
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 2007 

Near Optimal Output-Feedback Control of Nonlinear Discrete-Near Optimal Output-Feedback Control of Nonlinear Discrete-

Time Systems in Nonstrict Feedback Form with Application to Time Systems in Nonstrict Feedback Form with Application to 

Engines Engines 

Peter Shih 

Brian C. Kaul 

Jagannathan Sarangapani 
Missouri University of Science and Technology, sarangap@mst.edu 

J. A. Drallmeier 
Missouri University of Science and Technology, drallmei@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Aerospace Engineering Commons, Computer Sciences Commons, Electrical and Computer 

Engineering Commons, Mechanical Engineering Commons, and the Operations Research, Systems 

Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
P. Shih et al., "Near Optimal Output-Feedback Control of Nonlinear Discrete-Time Systems in Nonstrict 
Feedback Form with Application to Engines," Proceedings of the International Joint Conference on Neural 
Networks (2007, Orlando, FL), Institute of Electrical and Electronics Engineers (IEEE), Jan 2007. 
The definitive version is available at https://doi.org/10.1109/IJCNN.2007.4370989 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229167034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2007.4370989
mailto:scholarsmine@mst.edu


Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Near Optimal Output-Feedback Control of Nonlinear Discrete-time Sys-
tems in Nonstrict Feedback Form with Application to Engines

Peter Shih, B. Kaul, Sarangapani Jagannathan, and J. Drallmeier

Abstract-A novel reinforcement-learning based output-
adaptive neural network (NN) controller, also referred as the
adaptive-critic NN controller, is developed to track a desired
trajectory for a class of complex nonlinear discrete-time sys-
tems in the presence of bounded and unknown disturbances.
The controller includes an observer for estimating states and
the outputs, critic, and two action NNs for generating virtual,
and actual control inputs. The critic approximates certain stra-
tegic utility function and the action NNs are used to minimize
both the strategic utility function and their outputs. All NN
weights adapt online towards minimization of a performance
index, utilizing gradient-descent based rule. A Lyapunov func-
tion proves the uniformly ultimate boundedness (UUB) of the
closed-loop tracking error, weight, and observer estimation.
Separation principle and certainty equivalence principles are
relaxed; persistency of excitation condition and linear in the
unknown parameter assumption is not needed. The perform-
ance of this controller is evaluated on a spark ignition (SI) en-
gine operating with high exhaust gas recirculation (EGR) levels
and experimental results are demonstrated.

I. INTRODUCTION
A daptive NN backstepping control of nonlinear discrete-

time systems in strict feedback form [1-3] result in
non-causal controllers when applied for nonstrict feedback
nonlinear discrete-time systems and optimization is not car-
ried out. The controller designs employ either supervised
training, where the user specifies a desired output, or classi-
cal online training [1-3], where a short-term system per-
formance measure is defined by using the tracking error. By
contrast, the reinforcement-learning based adaptive critic
NN approach [4] has emerged as a promising tool to develop
optimal NN controllers due to its potential to find approxi-
mate solutions to dynamic programming, where a strategic
utility function (a long-term system performance measure)
can be optimized. There are many variants of adaptive critic
NN controller architectures [4-7] using state feedback even
though few results [6, 7] address the controller convergence.

In this paper, a novel adaptive critic NN-based output
feedback controller is developed to control a class of nonlin-
ear non-strict feedback discrete-time system. Adaptive NN
backstepping is utilized for the controller design with two
action NNs being used to generate the virtual and actual
control inputs, respectively. The two action NN weights are
tuned by the critic NN signal to minimize the strategic util-
ity function and their outputs. The critic NN approximates

This work is supported in part by NSF grants ECCS#0327877 and
ECCS#0621924. Peter Shih and Sarangapani Jagannathan are with the
Department of Electrical and Computer Engineering, whereas B. Kaul and
J. Drallmeier are with the Department of Mechanical and Aerospace Engi-
neeing at the University of Missouri-Rolla (contact author's e-mail: saran-
gap oumr.edu).

certain strategic utility function which is a variant of Bell-
man equation. The NN observer estimates the states and
output, which are used in the controller design. The pro-
posed controller is model-free since the NN weights are
tuned online to approximate the unknown system dynamics.

