furthermore, this method determines optimal control policy
for the entire range of initial conditions and needs no external
training, unlike other neurocontrollers [27].

The design ladder of ACDs includes three basic implemen-
tations: HDP, Dual Heuristic Programming (DHP), and Global-
ized Dual Heuristic Programming (GDHP), in the order of in-
creasing power and complexity. The interrelationships between
members of the ACD family have been generalized and ex-
plained in [28]. In this paper, the simple and powerful HDP ap-
proach is adopted for the design of a power system stabilizer.

Fig. 5. General structure of the HDP-based PSS design (dashed lines show
backpropagation paths).

B. General Control Structure

The HDP PSS consists of three neural networks, which are:
the action, the identifier, and the critic networks. The action net-
work is used to generate the stabilizing supplementary control
signals; the identifier network is used to model the plant and es-
timate its output; the critic network is used to estimate cost-to-go
function given by the Bellman’s equation. The general struc-
ture of the HDPC is shown in Fig. 5.

To simply the description of the training process, it is nec-
essary to clarify the time-step definitions. Both and

signals are sampled at time step , but is not
the response for the control signal . Due to the time lag
property of the plant, the impact of the control signal is
reflected in the next time sample of the output signal .
The following sections describe the designs of the three neural
networks.
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Fig. 6. Training of the neuro-identifier during pre-control (dashed line shows backpropagation pathway).

C. Identifier Neural Network Design

The identifier neural network is developed using the series-
parallel Nonlinear Auto Regressive Moving Average (NARMA)
model [29]. The model output at time depends on both
past values of output and past values of input. The neuro-
identifier output equation takes the form given by (1)

(1)

where and represent the output and input of the plant
to be controlled at time . For this particular system, , , and

are the speed deviation of the plant, the output of the ac-
tion network , and the estimated plant output by the
identifier network respectively. Here, both and are chosen
to be two. One reason for choosing three time-step values is be-
cause a third order model of the system is sufficient for the study
of transient stability. The other reason is that more time delays
means more computation and one author’s previous work ver-
ified that three time delays is enough for this kind of problem
[25].

The identifier network is a multilayer feedforward network
trained with the standard backpropagation (BP) algorithm. The
numbers of neurons in the input, hidden and output layers are
determined empirically and are six, ten, and one, respectively.
Considering the ranges of and , scaling factors of 400
and 2 are used for and , respectively, to speed up the
training process.

The training process of the identifier network is shown
in Fig. 6. The inputs to the identifier network are

and its output is . The desired output is the output of
the plant . The cost function for training the identifier
network is given by (2)

(2)

During pre-training of the identifier, the switch is at posi-
tion 2 so that a Pseudo Random Binary Signal (PRBS) of small
magnitude is used to replace the action network output in order
to excite all possible dynamics of the plant [21]. During the
post-training, the switch is at position 1 so that the actual

Fig. 7. Training process of the critic network (dashed line shows
backpropagation path).

control signal calculated by the action network can be fed to
both the plant and the identifier [25].

D. Critic Neural Network Design

The critic network is also a multilayer feedforward network
trained with the BP algorithm. The numbers of neurons in the
input, hidden and output layers are chosen empirically to be
three, six, and one, respectively. The inputs to the critic network
are the estimated speed deviation (output of the identifier
network) and its two previous values and the output of the critic
network is the estimated cost-to-go function , which is defined
as

(3)

where is the discount factor for finite horizon problems with
the range of [0, 1] and is chosen to be 0.5 in this design. is
the utility function or the local cost function. Due to the inertia
of the plant, the local/immediate cost at every time step is
dependent on the present and past speed deviations [25] and is
given by

(4)
The training process of the critic network is illustrated in

Fig. 7. During training, first the critic network is fed with
the outputs of the identifier network at three time instants

, to calculate the estimated
cost-to-go function . Then, the critic network is fed with

to calculate the estimated
cost-to-go function . According to the Bellman’s
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Fig. 8. Training process of the action network (dashed lines show first and second backpropagation pathways).

definition of , . Therefore,
is the desired target output for during

the critic network training.

