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Control of Cascaded Multilevel Inverters
Keith A. Corzine, Member, IEEE, Mike W. Wielebski, Student Member, IEEE, Fang Z. Peng, Senior Member, IEEE,

and Jin Wang, Student Member, IEEE

Abstract—A new type of multilevel inverter is introduced which
is created by cascading two three-phase three-level inverters using
the load connection, but requires only one dc voltage source. This
new inverter can operate as a seven-level inverter and naturally
splits the power conversion into a higher-voltage lower-frequency
inverter and a lower-voltage higher-frequency inverter. This type
of system presents particular advantages to Naval ship propulsion
systems which rely on high power quality, survivable drives. New
control methods are described involving both joint and separate
control of the individual three-level inverters. Simulation results
demonstrate the effectiveness of both controls. A laboratory set-up
at the Naval Surface Warfare Center power electronics laboratory
was used to validate the proposed joint-inverter control. Due to
the effect of compounding levels in the cascaded inverter, a high
number of levels are available resulting in a voltage THD of 9%
(without filtering).

Index Terms—Cascaded inverter, multilevel inverter, three-level
inverter.

I. INTRODUCTION

THE CONCEPT OF multilevel inverters, introduced about
20 years ago [1], [2], entails performing power conversion

in multiple voltage steps to obtain improved power quality,
lower switching losses, better electromagnetic compatibility,
and higher voltage capability. Considering these advantages,
multilevel converters have been gaining considerable popularity
in recent years [3]–[18]. The benefits are especially clear for
medium-voltage drives in industrial applications [7], [9] and
are being considered for future Naval ship propulsion systems.
In fact, several IEEE conferences now hold entire sessions on
multilevel power conversion.

Several topologies for multilevel inverters have been pro-
posed over the years; the most popular being the diode-clamped
[3], [4], flying capacitor [5], [6] and cascaded H-bridge [7]–[10]
structures. One aspect which sets the cascaded H-bridge apart
from other multilevel inverters is the capability of utilizing
different dc voltages on the individual H-bridge cells which re-
sults in splitting the power conversion amongst higher-voltage
lower-frequency and lower-voltage higher-frequency inverters
[9], [10]. An alternate method of cascading inverters involves
series connection of two three-phase inverters through the
neutral point of the load. Past research has shown this concept
for cascading two-level inverters [11]–[15] and multilevel in-
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verters [16]–[18]. An advantage of this approach is that isolated
sources are not required for each phase. It should be noted that
cascaded inverter systems can be considered from a number of
different viewpoints. Considering the cascaded inverter to be
one unit, it can be seen that a higher number of voltage levels
are available for a given number of semiconductor devices.
Considering the system as separate inverters, the cascaded
design can be regarded as a combination of a bulk power
(higher-voltage) inverter and a conditioning (lower-power)
inverter. An alternate viewpoint is to consider the conditioning
inverter as an active filter and the bulk inverter as the drive in-
verter. In any case, the cascaded multilevel inverter has several
advantages for Naval ship propulsion systems. One advantage
is that cascaded inverters provide a compounding of voltage
levels leading to extremely low harmonics. Another advantage
is that the bulk inverter may be commercial-off-the-shelf;
requiring that only the lower-power condition inverter to be
custom made. Yet another advantage is that the cascaded design
avoids a large number of isolated voltage sources which would
be cumbersome in shipboard power systems. An additional
advantage is that the dual inverter structure may be useful for
redundancy providing remedial operation for survivability.
Furthermore, in Naval applications, the propulsion motor is
typically custom built and can be readily made to have access
to both ends of each winding.

This paper reports the development of new control methods
for cascaded multilevel inverters. In particular, capacitor
voltage regulation methods are introduced resulting in a
cascaded inverter which only requires one dc source. The new
control methods are applied to a topology where two three-level
inverters are cascaded. Simulation and laboratory measure-
ments are presented which demonstrate the effectiveness of the
proposed control.