The main contributions of this paper can be summarized
as follows: 1) The non-causal problem is overcome by em-
ploying the universal NN approximation property for non-
strict feedback nonlinear discrete-time systems; 2) optimiza-
tion of a long-term performance index is undertaken in con-
trast with traditional adaptive NN back stepping schemes [1,
2]; 3) demonstration of the UUB of the system is shown in
the presence of approximation errors and bounded unknown
disturbances unlike existing adaptive critic works [7]. Stabil-
ity proof is inferred by relaxing separation principle via
novel weight updating rules and by selecting the Lyapunov
function consisting of the system estimation errors, tracking
and the NN weight estimation errors. A single critic NN is
utilized to tune two action NNs; 4) a well-defined controller
is presented since a single NN is used to approximate both
the nonlinear functions f(xY(k)) and g, (x(k)) compared to
[8]; 5) the NN weights are tuned online instead of offline
[5]; and finally 6) the assumption thatg1 (xI (k), X2(k)) is
bounded away from zero and its sign is known a priori is
relaxed.

The proposed primary controller is applied to control the
spark ignition (SI) engine dynamics in high EGR mode,
where an inert gas displaces the stoichiometric ratio of fuel
to air. The engine destabilizes in this mode and heat release
(HR) dispersion increases, which the controller attempts to
reduce. Consequently, the engine improves emissions and
fuel efficiency.

II. NON-LINEAR NON-STRICT FEEDBACK SYSTEM

Consider the following nonlinear discrete-time system.
XI (k + 1) = f (X (k)) + g1 (xi (k)) X2(k) + d}(k)
x2(k + 1) = f2 (X (k)) +g2 (x (k))U(k) + d2 (k)
X3(k + 1) = f4 (X (k)) +g4(x (k)) v(k) + d3 (k)

(1)

(2)

(3)

y(k+1) = f3 (X (k)))
where xi (k) = [xi(k), x2 (k),X3 (k)]T are the states; u(k)E91 and

v(k) E 91 are system inputs; and d, (k) E 91, d2 (k) E 91 and

d3 (k) E 9 are unknown but bounded disturbances. The

bounds are given by d (k)|< d,i e {1,2,3}, where the upper
bounds are unknown positive scalars. Finally, the output and
third state are measurable whereas the first two states are
not. For the system (3) and (4), not only the system actual
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output should converge to its target value but also the states
should converge to their respective desired values.

The controller development presented use equations (1),
(2), and (4). Equation (3) can be controlled by another con-
troller such as [9] and therefore omitted. Consequently, the
third state is considered bounded to its target value.

III. OBSERVER DESIGN
To overcome the immeasurable states x (k) andx2 (k), an

observer is used.
A. Observer Design
Consider equations (1) and (2). We expand the individual

nonlinear functions using Taylor series as
fl)f) +AfO(), ie{1,2} (5)

gi() g0±+Ag(), ie{1,2} (6)

where the first term in (5) through (6) are known nominal
values and the second term are unknown higher order terms.
We use a two-layer feed-forward NN with semi-recurrent
architecture and novel weight tuning to construct the output
y(k + 1) = wit(vzlz(k)) + c (z, (k))' (7)

where z, (k) = [xl (k), X2 (k),x3 (k), y (k), u (k)] R4 is the network
input, y(k+±) and y(k) are the future and current outputs,
W1 e9 r and vI 9j2xn1 denote the ideal output and constant
hidden layer weight matrices, respectively, u(k) is the con-
trol input, 0 ((v TzI(k)) represents the hidden layer activation
function, n, is the number of nodes in the hidden layer, and

(z, (k)) e 91 is the approximation error. For simplicity the
two equations can be represented as
01 (k) =(VTZI (k)) (8)

El (k) c (z, (k)) (9)