E. Action Neural Network Design

The action network is a multilayer feedforward network
trained with the BP algorithm. The number of neurons in input,
hidden and output layers is chosen empirically to be three, six,
and one, respectively. The inputs to the action network is the
actual speed deviation and its two previous values and its
output is the supplementary control signal .

The training process of the action network is illustrated in
Fig. 8. The purpose of action network training is to minimize the
estimated cost-to-go function by the critic network with effec-
tive control signals. In HDP, is backpropagated through
the critic and identifier networks in order to evaluate the perfor-
mance of the action network and update its weights accordingly.

F. Training Procedure

The general training procedure and more details on ACD are
described in [27]. It consists of three separate training cycles:
training of the critic network, training of the identifier network
and training of the action network. The training frequency for
each training cycle may be different. To decrease the computa-
tion burden of the training process, training is carried once per
sample and the learning rate is set to 0.1 with a sampling fre-
quency of 20 Hz. The critic/action network training cycles are
alternated until an acceptable plant performance is achieved.

IV. SIMULATION RESULTS

The training of the identifier and controller (corresponding to
the action network in the HDP design) neural networks using
the IDNC scheme is described in [21]. The critic neural net-
work is trained based on the trained weights of the identifier
and action neural network that give some stabilizing control at
given operating point. During the training of the critic network,

Fig. 9. Actual and expected cost-to-go function under forced training of the
critic neural network ( = 0:5, P = 0:334 pu, Q = 0:001 pu).

the weights of the identifier and action neural networks are kept
fixed. The training of the critic network comprises two phases,
which are forced training (with PRBS signal applied) and nat-
ural training [21]. To compare the impact of choice of values in
the cost-to-go function on the controller performance, different

values are selected and results are presented.

A. Training of the Critic Neural Network

1) Forced Training: During this phase, the in Fig. 1
is replaced with a PRBS, which perturbs the plant around the
stable value of at a given operating point (
and pu). Fig. 9 shows the comparison of the actual
and target cost-to-go function J, which are defined as and

, respectively. From Fig. 9 it can be seen that the training
of the critic network has already converged.

2) Natural Training: During this phase, the critic network is
trained under different kinds of small and large disturbances for
the same plant operating point as in the forced training above.
Fig. 10 shows the comparison of costs in response to a 200-ms
three-phase short-circuit fault applied on the infinite bus for dif-
ferent values (0.2, 0.5, and 0.8).

To study the effect of different values on the control per-
formance, the comparisons of control signal, speed deviation,
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Fig. 10. Cost-to-go function for different  response to a 200-ms three-phase
short-circuit fault (P = 0:334 pu, Q = 0:001 pu).

Fig. 11. Control signal response to the 200-ms three-phase short-circuit fault
(P = 0:334 pu, 4Q = 0:001 pu) with different discount factors in HDP critic
training.

Fig. 12. Speed deviation response to a 200-ms three-phase short-circuit fault
(P = 0:334 pu, Q = 0:001 pu) with different discount factors in HDP critic
training.

and terminal voltage are provided in Figs. 11–13. From Figs. 12
and 13, it can be seen that the case of can give a little
better performance for than the case of , but it gives
a little worse performance for than the cases of and

. This is because is the control objective and defined
in the utility function while is not. When the discount factor
is close to zero, the control objective emphasis on near-term sta-
bility and this strategy is close to the adaptive control based on
next time-step error, while a discount factor close to unity em-
phasis on long-term stability, and the strategy is optimal control.
Based on the controller performance achieved with different dis-
count factor settings, is chosen to be 0.5 for the HDPC design.

B. Evaluation of HDPC PSS Performance

To evaluate the performance of the HDPC, the system re-
sponse of the HDPC is compared with the cases where there

Fig. 13. Terminal voltage response to a 200-ms three-phase short-circuit fault
(P = 0:334 pu, Q = 0:001 pu) with different discount factors in HDP critic
training.

Fig. 14. Speed deviation response to a 200-ms three-phase short-circuit fault
(P = 0:334 pu, Q = 0:001 pu).