II. CASCADED MULTILEVEL INVERTERS

The cascade-3/3 inverter is shown in Fig. 1. This topology is
constructed by connecting a three-level inverter to both sides of
the motor windings. As a practical matter, the inverters may have
any number of voltage levels as described in the literature [17].
Herein, a control will be developed to regulate the dc voltage so
that only one dc source voltage is required. This provides some
unique advantages for Naval propulsion systems which typi-
cally operate from a single source, but also leads to other aspects
which should be pointed out. Since the conditioning inverter is
supplied by a capacitor bank, the bulk inverter must be rated
for the entire amount of the load power. Under these conditions,
the conditioning inverter becomes an added expense which is
justified by the higher power quality. An alternate approach to
reducing harmonics would be to add passive filter components
to the bulk inverter which would also increase the cost. However,

0885-8993/04$20.00 © 2004 IEEE
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Fig. 1. Cascade-3/3 multilevel inverter.

the passive components will change their effect on the system
harmonics as the drive operating point is varied. Another aspect
of eliminating the voltage source for the conditioning inverter
is that it is no longer available for driving the motor in situa-
tions where there is a fault in the bulk inverter. In those cases,
a dc source would need to be switched in to the conditioning
inverter. One good feature about fault operation of ship propul-
sion loads is that a relatively low amount of power is needed to
operate in a survivable situation. Since propulsion load power
typically varies as the speed cubed, only 12% of full power is
necessary to operate at half-rated speed.

Referring to Fig. 1 and assuming that the capacitors
are charged to half of their respective dc bus voltage, the
line-to-ground voltages of the upper and lower voltage may be
expressed as

(1)

(2)

where , , and are the switching states for the upper in-
verter and , , and are the switching states for the
lower inverter. For three-level inverters, the switching states cor-
responding to the line-to-ground voltage levels and can have the
values 0, 1 or 2. The phase voltages of the load may be expressed
in terms of the line-to-ground voltages as [19]

(3)

Fig. 2. Cascade-3/3 inverter vector plots.

Fig. 3. Cascade-3/3 vector plot for maximal distention.

The effective line-to-line load voltages may be expressed in
terms of the phase voltages as

(4)

It is often insightful to look at the voltage vector plot of a multi-
level inverter which can be accomplished by plotting the phase
voltages in the stationary reference frame for all possible
combinations of switching states [11]. In the case of the cas-
caded multilevel inverter, vector plots vary widely depending
on the ratio of the dc voltages. Fig. 2 shows the voltage vector
plots for the cascade-3/3 inverter for several dc voltage ratios.
Therein, the axes of each subplot are the same as those shown in
Fig. 3. When the voltage ratio is set to , the vector
plot appears as that of several three-level vector plots arranged
in a three-level pattern. This is to be expected when cascading
two three-level inverters as the amplitude of the small vector pat-
terns depends on the dc voltage . Incidentally, if is set
to zero, the amplitude of its vectors goes to zero and the overall
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vector plot is that of a three-level inverter (the lower inverter
turns into a neutral connection). The next ratio is
where there is some overlap of the voltage vectors and the vector
plot is the same as that of a nine-level inverter. As it turns out,
nine levels is the largest number of voltage levels that the cas-
cade-3/3 inverter is capable of emulating. For this reason, this
mode of operation is referred to as maximal distention [11],
[17]. In general, the voltage ratio which yields maximal disten-
tion for an arbitrary number of voltage levels is [17]

(5)

where and are the voltage levels of the upper and lower
inverter, respectively. As shown in Fig. 2, if the voltage ratio
is increased further to and , the
cascade-3/3 inverter can operate as a seven-level and five-level
inverter, respectively. However, these mo des of operation are
not as desirable as that of maximal distention which yields
the highest power quality through lower voltage steps.

III. CASCADE-3/3 INVERTER CONTROL

Before considering specific modulation and capacitor
voltage regulation strategies, it is instructive to examine the
cascade-3/3 inverter vector plot shown in Fig. 3 in detail.
Therein, the vectors produced by the upper inverter are denoted
as being slightly larger than the other vectors. The small
three-level vector plots produced by the lower inverter are in-
dicated by the dashed hexagons. One of the significant features
of the controls developed herein is the ability to regulate the
dc voltage so that only one dc source is required. This
can be accomplished through redundant selection of inverter
switching states. Fig. 3 shows overlap amongst the smaller
hexagons and where this overlap occurs there is a choice as
to the realization of the voltage vectors. This choice can be
made with regard to the power flow in the lower inverter [14]
so that the dc voltage remains at one-third of . As can
be seen form Fig. 3, a considerable amount of overlap occurs
for vectors toward the inside of the vector plot and the full dc
voltage may be utilized while regulating the lower inverter
capacitor voltage. Toward the outside of the vector plot, the
overlap is not present for many vectors and in this case, the
power flow can not be used to maintain . This results in a
limitation of operating region within the upper inverter vectors
(larger vectors in Fig. 3). Considering the number of lower
inverter vectors in-between the upper inverter vectors, it can
be seen that this limitation will result in seven-level operation.
However, only one dc source is required and that dc voltage
can be fully utilized.