Rewrite (7) using (8) and (9) to obtain
y (k + 1) = WVVTOI (k) + £l (k) (lo)
The states x (k) and x2(k) are not measurable, therefore,

zi(k) is not available either. Using the estimated states and
the output xl(k), x2(k), and y(k), respectively, instead of xi(k),
x2(k), and y(k), the proposed observer is given as

y (k +1)= W1T (k) 0 (VlT l (k)) + 1Ij (k) = W1T (k) 01 (k) + 1Ij (k)(l)
where 21 (k) = [,l (k) X2 (k), x3 (k), y (k),u (k)] R5 is the input
vector using estimated states, y (k + 1) and y (k) are the esti-
mated future and current output, iw (k) is the actual weight
matrix, u (k) is the estimate control input, 01 (k) is the hidden
layer activation function, I1e R is the observer gain, and
y(k) = y (k) - y (k) is the output estimation error.

It is demonstrated in [10] that, if the hidden layer weights,
vI, is chosen initially at random and kept constant and the
number of hidden layer nodes is sufficiently large, the ap-
proximation error c(zI(k)) can be made arbitrarily small so

that the bound e(i(k)) < holds for all z (k) E S since the
activation function forms a basis to the nonlinear function
that the NN approximates. Now we choose, at our conven-
ience, the observer structure as a function of output estima-

tion errors and known quantities as
xl (k + 1) = 10 - 2 (k) + 2j (k)

X2 (k + 1) =20 + g2ou(k) + IJ3(k)
where 12 E R and 13 E R are design constants.

(12)

(13)

B. Observer Error Dynamics

Define the state estimations and output error as
Xi(k+1) = xi (k+1)-x, (k+1),icE 1,2} (14)

y(k+l) = y(k+I)-y(k+l) (15)

Combining (1) through (7) and, (12) through (15), to obtain
the estimation and output error dynamics as
Xl (k + 1) = Af0 - X~2 (k) + 12y(k) - fi ( ) - g, ( )X2 (k) - d, (k) (16)

X2 (k + 1) =f20 +g20U(k) +±j(k) -f2 (.) - g2 (.)U (k) - d2 (k) (17)

y (k + 1) = il' (k) 01 (k) + 1Ij (k) - -vl 01 (k) - £1 (k) (18)

Choose the weight tuning of the observer as
il (k+l) = il (k)- ajil (k)(iT (k)0l (k)+14y(k)) (19)

where al R, and 14 E R are design constants. It will be shown
later in the next section that by using the above weight tun-
ing, separation principle is relaxed and the closed-loop sig-
nals will be bounded. In order to proceed, following as-
sumption is required.
Assumption 1: The unknown smooth functions, f2 () and
g2 (.), are upper bounded within the compact set s as

f2.. > |f2 (k),, and9g2ax > 9g2 (k)| .

IV. CRITIC DESIGN
The purpose of the critic NN is to approximate the long-

term performance index (or strategic utility function) of the
nonlinear system through online weight adaptation. The
critic signal estimates the future performance and tunes the
two action NNs. The critic NN design is given next.

A. The Strategic Utility Function
The utility function p(k) E is given by

(20)
p (k) {°, if(oe (k)s) < c

1, other-wise

where c E is a user-defined threshold. The utility function
p(k) represents the current performance index. In other
words, p(k)= o and p(k)= 1 refers to good and unsatisfactory
tracking performance at the kth time step, respectively. The
long-term strategic utility functionQ (k) E 91, is defined as
Q(k)= 8fip(k±+ )p+,8f-'p(k+2)±+...8p(k+N) (21)

where o <,< is the discount factor and N is the horizon
index. The termQ(k) is the long system performance measure
for the controller since it is the sum of future utility func-
tions. Equation (21) can also be expressed as
Q (k) = min{aQ (k -1) - ax+lp (k)}

B. Design ofthe CriticNN
We utilize the universal approximation property ofNN to

define the critic NN output, and rewrite Q (k) as

Q(k) = W2T (k)0(V2T2 (k)) = W2T (k)02 (k) (22)

where Q(k) E gi is the critic signal, W2 (k) E91c and v2 E 91xn2 are
the tunable weight and constant input weight matrix selected



at random, A2 (k) E gn, is the activation function vector in the
hidden layer, n2 is the number of the nodes in the hidden
layer, and 22 (k) = [xl (k), X2 (k), X3 (k)]T E R3 is the input vector.

