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Conservative Thirty Calendar Day Stock Prediction Using a 
Probabilistic Neural Network 

Hong Tan, Danil V. Prokhorov and Donald C. Wunsch I1 
Applied Computational Intelligence Laboratory 
Department of Electrical Engineering, Texas Tech University 
Lubbock TX 79409-3 102 

Abstract 

We describe a system that predicts significant short-term price movement in a single stock 
utilizing conservative strategies. We use preprocessing techniques, then train a 
probabilistic neural network to predict only price gains large enough to create a significant 
profit opportunity. Our primary objective is to limit false predictions (known in the pattern 
recognition literature as false alarms). False alarms are more significant than missed 
opportunities, because false alarms acted upon lead to losses. We can achieve false alarm 
rates as low as 5.7% with the correct system design and parameterization. 

Problem Statement 

Our problem is to predict if the closing price of a particular stock will go up enough to 
create a profit opportunity in the next 30 calendar days (about 22 trading days). This 
information can then be used to analyze the attractiveness of call options, short-term 
trading, buying on margin, or other risky vehicles requiring conservatism in stock selection 
to offset risk. We are investigating a variety of stocks and provide an analysis of Apple 
Computer here as an example of our technique. The methodology can be applied to any 
stock. In this paper we define a profit opportunity as a price increase of more then 2% in 
30 days to account for trading costs, the cost of the time value of stock options, borrowing 
costs, and the lost opportunity for alternative investments. This number can be refined by 
conventional risk analysis techniques. Our predictions are made each day. 

Predictability and Premocessing 

Utilizing the technique in [ 13, we analyzed the predictability of several attractive stocks. 
(Attractiveness of stocks was based on a preliminary manual determination.) The Apple 
stock daily closing price used as an example throughout this paper exhibits a semi-chaotic 
behavior implying its partial predictability. 

In this example we preprocess the raw closing price data [2]. For each pattern, 19 inputs, 
including the features defined below are used. The definition for our features are: 

Level-0: 
value of close(t) 

feature (') = log ________________________-__--______________---_-- 
exponential moving average of close(t) 

close(t) - BA(t-n) 

close(t) + BA(t-n) 
feature (t) = . . . . . . . . . . . . . . . . . . . . . . .  Level- 1 : 

Where: 
( d 2 )  

k = - ( d 2 )  
BA(t-n) = (1/ m + 1) c close(t 
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The index n determines how far back in time the center of the block is situated. [2] gives a 
table for different n and m: 

n 1 2 3 4 5 7 9 13 17 25 334965 97 129 193 257 385 
m 0 0 0 0 0 2 2  4 4 8 8 1 6 1 6 3 2 3 2  64 64 128 

After several tests, we selected n = 17. Thus almost one month (about 22 working days) 
of historical data are used to predict the trend of the stock closing price in the next month. 

Probabilistic Neural Network for Prediction 

The Probabilistic Neural Network (PNN) is a computationally efficient algorithm for a 
Baysean-based function approximation[3]. In our example, it consists of four layers of 
dedicated nodes (Fig. 1). 

INPUT PATTERN SUMMATION OUTPUT 
NODES NODES NODES NODE 

n 

/ A  

+ A  

--.c 

- + B  

Figure 1. Formulation of Probabilistic Neural Network (PNN) for this problem. 

Nineteen input nodes are fully connected with the next layer of pattern nodes. Input nodes 
simply distribute components of an input X. The i-th pattem node output function is: 

where Wi is the i-th training pattern, and (3 is the smoothing parameter of the Gaussian 
kernel. Other alternatives to (1) are available [3], including (1) with adaptable B [4] or full 
covariance matrices instead [SI. This calls for one pattern node for every pattern in the 
training data set. In our system and many others there is one training pattern for each day 
of historical data. This requires much bigger networks than many competing models. 
However, performance is very competitive with other approaches. The requirement for 
one pattern node per training data pattern can be alleviated if it becomes unduly 
burdensome, but we have experienced no problems to date. The third layer is formed by 
summation nodes which sum the outputs (1) of those pattern units that correspond to a 
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certain category of predictions. In our case, category A corresponds to our desired 
prediction of significant profits in the next 30 calendar days, and B is the opposite. 

The output node adds outputs of two summation nodes, with only the output of the 
summation node (B) being weighted by the following parameter C: 

where nA is the number of training patterns from the category (A), nB is the number of 
training patterns from the category (B), and L is the ratio of losses associated with wrong 
predictions. We have used L > 1 emphasizing the importance of avoiding false alarms. In 
effect we have a voting mechanism between the training patterns. L > 1 multiplicatively 
biases the output against making predictions by giving greater weight to B node votes than 
A node votes. At the output, we have a hard-limiting threshold: +1 whenever an input 
pattern X belongs to category (A) and -1 if it is from category (B). 

Training of this predictor is just memorization of all patterns from the training set and 
assigning a separate pattern node to every training pattern. Such a technique is justified in 
our case due to availability of data and sufficient computing power. The training is similar 
to that in [6]. Alternative techniques for similar problems are certainly available and we 
have seen them perform well in the past [7]. We have used additional proprietary 
techniques to further enhance the conservatism of our estimates. The results presented 
below represent these enhanced conservative estimates. Without these enhancements, the 
approach described above would result in higher false alarm rates than reported here. 

Our results are given in the tables and figures below. The network was trained on data 
from January 1,1987 through September 30,1993. These tables show results for out-of- 
sample data, known in the neural network literature as test data; that is, data that the neural 
network never was trained on. The test data set goes from October 1 ,  1993 to September 
16, 1994. Table 1 shows predictions for L = 2 with some representative values of 0. At 
(3 = 0 .O 149 we achieve a false alarm rate of only 10.4%. 

Table 1 .  L=2 

0.0086 107 87 85.6% 
0.0149 77 69 89.6% 

0 total predictions #up > %2 % of success 

Figure 2 shows these predictions (for L = 2, 0 = 0.0149) plotted with price data. The 
straight line shows daily closing price, the filled in triangles denote days when strong price 
increase within 30 days was predicted, and the open triangles show the false alarms when a 
prediction was made but the desired price increase within 30 days did not occur. 

Table 2 shows predictions for L = 4 with some representative values of 0. At o= 0.0149 
we achieve a false alarm rate of only 5.7.% 

Table 2. L=4 

0.0086 84 73 87.9% 
0.0149 35 33 94.3 % 

0 total prediction s # up > %2 % of success 
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Figure 2. PNN Predictions plotted with price data. L = 2, O= 0.0149 
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Figure 3. PNN Predictions plotted with price data. L = 4, CY= 0.0149 

116 



Figure 3 shows the predictions (for L = 4, B = 0.0149) plotted with price data. Note the 
enhanced conservatism results in fewer predictions. We therefore are achieving higher 
accuracy at the expense of potential lost opportunities. However, our philosophy is that a 
smaller number of higher quality trading ideas is better than constantly trading. After all, 
trading invokes transaction costs. Furthermore, by applying this method to a large 
portfolio of attractive stocks, more than enough good trading opportunities should be 
available. We therefore consider the choice of making fewer predictions in favor of higher 
accuracy to be the best policy. 

Conclusion 

We have demonstrated an approach to short-term stock forecasting. By taking a design 
approach designed to minimize false alarms, we have achieved high accuracy in return for a 
lower number of predictions. Use of the PNN has worked well for this approach. 
Research is currently under way to compare performance of different models (not limited to 
neural networks) for this problem. 
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