Fig. 15. Speed deviation response to a 200-ms three-phase short-circuit fault
(P = 0:5 pu, Q = 0:02 pu).

is no PSS, with a CPSS, and with an indirect-adaptive-neuro-
control-based PSS (IDNC) [21] in the system. The comparison
is carried out under different kinds of operating conditions and
disturbances. These disturbances are: a three-phase short circuit
at the infinite bus, step changes in the terminal voltage refer-
ence, and change in transmission line impedance. All these dis-
turbances are carried out under three different operating points,

pu, pu, pu, pu, and
pu, pu.

1) First Operating Point: pu, pu:
Fig. 14 is the comparison of speed deviation response under a
200-ms three-phase short-circuit fault applied on the infinite bus
at 1 s. It can be seen that HDP performance is comparable with
that of CPSS. The parameters of the CPSS are fine tuned for this
operating point and kept fixed for the following tests. It also can
be seen that a fine-tuned CPSS can provide very good damping
for its nominal operating point.

2) Second Operating Point: pu, pu:
Figs. 15 and 16 are the comparisons of the system responses
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Fig. 16. Terminal voltage response to a 200-ms three-phase short-circuit fault
(P = 0:5 pu, Q = 0:02 pu).

Fig. 17. Speed deviation response to 10% step changes in the reference of the
terminal voltage (P = 0:5 pu, Q = 0:02 pu).

Fig. 18. Terminal voltage response to 10% step changes in the reference of the
terminal voltage (P = 0:5 pu, Q = 0:02 pu).

under a 200-ms three-phase short-circuit fault applied on the in-
finite bus at 1 s. It can be seen that CPSS has better damping for
the speed deviation than when there is no CPSS in the system;
IDNC has better damping than CPSS while HDPC has the best
damping. From Fig. 16, it can be seen that the terminal voltage
responses are comparable for this particular fault.

Figs. 17 and 18 are the comparisons of the system response to
a 10% step change in (1.1–1.21 pu) at 1 second and 10%
decrease (1.21–1.1 pu) at 8 s. Again, the HDPC provides the best
damping for the speed deviation for this kind of disturbance and
the terminal voltage responses are similar.

Fig. 19 is the comparison of the system responses to a
change in transmission line impedance. During this case,
the impedance of the transmission line is changed from

pu to pu at 1 s. Again,
the HDP provides the best damping for the speed deviation of
the four controllers. The responses of the terminal voltage of
the different controllers are comparable.

3) Third Operating Point:: pu, pu

Fig. 19. Speed deviation response for a change in transmission line impedance
(P = 0:5 pu, Q = 0:02 pu).

Fig. 20. Speed deviation response to a 200-ms three-phase short-circuit fault
(P = 0:6 pu, Q = 0:05 pu).

Fig. 21. Terminal voltage response to a 200-ms three-phase short-circuit fault
(P = 0:6 pu, Q = 0:05 pu).

Fig. 22. Speed deviation response to 10% step changes in the reference of the
terminal voltage (P = 0:6 pu, Q = 0:05 pu).

Figs. 20 and 21 are comparisons of the system responses
under a 200-ms three-phase short-circuit fault applied at the in-
finite bus at 1 s. The findings of the simulation results are similar
to the conclusions for the first operating point above.

Figs. 22 and 23 are the comparison of the system response to
10% step change in , that is, 10% increase from



1384 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 5, SEPTEMBER/OCTOBER 2005

Fig. 23. Terminal voltage response to 10% step changes in the reference of the
terminal voltage (P = 0:6 pu, Q = 0:05 pu).

Fig. 24. Speed deviation response for a change in transmission line impedance
(P = 0:6 pu, Q = 0:05 pu).

pu to pu at 1 s and 10% decrease from
pu to pu at 8 s. Again, the conclu-

sions are similar to those for the first operating point above.
Fig. 24 is the comparison of the system responses to a sim-

ulated transmission line fault. The impedance of the transmis-
sion line changes from pu to

pu at 1 s. For this test, the HDPC still has the
best damping performance.