C. Critic Weight Update Law
We define the prediction error as

e, (k) = Q (k) - A (Q(k -1) -,A p (k)) (23)

where the subscript "c" stands for the "critic." We use a
quadratic objective function to minimize

EC (k) =2ec (k) (4

The weight update rule for the critic NN is based upon gra-
dient adaptation, which is given by the general formula

w2 (k + 1) = w2 (k) + a2rE7 (k) (25)

i2 (k + 1) = W~2 (k) - a42'2 (k) (Q (k) + 8AN+lp (k) -flQ (k _-1))T (26)

where a,2 E < is the NN adaptation gain.

V. VIRTUAL CONTROL INPUT NN
In this section, the design of the virtual control input is

discussed. First, the following mild assumption is needed.
Assumption 2: The unknown smooth function g2(.) is
bounded away from zero for all xl(k) and x2(k) within the
compact set s. In other words, 0< g2.i < g2 ( )| < g2max ,
Vxl (k) & x2 (k) E S where g2mi. E 9+ and g2max E 9+ Without the
loss generality, we will assumeg2() is positive in this paper.

A. System Simplification
Simplify by rewriting the state equations with

l2 (.) =f (X (k)) + g, (x (k))X2 (k) + x2 (k) (27)

The system (1) and (2) can be rewritten as
xI (k + 1) = 2( ) - X2 (k) + d, (k) (28)

X2 (k + 1) =2 () +g2 () u (k) + d2 (k) (29)

B. Virtual Control Input Design
Our goal is to stabilize the system output y(k) around a

specified target point, Yd The secondary objective is to

makexl(k) approach the desired trajectoryxld(k). At the same

time, all signals in systems (1) and (2) must be UUB while a
performance index must be minimized. Define the tracking
error as
el (k) = xl (k) - Xld (k) (30)

wherexld(k) is the desired trajectory. Using (28), (30) can be
expressed as the following
el (k+1) xl (k+1) -Xld (k+1) (31)

((t () - X2 (k) + d, (k)) - Xld (k + 1)
By viewingX2 (k) as a virtual control input, a desired virtual
control signal can be designed as
X2d (k) = t(()- Xld (k + 1) + 4,jI (k) (32)

where / is a gain constant. Since (D( ) is an unknown func-
tion, X2d (k) in (32) cannot be implemented in practice. We
invoke the universal approximation property of NN to esti-
mate this unknown function.

2(D ) =w'#(v3 z, (k)) + c (z, (k)) (33)

where z3 (k) = [x, (k),X2 (k),x3 (k)] E93 is the input vector,
eT E 9tn2 and VT E 9j3xn3 are the ideal and constant input weight

matrices, Ti(Viz, (k)) gin, is the activation function vector in
the hidden layer, n3 is the number of the nodes in the hidden
layer, and £(z3 (k)) is the functional estimation error. Rewrite
(32) using (33), the virtual control signal can be rewritten as
X2d (k) = w3 0(z3 (k)) + c (z3 (k))-Xld (k + 1) + 1sj (k) (34)

Replacing actual with estimated states, (34) becomes
X (k) = W3T (k) 0(V3TZ (k)) -Xd(k +1) +15e^l (k) (5

= 13 (k)q3 (k) Xld(k+1)+15el (k)

where23 (k) = [Jl (k), X2 (k),x3 (k)] e 9j3 is the input vector using
estimated states, and j, (k) =Jxl (k)- Xld (k). Define
e2 (k)= X2 (k)- X2d(k) (36)

Equation (31) can be rewritten using (36) as
el (k + 1) = (() - x2 (k) + d, (k))- Xld(k + 1) (37)