A. Joint-Inverter Control

The method of joint inverter control proposed herein utilized
nine-level modulation followed by a redundant state selection
(RSS) table for capacitor voltage balancing. The process of
nine-level modulation is shown for the a-phase in Fig. 4 where
a modified duty cycle is compared to eight triangle wave-
forms to produce the -phase commanded switching state .
The comparison rules assert that the switching state be equal to

Fig. 4. Nine-level triangle modulation.

Fig. 5. Redundant state selection implementation.

the number of triangle waveforms that the modified duty cycle
is greater than. The modified duty cycle is calculated as

(6)

where the duty cycle has been modified from the traditional def-
inition so that it ranges from 0 to 8 (the number of levels minus
1) and the modulation index represents the percent of voltage
utilization of and ranges from 0 to 1. The angle is the elec-
trical angle which corresponds to the commanded frequency.
The duty cycles of the - and -phase are similar to that of (6)
with 120 and 240 offset in the electrical angle, respectively.
Typically, all three duty cycles are compared to the same set of
triangle waveforms. To produce commanded switching states

, , and .
The modulation is typically programmed in a digital signal

processor (DSP) and may be followed by an RSS table located
in either the DSP or in a programmable logic device (PLD).
Fig. 5 shows the RSS table structure for this system. The inputs
(address) of the table are the commanded switching states from
the modulator as well as digital flags which represent the state of
the system. The flags , , and indicate the current direction
and are 1 for positive and 0 for negative vales of , . and

, respectively. The capacitor voltage flags represent voltage
balance and are defined by

(7)

(8)

(9)
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The RSS table output is the switching state for each phase. This
can be related to the switching states of the individual inverters
by consideration of the line-to-ground voltages [16]. Table I
shows this relationship for the -phase.

Identical relationships apply for determining the - and
-phase inverter switching states.

The final consideration for this control is the method of gener-
ating the RSS table. For this, a program was written to evaluate
the redundant states for all possible combinations of the RSS
table inputs. Each combination of inputs was evaluated in the
following way. First the number of redundant switching states
was identified by

(10)

where and are the maximum switching states from
the modulator or

(11)

(12)

To obtain the first redundant state, is subtracted from the
switching states of all three phases. The other states are obtained
by adding 1 to all three phases (changing the common-mode or
zero sequence term) until all redundant states are evaluated. For
each redundant state, the contribution to power from the lower
inverter is found by first deterring the switching states corre-
sponding to that inverter from Table I. Next, the contribution to
the line-to-ground voltages can be evaluated using

(13)

Finally, the contribution of the lower inverter power may be ex-
pressed as

(14)

It should be noted that (14) can not calculate the exact power
since the current flags only represent the current direction. how-
ever, for high power factors (14) can be used to determine the
direction of power flow. If the direction is positive (out of the
inverter) and the capacitor is overcharged (or ) the
redundant state will help regulate the capacitor voltage. Simi-
larly, if the power direction is negative and the capacitor is un-
dercharged, the redundant state will help regulate the capacitor
voltage. Any redundant states which help the balance situation
are given a priority of 4. The reason for this is that some pri-
ority will be added to the redundant states which also help the
capacitor voltage balancing within the inverters. Evaluating this
voltage balance amounts to determining the direction of the cur-
rent in each inverter which flows out of the capacitor junction
(currents and in Fig. 1). For each redundant state, the junc-
tion current is determined by using Table I to determine which
phases are connected to the junction and then adding the current
depending on the current direction flags. The direction of the
junction currents can be used with the capacitor balance infor-
mation ( and ) to determine if the redundant state helps
the voltage balance. For the upper inverter, cases which help the
balance have their priority increased by 1. For the lower inverter,
cases which help the balance have their priority increased by 2.

TABLE I
RELATION OF A-PHASE SWITCHING STATES

This choice is arbitrary, but was made based on simulation re-
sults. After evaluating all of the redundant states, the one with
the highest priority is selected for the RSS table data.