V. CONCLUSION

To overcome the drawbacks of CPSSs, an HDP-based PSS
design has been presented in this paper. The proposed method
was evaluated on an SMIB. The design of the HDP is based on
only the speed deviation signals of the synchronous generator.
Therefore, the computations involved in the proposed PSS de-
sign are minimal. This is desirable for practical hardware imple-
mentation on the power station platforms. In addition, the online
training computational demand is reduced, once the action net-
work is trained for optimal performance, over a number of oper-
ating points. Simulation results, for different kinds of small and
large disturbances, under different operating conditions, demon-
strate the effectiveness and robustness of the HDP-based PSS.

Such a nonlinear adaptive/robust PSS design based on ACD
yields better and fast damping under small and large distur-
bances, especially with changes in system operating conditions.
Better and fast damping means that generators can operate
closer to their maximum generation capacity. This ensures that
generators remain stable under severe faults such as three-phase
short circuits.

TABLE I.
PARAMETERS OF THE SINGLE MACHINE INFINITE BUS POWER SYSTEM IN FIG. 1

APPENDIX

See Table I.

REFERENCES

[1] E. V. Larsen and D. A. Swann, “Applying power system stabilizers,
part I, II, III,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 6, pp.
3017–3041, Nov./Dec. 1981.

[2] M. A. Abido, “Robust design of multimachine power system stabilizers
using simulated annealing,” IEEE Trans. Energy Convers., vol. 15, no.
3, pp. 297–304, Sep. 2000.

[3] Y. L. Abdel-Magid, M. A. Abido, and A. H. Mantaway, “Robust tuning
of power system stabilizers in multi-machine power systems,” IEEE
Trans. Power Syst., vol. 15, no. 2, pp. 735–740, May 2000.

[4] A. L. B. Do Bomfim, G. N. Taranto, and D. M. Falcao, “Simultaneous
tuning of power system damping controllers using genetic algorithms,”
IEEE Trans. Power Syst., vol. 15, no. 1, pp. 163–169, Feb. 2000.

[5] K. A. El-Metwally, G. C. Hancock, and O. P. Malik, “Implementation of
a fuzzy logic PSS using a micro-controller and experimental test results,”
IEEE Trans. Energy Convers., vol. 11, no. 1, pp. 91–96, Mar. 1996.

[6] A. Hariri and O. P. Malik, “A fuzzy logic based power system stabilizer
with learning ability,” IEEE Trans. Energy Convers., vol. 11, no. 4, pp.
721–727, Dec. 1996.

[7] J. W. Chapman, M. D. Ilic, C. A. King, L. Eng, and H. Kaufman, “Sta-
bilizing a multi-machine power system via decentralized feedback lin-
earizing excitation control,” IEEE Trans. Power Syst., vol. 8, no. 3, pp.
830–839, Aug. 1993.

[8] M. Nambu and Y. Ohsawa, “Development of an advanced power system
stabilizer using a strict linearization approach,” IEEE Trans. Power Syst.,
vol. 11, no. 2, pp. 813–818, May 1996.

[9] A. Soos and O. P. Malik, “An H optimal adaptive power system stabi-
lizer,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 143–149, Mar.
2002.

[10] T. Hiyama and K. Tomsovic, “Current status of fuzzy system applica-
tions in power systems,” in Proc. IEEE SMC’99, Tokyo, Japan, 1999,
pp. 527–532.

[11] Y. Y. Hsu and C. L. Chen, “Tuning of power system stabilizers using an
artificial neural network,” IEEE Trans. Energy Convers., vol. 6, no. 4,
pp. 612–619, Dec. 1991.

[12] R. Segal, M. L. Kothari, and S. Madnani, “Radial basis function (RBF)
network adaptive power system stabilizer,” IEEE Trans. Power Syst., vol.
15, no. 2, pp. 722–727, May 2000.

[13] Y. M. Park, S. H. Hyun, and J. H. Lee, “A synchronous generator stabi-
lizer design using neuro inverse controller and error reduction network,”
IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1969–1975, Nov. 1996.

[14] Y. Zhang, O. P. Malik, G. S. Hope, and G. P. Chen, “Application of an
inverse input/output mapped ANN as a power system stabilizer,” IEEE
Trans. Energy Convers., vol. 9, no. 3, pp. 433–441, Sep. 1994.