= (t) ( ) - 2d(k) - e2 (k) - Xld (k + 1) + d, (k)
Combine (35), (37), then (33)
el (k + 1) = -473 (k) - -v3T #3 (k) + C3 (k) - 15e, (k) - e2 (k) + d, (k) (38)

where
43 (k) = 13 (k) 33 (k) = 13 (k) 33 (k) - w1T53 (k) (39)

and
#)3 (k) = #)(V3z3 (k)) - 0(V3Z3 (k)) (40)

C. Virtual Control Weight Update
Let us define
e., (k) = W3T (k) )3 (k) + (Q (k) - Qd (k)) (41)

where Q(k) is defined in (22), and the al subscript represents
the error for the first action NN, e,l(k) t91. The desired stra-
tegic utility function Qd(k) is "0" to indicate perfect tracking
at all steps. Thus, (41) becomes
e., (k) = W3T (k) )3 (k) +Q(k) (42)

The objective function to be minimized by the first action
NN is given by

Ea, (k) =
I e21 (k) (3

The weight update rule for the action NN is also a gradient-
based adaptation, which is defined as

i3 (k + 1) = '3 (k) +a3 a,3 (k)4
wi (k +1) = w3(k) - x33 (k) (o (k) + W3T (k) 03 (k)) (45)

with a3 E 91 is the NN adaptation gain.

VI. CONTROL INPUT DESIGN
Choose the following desired control input

Ud (k) = (-f2 (k) +±2d(k + 1) +±6e2 (k))' (46)
92(k)2

Note that ud(k) is non-causal since it depends upon future
value X2d (k + 1) . We solve this problem by using a semi-
recurrent one step predictor NN. The term x2d (k + I) depends
on state x(k), virtual control input x2d(k), desired trajectory



X,d(k + 2) and system errors e,(k) and e2(k). By taking the in-
dependent variables as the input to a NN, 2d(k+ i) can be
approximated. The first layer of the second NN using the
system errors, state estimates and past value x2d (k) as inputs
generatesx2d(k+I) which in turn is used by the second layer
to generate an output, which is used as the control input.
Define the NN input as

z4 (k) = [xl (k), X2 (k), X3 (k), el (k), 1,e2 (k), 'X2d (k),I Xld (k + 2)0 9f,

then ud (k) can be approximated as

Ud (k) = w4(v4z4 (k))±c(z4 (k)) = w4W04 (k)±c4 (k) (47)

where w4 E 9n4 and v4 E j7xn4 denote the constant ideal output
and hidden layer weight matrices, 04 (k) E 9n4 is the activation
function vector, n4 is the number of hidden layer nodes , and
£ (z4 (k)) is the estimation error. Again, we hold the input
weights constant and adapt the output weights only. We also
replace actual with estimated states
i (k) = 14 (k) 0 (V4T4 (k)) = 4T (k) 34 (k)' (48)

where

24(k) = [l(k), X2 (k), X3 (k), el(k), l6e2 (k), £2d (k),Xld (k +2)]Te97E S

the input vector. Rewriting (36) and substituting (46)
through (48), to get
e2 (k + 1) = X2 (k + 1) -X2d (k + 1) (49)

= 16e2 (k) - g2 (.) £4 (k) + g2 ()'4 (k) + g2 (W4 4 (k) + d2 (k)
where
44 (k) =W4T (k)34 (k) = 14 (k)34 (k) - w4T04 (k) (50)

and
04 (k) = 4 (k) - 04 (k) (51)

Equations (38) and (49) represent the closed-loop error dy-
namics. Next we derive the weight update law. Define
e2(k) = 4T (k) 34(k) +± (k) (52)

where ea2 (k) e 91 is the error where the subscript a2 stands for
the second action NN. Following the similar design, choose
a quadratic objective function to minimize

2(k) = e2 (k) (53)~2k' 2a2

Define a gradient-based adaptation where the general form
is given by

14(k + 1) = 24(k) + ]4 a2 (k) (54)

W4(k + 1) = W4(k) - aJ44 (k) (iT (k) 04 (k) + Q (k)) (5

Before we proceed, the following assumptions are needed.
Assumption 3 (Bounded Ideal Weights): Let "V ' V2 ,3 and

T4 be the unknown output layer target weights for the four

NNs and assume that they are bounded above so that
|w, || < wlm ,||w2||< w2, |w||<w3<3 and lw,4 || < W4. (56)

wherew-ve R+, wve R+ and w2e R+ represent the bounds
where the Frobenius norm [I 1] is used.