The cascade-3/3 inverter was simulated using the pro-
posed control. In the simulation, the dc voltage was set to

. The controller modulation index was
with a commanded frequency of 60 Hz. The load was a resis-
tive-inductive load with and . Fig. 6
shows the simulation results. Therein, the -phase upper and
lower line-to-ground voltages and are shown followed
by the load voltage , the line-to-line voltage as defined
by (4), and the phase current . From the line-to-ground
voltages, it can be seen that there is a natural split between
higher-voltage lower-frequency and lower-voltage higher-fre-
quency. The line-to-ground voltages also demonstrate the
effectiveness of the capacitor voltage balancing control. From
the line-to-line voltage, the effective seven-level operation can
be seen (six positive levels, six negative levels, and zero). For
this simulation, the output power was 23 kW and the THD of
the phase and line-to-line voltages were
and . Further simulations were performed
to evaluate the proposed control and it was shown that the
capacitor voltage balancing control works over a range of
modulation indices and varying power factors from 0.0125
lagging to 0.997 lagging.

B. Separate Inverter Control

The above described joint-inverter control algorithm treats
both (the bulk and the lower-power) inverter bridges as one unit
and has to be implemented by one consolidated DSP/PLD con-
trol board. As mentioned above, one advantage of the proposed
cascade inverter system is that the bulk inverter may be commer-
cial-off-the-shelf; requiring that only the lower-power condition
inverter to be custom. In order to achieve this, a separate inverter
control with minimal or no communication to the bulk inverter
control is required. In addition, the dual inverter structure with
separate control may be useful for redundancy and reliability
improvement. The inverter system becomes more reliable and
flexible for future system change and maintenance.

Unlike the joint-inverter control, the proposed separate in-
verter control utilizes isolated algorithms for the bulk and
conditioning inverter. The bulk inverter is controlled by the
staircase or low-frequency PWM method to provide power
needed to drive the motor, whereas the conditioning inverter
utilizes high-frequency PWM to shape motor voltage and cur-
rent and achieve high performance drive with low current and
torque ripple. One advantage of the separate inverter control
is that no communication is needed between the two inverters,
thus making it possible to use commercial-off-the-shelf motor
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Fig. 6. Cascade-3/3 inverter simulation results.

drive inverters. It should be noted that, as with the joint-in-
verter control the conditioning inverter does not need a power
supply, thus acting like an active filter.

The process of the staircase control of the bulk inverter is
shown in Fig. 7, where the angle is controlled to produce the
staircase voltage waveform. Therein, the phase voltages and

and the line-to-line voltage are shown. The amplitude of
any odd harmonic of the phase voltage can be expressed as

(15)

where is an odd harmonic order; the amplitudes of all even
harmonics being zero. The amplitude of the fundamental com-
ponent in the phase voltage can be calculated as

(16)

According to Fig. 7, must satisfy .
The conditioning inverter functions like a series active power

filter to compensate the harmonic voltage produced by the bulk
inverter. In the time-domain, this harmonic can be computed for
the -phase as

(17)

where is the fundamental component of . The funda-
mental component can be obtained simply through a low
pass filter. However, it should be noted that a three-phase vector
PLL circuit [20], [21] based on the line-to-line voltages gives
better performance because the three-phase line-to-line voltages
contain no triplens and their lowest harmonic is the fifth. Once
the phase angle information is obtained by the PLL circuit, the

Fig. 7. Staircase control of the bulk inverter.

Fig. 8. Conditioning inverter control diagram.

synchronous frame method can be used to extract the funda-
mental component [22].

Another consideration of the separate inverter control is the
dc voltage control of the conditioning inverter. In order to
maintain maximal distention, the dc capacitor voltage on the
conditioning inverter should be kept at one third of the dc
voltage of the bulk inverter. To achieve this, a straightforward
PI control is adopted to regulate active power flow into the
conditioning inverter. The control scheme of the conditioning
inverter is shown in Fig. 8 for the -phase. Therein, is
the dc voltage reference, which is set to one third of .
The voltage is a unit sine wave in phase with the phase
voltage and can be directly obtained from the vector
PLL circuit [20], [21]. The voltage is a unit sinusoidal
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Fig. 9. Separate control simulation results.

wave, which has the same phase angle with the phase voltage
. The resulting reference voltage is used as an input for a

PWM modulator for the conditioning inverter. Similar control
channels are used for the - and -phase.

Fig. 9 shows simulation results of the cascade multilevel con-
verter using the separate control, in which

a) is the dc voltage of the conditioning inverter;
b) is the motor current;
c) is the total motor line-line voltage;
d) is the bulk inverter line-line voltage;
e) is the conditioning inverter line-line voltage;
f) is the harmonics in the line-line voltage of the bulk

inverter.