[15] P. Shamsollahi and O. P. Malik, “Direct neural adaptive control applied
to synchronous generator,” IEEE Trans. Energy Convers., vol. 14, no. 4,
pp. 1341–1346, Dec. 1999.

[16] B. Changaroon, S. C. Srivastava, and D. Thukaram, “A neural network
based power system stabilizer suitable for on-line training-a practical
case study for EGAT system,” IEEE Trans. Energy Convers., vol. 15,
no. 1, pp. 103–109, Mar. 2000.



LIU et al.: HEURISTIC-DYNAMIC-PROGRAMMING-BASED PSS FOR A TURBOGENERATOR 1385

[17] J. He and O. P. Malik, “An adaptive power system stabilizer based on
recurrent neural networks,” IEEE Trans. Energy Convers., vol. 12, no.
4, pp. 413–418, Dec. 1997.

[18] T. Kobayashi and A. Yokoyama, “An adaptive neuro-control system of
synchronous generator for power system stabilization,” IEEE Trans. En-
ergy Convers., vol. 11, no. 3, pp. 621–630, Sep. 1996.

[19] P. Shamsollahi and O. P. Malik, “An adaptive power system stabilizer
using on-line trained neural networks,” IEEE Trans. Energy Convers.,
vol. 12, no. 4, pp. 382–387, Dec. 1997.

[20] Y. M. Park, M. S. Choi, and K. Y. Lee, “A neural network-based power
system stabilizer using power flow characteristics,” IEEE Trans. Energy
Convers., vol. 11, no. 2, pp. 435–441, Jun. 1996.

[21] W. Liu, G. K. Venayagamoorthy, and D. C. Wunsch, “Design of an adap-
tive neural network based power system stabilizer,” Neural Netw., vol.
16, no. 5–6, pp. 891–898, 2003.

[22] G. Sybille, P. Brunelle, R. Champagne, L. Dessaint, and H. Lehuy, Power
System Blockset, version 2.0. Natick, MA: The MathWorks Inc., 2000.

[23] P. Kundur, M. Klein, G. J. Rogers, and M. S. Zywno, “Application of
power system stabilizers for enhancement of overall system stability,”
IEEE Trans. Power Syst., vol. 4, no. 2, pp. 614–626, May 1989.

[24] IEEE Recommended Practice for Excitation System Models for Power
System Stability Studies, IEEE Std. 421.5-1992.

[25] G. K. Venayagamoorthy and R. G. Harley, “A continually online trained
neurocontroller for excitation and turbine control of a turbogenerator,”
IEEE Trans. Energy Convers., vol. 16, no. 3, pp. 261–269, Sep. 2001.

[26] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control, D. A. White
and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992, pp.
493–525.

[27] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Comparison
of heuristic dynamic programming and dual heuristic programming
adaptive critics for neurocontrol of a turbogenerator,” IEEE Trans.
Neural Netw., vol. 13, no. 3, pp. 764–773, May 2002.

[28] D. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans.
Neural Netw., vol. 8, no. 6, pp. 997–1007, Nov. 1997.

[29] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Netw., vol.
1, no. 1, pp. 4–27, Mar. 1990.

Wenxin Liu (S’01) received the B. Eng. degree in
industrial automation and the M. Eng. degree in
control theory and control engineering from North-
eastern University, Shenyang, China, in 1996 and
2000, respectively, and the Ph.D. degree in electrical
engineering from the University of Missouri, Rolla
(UMR), in 2005.

He is currently a Postdoctoral Fellow with the
Center for Advanced Power Systems, Florida State
University, Tallahassee. His current research in-
terests include nonlinear control, neural network

control, power systems, and system engineering.

Ganesh Kumar Venayagamoorthy (M’97–SM’02)
received the B.Eng. (Honors) degree with first class
honors in electrical and electronics engineering
from Abubakar Tafawa Balewa University, Bauchi,
Nigeria, in 1994, and the M.Sc.Eng. and Ph.D.
degrees in electrical engineering from the University
of Natal, Durban, South Africa, in 1999 and 2002,
respectively.