Theorem 2: Consider the system given by (1) and (2),
and the disturbance bounds dl. and d2. be known constants.
Let the observer, critic, virtual control, and control input NN
weight tuning be given by (19), (26), (45), and (55), respec-

tively. Let the virtual control input and control input be
given by (35), and (48), the estimation errors and tracking
errors e#(k) and e2(k) and weight estimates l(k), 2(k), 1,(k),
and 124(k) are UUB, with the bounds specifically given by
(A. 15) with the controller design parameters selected as
o < a, ||0i (k)|| < 1, i E{1, 2,3,4} (57)

~11 <' 2;l21<[3;l3<5;l4<' ;l15 , 16<[3 (58)
'3 3 '4 [/5 3

0 < Xi < X2 (59)
2

where a1, a2, a3 and a,4 are NN adaptation gains, 11, 12, 13,
14, 15, and 16 are controller gains,, is employed to define the
strategic utility function.
Proof: See Appendix. G

Corollary 1: Consider the proposed adaptive critic NN
controller and the weight updating rules with the parameter
selection based on (57) through (59), the statex2(k) ap-
proaches the desired virtual control inputX2d(k).

Proof. Combining (34) and (35), the difference between
x2d(k) and X2d(k) is given by

X2d(k)- X2d(k) = 3 (k) 03 (k) - (Z3(k)) = 43 (k) - 3(k) (60)

where iiv3 (k)e 933 is the first action NN weight estimation
error and 43 (k)c9E is defined in (39). Since both 43 (k)E 9S
and 63 (k) are bounded, x2d(k) is bounded nearx2d(k) . In
Theorem 1, we show that e2(k) is bounded, i.e., the state
x2 (k) is bounded to the virtual control signalh2d(k). Thus the
state x2(k) is bounded to x2d (k) . G

VII. RESULTS AND ANALYSIS

A. Daw Engine Model
Spark ignition (SI) engine dynamics can be expressed ac-

cording to the Daw model as a class of nonlinear systems in
non-strict feedback form [8]. At high EGR levels, the engine
can be expressed as the following [1 1]
XI(k+1)= AF (k)+ F (k)x1(k)- R F (k) CE (k)x2 (k)+ (61)

F (k) (ro, (k) + rN2 (k))+ d (k)

X, (k+1) =(I CE(k))F(k)X2 (k)+(MF(k)+u(k))+ d2 (k)

x3 (k+1)= F (k)(rc0 (k) + rH,O(k) + rN2 (k)+ x3 (k)+ EGR (k))
y(k)= X2 (k)CE (k)

xk= (k) l- /(x (k)+ x, (k)+ X3 (k)+ EGR (k))-
CE (k) = CE.,,

(10 (-pi)I1±100 ~

(62)

(63)

(64)

(65)

(66)

'P = C.,Cl (67)
2

ri(k) =yiX2 (k)CE (k), ie{H20, 02, N2, C02} (68)

where x1 (k), X2 (k), and x3 (k) are total mass of air, fuel, and
inert gas, respectively. y (k) is the HR. The value of CE(k)
is within the range of O< CEmn <CE(k)< CEmaX F(k) is
bounded by 0 < Fmin < F (k) < Fma, . d, (k), i{ t1, 2,3} are unknown

but bounded disturbances bounded by |d, (k)| < dim, i E t1, 2,3}



with bounds being unknown positive scalars. qI, ql,g, are
equivalence ratio parameters. r'(k),ie{H20, C2N2,C02} are
the mass of water, oxygen, nitrogen, and carbon dioxide,
respectively whereas y, YH0, 70, , 72', and )co2 are design
constants, and constants associated with their respective
chemicals. Equation (63) can be viewed as affine nonlinear
discrete-time systems and standard methods [11] without
any optimization can be applied separately. Therefore, it is
omitted here.
B. Ricardo Engine