In simulation, was set to 600 V and was set to 15 . It
can be seen that the dc link voltage of the conditioning inverter
is kept at one third of the dc voltage of the bulk inverter. The

Fig. 10. Cascade-3/3 inverter measurements.

total line-to-line voltage is improved from the bulk inverter five-
level waveform by the conditioning inverter and the maximal
distention of the cascaded inverter is realized.

IV. LABORATORY VALIDATION

The cascade-3/3 inverter was constructed in the power
electronics laboratory at the Naval Surface Warfare Center
(NSWC), Philadelphia, PA. Joint inverter control was used and
the operating conditions were the same as those described in
the simulation in Section III-A. Fig. 10 shows the laboratory
measurements displaying the same system variables as Fig. 6.
As can be seen, the measurements are nearly the same as the
simulation with the exception of the ripple in the phase current
which is higher in lab measurements due to high-frequency
effects which were not included in the simulation. From the
measured data, the THDs were and

.

V. CONCLUSION

This paper has studied a new type of multilevel inverter
which consists of two three-phase three-level inverters cas-
caded through the load connections. Two types of control were
developed for this inverter. One relies on controlling the two
three-level inverters jointly and the other uses separate controls.
Both controls included capacitor voltage balancing so that a dc
source was needed for only one three-level inverter. Simulation
results demonstrate the effectiveness of each control. The
joint control was validated with laboratory measurements on
a 23-kW inverter system.



738 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 3, MAY 2004

ACKNOWLEDGMENT

The authors wish to express their gratitude to T. Fikse, the
Naval Surface Warfare Center, Philadelphia, PA, and T. Calvert,
Office of Naval Research, for support of this research effort.

REFERENCES

[1] R. H. Baker, “High-voltage converter circuit,” U.S. Patent 4 203 151,
May 1980.

[2] A. Nabe, I. Takahashi, and H. Akagi, “A new neutral-point clamped
PWM inverter,” in Proc. IEEE Industry Applications Society Confer-
ence, Sept./Oct. 1980, pp. 761–766.

[3] M. Fracchia, T. Ghiara, M. Marchesoni, and M. Mazzucchelli, “Opti-
mized modulation techniques for the generalized N-level converter,” in
Proc. IEEE Power Electronics Specialist Conference, Madrid, Spain,
1992, pp. 1205–1213.

[4] K. A. Corzine and J. R. Baker, “Reduced parts-count multilevel recti-
fiers,” IEEE Trans. Ind. Electron., vol. 49, pp. 766–774, Aug. 2002.

[5] F. Richardeau, P. Baudesson, and T. Meynard, “Failures-tolerance and
remedial strategies of a PWM multicell inverter,” in Proc. IEEE Power
Electronics Specialist Conference, vol. 2, Galway, Ireland, June 2000,
pp. 649–654.

[6] F. Z. Peng, “A generalized multilevel inverter topology with self voltage
balancing,” IEEE Trans. Ind. Applicat., vol. 37, pp. 611–618, Mar./Apr.
2001.

[7] P. W. Hammond, “Medium voltage pwm drive and method,” U.S. Patent
5 625 545, April 1997.

[8] F. Z. Peng, J. W. McKeever, and D. J. Adams, “A power line condi-
tioner using cascade multilevel inverters for distribution systems,” in
Proc. IEEE Industry Applications Society Conference, vol. 2, 1997, pp.
1316–1321.

[9] M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, “Hybrid multilevel
power conversion system: a competitive solution for high-power appli-
cations,” IEEE Trans. Ind. Applicat., vol. 36, pp. 834–841, May/June
2000.

[10] K. A. Corzine and Y. L. Familiant, “A new cascaded multilevel H-bridge
drive,” IEEE Trans. Power Electron., vol. 17, pp. 125–131, Jan. 2002.

[11] K. A. Corzine, S. D. Sudhoff, and C. A. Whitcomb, “Performance char-
acteristics of a cascaded two-level converter,” IEEE Trans. Energy Con-
version, vol. 14, pp. 433–439, Sept. 1999.

[12] T. Salzmann, J. Wokusch, T. Greif, and H. J. Muller, “Air-cooled power
converter, drive device for rolling stands, and power converter system,”
U.S. Patent 6 262 906, 2003.

[13] G. Shivakumar, K. Gopakumar, S. K. Sinha, A. Pittet, and V. T. Ran-
ganathan, “Space vector PWM control of dual inverter fed open-end
winding induction motor drive,” Eur. Power Electron. J., vol. 12, no.
1, pp. 9–18, Dec. 2001.