He was a Senior Lecturer at the Durban Institute of
Technology, South Africa, prior to joining the Uni-
versity of Missouri, Rolla (UMR), as an Assistant

Professor in the Department of Electrical and Computer Engineering in May
2002. He directs the Real-Time Power and Intelligent Systems (RTPIS) Labo-
ratory at UMR. His research interests are in computational intelligence, power
systems, evolvable hardware, and signal processing. He has authored over 130
publications, and has attracted over $1 million in research funding.

Dr. Venayagamoorthy is the 2005 IEEE Industry Application Society (IAS)
Outstanding Young Member award recipient, a 2004 NSF CAREER award
recipient, the 2004 IEEE St. Louis Section Outstanding Young Engineer, the
2003 International Neural Network Society (INNS) Young Investigator award
recipient, a 2001 recipient of the IEEE Computational Intelligence Society
(CIS) W. J. Karplus summer research grant and the recipient of five prize
papers with the IEEE IAS and IEEE CIS. He is an Associate Editor of the
IEEE TRANSACTIONS ON NEURAL NETWORKS. He is a Senior Member of the
South African Institute of Electrical Engineers and a Member of INNS and
the American Society for Engineering Education. He is currently the IEEE St.
Louis CIS and IAS Chapter Chairs, the Chair of the Task Force on Intelligent
Control Systems, and the Secretary of the Intelligent Systems Subcommittee of
the IEEE Power Engineering Society. He was the Technical Program Co-Chair
of the 2003 International Joint Conference on Neural Networks, Portland,
OR, and of the 2004 International Conference on Intelligent Sensing and
Information Processing, Chennai, India.

Donald C. Wunsch, II (S’87–M’92–SM’94–F’05)
received the B.S. degree in applied mathematics from
the University of New Mexico, Albuquerque, and the
M.S. degree in applied mathematics and the Ph.D. de-
gree in electrical engineering from the University of
Washington, Seattle.

He is the Mary K. Finley Missouri Distinguished
Professor of Computer Engineering at the University
of Missouri, Rolla, where he has been since 1999. His
prior positions were Associate Professor and Director
of the Applied Computational Intelligence Labora-

tory at Texas Tech University, Senior Principal Scientist at Boeing, Consultant
for Rockwell International, and Technician for International Laser Systems. He
has authored over 200 publications, and has attracted over $5 million in research
funding. He has been the advisor to eight Ph.D. students—four in electrical en-
gineering, three in computer engineering, and one in computer science.

Prof. Wunsch has been the recipient of many awards, including the Hal-
liburton Award for Excellence in Teaching and Research and the National Sci-
ence Foundation CAREER Award. He served as a voting member of the IEEE
Neural Networks Council, Technical Program Co-Chair for IJCNN’02, General
Chair for IJCNN’03, International Neural Networks Society Board of Gover-
nors Member, and is currently President of the International Neural Networks
Society.


	A Heuristic-Dynamic-programming-Based Power System Stabilizer for a Turbogenerator in a Single-Machine Power System
	Recommended Citation

	toc
	A Heuristic-Dynamic-Programming-Based Power System Stabilizer fo
	Wenxin Liu, Student Member, IEEE, Ganesh Kumar Venayagamoorthy, 
	I. I NTRODUCTION

	Fig.€1. System model configuration.
	II. P OWER S YSTEM M ODEL
	III. HDP-B ASED PSS D ESIGN
	A. Background


	Fig.€2. Block diagram of the turbine and the governor.
	Fig.€3. Block diagram of the excitation system.
	Fig.€4. Block diagram of the conventional power system stabilize
	Fig.€5. General structure of the HDP-based PSS design (dashed li
	B. General Control Structure

	Fig.€6. Training of the neuro-identifier during pre-control (das
	C. Identifier Neural Network Design

	Fig.€7. Training process of the critic network (dashed line show
	D. Critic Neural Network Design

	Fig.€8. Training process of the action network (dashed lines sho
	E. Action Neural Network Design
	F. Training Procedure
	IV. S IMULATION R ESULTS