The experimental results are collected from a Ricardo
Hydra engine with a four valve Ford Zetek head. It contains
a single cylinder running at 1000 rpm. A piezoelectric pres-
sure transducer records cylinder pressure every crank angle
degree. The cylinder pressure is integrated along with vol-
ume between 3450 to 4900 during the 17.7 ms calculation
window. The output of our controller controls the fuel in-
put. This is controlled by a TTL signal to a fuel injector
driver circuit. All signals communicate through a custom
interface board using a microcontroller. The board interfaces
with the PC through a parallel port and with the engine
hardware through an analog signal.

C. Experimental Data
The learning rates are chosen as 0.01 for all NNs. The

gains 11 12, 13, 14, 15, and 16 are selected as 0.05, 0.05, 0.04,
0.05, 0.2 and 0.1. The system constants CEmax, q', and y, are
chosen as 1, 0.54, and 0.58. The critic constants,/ and N
are 0.4 and 4. All NNs use 20 hidden neurons with hyper-
bolic tangent sigmoid activation functions. Uncontrolled and
controlled data were collected at EGR percentages of 18, 20,
and 23. The uncontrolled engine ran for 5,000 cycles and
then the controller is turned on for another 5,000 cycles.
Steady state was ensured prior to data collection by measur-
ing heat release (HR).

Figure 1 shows two HR return maps, one controlled and
the other uncontrolled for the 18% EGR set point. HR at k+1
instance is plotted against HR at k instance. The target HR is
at 870J. At this set point, cyclic dispersion can clearly be
seen, indicated by deviation of the points away from the
main cluster on the 45 degree line. The controller decreases
dispersion, indicated by tighter grouping of the HR.

Uncontrolled Return Map at EGR=18% Controlled Return Map at EGR=18%
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Figure 1. Uncontrolled and controlled HR return map at EGR=18%.

Figure 2 shows the time series of the HR and control in-
put for the same set point. Note the immediate learning of
the controller after the controller is turned on.

Heat Release and Control at EGR=18%. Controller on at k=5242
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In order to quantify the performance of the controller, we
compare the coefficient of variation (COV), which is the
standard deviation normalized by dividing by the mean of
the HR. Table I shows the improved COV when the control-
ler is in operation compared to an uncontrolled engine and
also the corresponding change in nominal fuel.

Table I Coefficient of variation (COV) and fuel data.

l l ~~~~~COV|%COV %°/Fuel |
|EGR |Uncontrolled Controlled |Change |Change|
10.181 0.21121 0.15111 -28.41 1.361
10.201 0.21391 0.14001 -34.61 0.771
10.231 0.57771 0.50661 -12.31 2.111

On average, the COV decreased significantly by 25%
compared to the controlled case. The COV and fuel change
data indicates an improved performance compared to the
previous controller [11]. The average drop in COV was 17%
between uncontrolled and controlled, compared to 25% for
the current controller. The previous controller increased the
average fuel to 2.4% which is well beyond the detection
error compared to less than 1% for the proposed optimal
controller.

VIII. CONCLUSIONS
The controller presented successfully controlled a SI en-

gine to reduce cyclic dispersion under high EGR conditions.
The system is modeled under a non-strict feedback nonlinear
discrete-time system. It converged upon a near optimal solu-
tion through the use of a long-term strategic utility function
even though the exact dynamics are not known beforehand.
Experimental results show the stability of the closed-loop
system under a variety of set points.