[14] E. G. Shivakumar, K. Gopakumar, S. K. Sinha, A. Pittet, and V. T. Ran-
ganathan, “Space vector PWM control of dual inverter fed open-end
winding induction motor drive,” Eur. Power Electron. J., vol. 12, no.
1, pp. 9–18, Feb. 2002.

[15] K. K. Mohaparta, V. T. Somasekhar, and K. Gopakumar, “A harmonic
elimination scheme for an open-end winding induction motor drive fed
from two inverters using asymmetrical DC link voltages,” Eur. Power
Electron. J., vol. 12, no. 4, pp. 28–35, Sept./Oct./Nov. 2002.

[16] K. A. Corzine, “Topology and control of cascaded multilevel con-
verters,” Ph.D. dissertation, University of Missouri-Rolla, 1997.

[17] K. A. Corzine and S. D. Sudhoff, “High state count power converters:
an alternate direction in power electronics technology,” SAE Trans. J.
Aerosp., pp. 124–135, 1998.

[18] Y. Kawabata, M. Nasu, T. Nomoto, E. C. Ejiogu, and T. Kawa-
bata, “High-efficiency and low acoustic noise drive system using
open-winding AC motor and two space-vector-modulated inverters,”
IEEE Trans. Ind. Electron., vol. 49, pp. 783–789, Aug. 2002.

[19] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric
Machinery and Drive Systems. Piscataway, NJ: IEEE Press, 2002.

[20] C. Schauder et al., “Development of a 100 MVAR static condenser for
voltage control of transmission systems,” in Proc. IEEE/PES Summer
Power Meeting, San Francisco, CA, July 24–28, 1994.

[21] F. Z. Peng and J. S. Lai, “Dynamic performance and control of a static
var generator using cascade multilevel inverters,” IEEE Trans. Ind. Ap-
plicat., vol. 33, pp. 748–755, May/June 1997.

[22] S. Bhattacharya and D. Divan, “Synchronous frame based controller
implementation for a hybrid series active filter system,” in Proc.
IEEE Industry Applications Society Conference, vol. 3, Oct. 1995, pp.
2531–2540.

Keith A. Corzine (S’92–M’98) received the
B.S.E.E., M.S.E.E., and Ph.D. degrees from the
University of Missouri-Rolla in 1992, 1994, and
1997, respectively.

In the Fall of 1997, he joined the University of
Wisconsin-Milwaukee, where he is now an Associate
Professor. His research interests include power elec-
tronics, motor drives, Naval ship propulsion systems,
and electric machinery analysis.

Mike W. Wielebski (S’03) received the B.S.E.E. de-
gree from the University of Wisconsin-Milwaukee, in
2002 where he is now pursuing the M.S.E.E. degree.

His research specialty is in the area of digital motor
control and multilevel converters.

Fang Z. Peng (M’92–SM’96) received the B.S. de-
gree from Wuhan University, Wuhan, China, in 1983
and the M.S. and Ph.D. degrees from Nagaoka Uni-
versity of Technology, Nagaoka Japan, in 1987 and
1990, respectively, all in electrical engineering.

From 1990 to 1992, he was a Research Scientist
with Toyo Electric Manufacturing Company, Ltd.,
Tokyo, Japan, where he was engaged in research
and development of active power filters, flexible
ac transmission systems (FACTS) applications, and
motor drives. From 1992 to 1994, he was a Research

Assistant Professor with the Tokyo Institute of Technology, where initiated
a multilevel inverter program for FACTS applications and speed-sensorless
vector control project. From 1994 to 1997, he was a Research Assistant
Professor with the University of Tennessee, Knoxville, working for Oak Ridge
National Laboratory (ORNL). From 1997 to 2000, he was a Senior Staff
Member at ORNL and Lead (principal) Scientist of the Power Electronics
and Electric Machinery Research Center. In 2000, he joined Michigan State
University, East Lansing, as an Associate Professor in the Department of
Electrical and Computer Engineering. He is the holder of ten patents.

Jin Wang (S’03) received the B.S. degree in elec-
trical engineering from Xi’an Jiaotong University,
China, the M.S. degree from Wuhan University,
Wuhan, China, in electrical engineering, and is
currently pursuing the Ph.D. degree at Michigan
State University, East Lansing.

His research interests are multilevel converters, ac-
tive power filters, and DSP inverter control.


	Control of Cascaded Multilevel Inverters
	Recommended Citation

	Control of cascaded multilevel inverters