	Fig.€9. Actual and expected cost-to-go function under forced tra
	A. Training of the Critic Neural Network
	1) Forced Training: During this phase, the $V_{\rm TREF}$ in Fig
	2) Natural Training: During this phase, the critic network is tr


	Fig.€10. Cost-to-go function for different $\gamma$ response to 
	Fig.€11. Control signal response to the 200-ms three-phase short
	Fig.€12. Speed deviation response to a 200-ms three-phase short-
	B. Evaluation of HDPC PSS Performance

	Fig.€13. Terminal voltage response to a 200-ms three-phase short
	Fig.€14. Speed deviation response to a 200-ms three-phase short-
	Fig.€15. Speed deviation response to a 200-ms three-phase short-
	1) First Operating Point: $P=0.334\ \hbox{pu}$, $Q=0.001\ \hbox{
	2) Second Operating Point: $P=0.5\ \hbox{pu}$, $Q=0.02\ \hbox{pu

	Fig.€16. Terminal voltage response to a 200-ms three-phase short
	Fig.€17. Speed deviation response to 10% step changes in the ref
	Fig.€18. Terminal voltage response to 10% step changes in the re
	3) Third Operating Point:: $P=0.6\ \hbox{pu}$, $Q=0.05\ \hbox{pu

	Fig.€19. Speed deviation response for a change in transmission l
	Fig.€20. Speed deviation response to a 200-ms three-phase short-
	Fig.€21. Terminal voltage response to a 200-ms three-phase short
	Fig.€22. Speed deviation response to 10% step changes in the ref
	Fig.€23. Terminal voltage response to 10% step changes in the re
	Fig.€24. Speed deviation response for a change in transmission l
	V. C ONCLUSION

	TABLE€I. P ARAMETERS OF THE S INGLE M ACHINE I NFINITE B US P O
	E. V. Larsen and D. A. Swann, Applying power system stabilizers,
	M. A. Abido, Robust design of multimachine power system stabiliz
	Y. L. Abdel-Magid, M. A. Abido, and A. H. Mantaway, Robust tunin
	A. L. B. Do Bomfim, G. N. Taranto, and D. M. Falcao, Simultaneou
	K. A. El-Metwally, G. C. Hancock, and O. P. Malik, Implementatio
	A. Hariri and O. P. Malik, A fuzzy logic based power system stab
	J. W. Chapman, M. D. Ilic, C. A. King, L. Eng, and H. Kaufman, S
	M. Nambu and Y. Ohsawa, Development of an advanced power system 
	A. Soos and O. P. Malik, An ${\rm H}_{2}$ optimal adaptive power
	T. Hiyama and K. Tomsovic, Current status of fuzzy system applic
	Y. Y. Hsu and C. L. Chen, Tuning of power system stabilizers usi
	R. Segal, M. L. Kothari, and S. Madnani, Radial basis function (
	Y. M. Park, S. H. Hyun, and J. H. Lee, A synchronous generator s
	Y. Zhang, O. P. Malik, G. S. Hope, and G. P. Chen, Application o
	P. Shamsollahi and O. P. Malik, Direct neural adaptive control a
	B. Changaroon, S. C. Srivastava, and D. Thukaram, A neural netwo
	J. He and O. P. Malik, An adaptive power system stabilizer based
	T. Kobayashi and A. Yokoyama, An adaptive neuro-control system o
	P. Shamsollahi and O. P. Malik, An adaptive power system stabili
	Y. M. Park, M. S. Choi, and K. Y. Lee, A neural network-based po
	W. Liu, G. K. Venayagamoorthy, and D. C. Wunsch, Design of an ad
	G. Sybille, P. Brunelle, R. Champagne, L. Dessaint, and H. Lehuy
	P. Kundur, M. Klein, G. J. Rogers, and M. S. Zywno, Application 

	IEEE Recommended Practice for Excitation System Models for Power
	G. K. Venayagamoorthy and R. G. Harley, A continually online tra
	P. J. Werbos, Approximate dynamic programming for real-time cont
	G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, Compariso
	D. Prokhorov and D. C. Wunsch, Adaptive critic designs, IEEE Tra
	K. S. Narendra and K. Parthasarathy, Identification and control 