APPENDIX

Proof of Theorem 1: Define the Lyapunov function

J(k) J (k) e2(k)+ 72e2 (k)±E VT10 2 (k i-'(k5 3 j=3 ai-2

Y72(k-l)+ /sX2(k)+ /'X2 (k)+ Y10y

(Al1)

where y),e 1.6} are auxiliary constants; the NN
weights estimation errors wI (k + 1), 2 (k+ 1), W3 (k +1), and
41V4 (k+1) are defined in (19), (26), (45), and (55), by sub-
tracting their respective ideal weights w, i {1, 2,3, 4} on both
sides; the observation errors x1 (k+ i), X2 (k+I), are defined in
(16) and (17), respectively; the system errors el(k+l) and
e2 (k+1) are defined in (38) and (49), respectively; and



a,i {1,2,3,4} are NN adaptation gains. The Lyapunov func-
tion (A. 1) obviates the need for CE condition. Taking the
first term and the first difference using (38) to get
AJ1 (k) < 7f1,2X12 (k) + y1l52e2 (k) + y1ee2(k) + y,;,2 (k) + (A.2)

71 (3+ W -1 el (k)

Take the second term, substitute (49), and simplify
AJ2 (k) < 3l,2e2 (k) + 3g22a;42 (k) + 72 (d2. + g24 £4m + g2maw4mb4m )2 -e2 (k) (A.3)

Take the third term, substitute (19), and simplify

AJ3 (k) < - a31-,(k)|2) (jl (k) 01 (k) + IJ(k))2 + (A.4)

273 (W1m )2 + 2314y2 (k)-341 (k)
Take the fourth term, substitute (26), and simplify

AJ4(k) < -74 (1- a2 ti52(k) )(Q(k)+±8N+lp (k) -,Q(k -1)) (A.5)

74;(k)2 +2242(k-1)+2y4 (W( 2m (1 + ) + i8'V)I
Take the fifth term, substitute (45), and simplify

AJ5(k) +1- a3 13 (k)|1 ( (k) + 3 (k)q3 (k±) (A.6)

2,5422 (k) + 275 (w2J2m +±wJ3m )2 -42 (k)

Take the sixth term, substitute (55), and simplify

A.J6(k) =7-Y61 -a4 154(k) (W4 (k) 14(k)+Q(k))k (A.7)

276 (w4mjm + wVJ2m )2
+ 26f422 (k)-y,42 (k)

Take the seventh term, set ,7 = 274,82
AJ7 (k) 24,8 (k) - 248222 (k -1)
Take the eighth term, substitute (16), and simplify
AJ((k) yy(k) + y8x22 (k) + 78 (w3±03.+ ±+ X1 (k) (A 9)

Take the ninth term, substitute (17), and simplify
AJ9 (k) < 7s (120 + (g20 +g2. )w4.4 + f2m.+ d2m) + (A.10)

79 (g20±+g2max ) ;4 (k) +±9l1322 (k)- 79 X22 (k)
Take the tenth and final term, substitute (18), and simplify
AJjo (k) < 710 (k) + 71042y(k) + 71o (wjIm + -1m))-3102 (k) (A.I 1)

Combine (A.2) through (A. 11) and simplify to get the first
difference of the Lyapunov function
AJ < - (y, - 2y, - 276- 2 4fi2) (k) - (76 72g22m. 79 (g20 +g2 ));4 (k)

_ ( -y_152 )X2 (k) - ( 10 - 273l142- 78122 _ 79132 _ 10112 )y2 (k) - (73 710) ;12(k)

-73 1 -xa, 01 (k)||2 )(i (k)0l (k)+ Ij(k))2( 39 -/8 ) 2 (k)+DA2,

-y4 Il-a2 ||2 (k)||2 )(Q(k)+,8 N+1 p(k)-,8(k _ ))2 -(y5-1/),;32 (k)..

(A.8)

Select
1> 57l15; 2> 371 + 3721 73 > 7 > 275+ 276 + 2742;

76 > 72g2gmax + (g20 ± g2max); Y= 274 2; 78 3l;;14)

710 > 673142 + 378122+ 379132+ 37y0112; 75 > 71; Ys > 378;
This implies Aj(k)< o as long as (57) through (59) hold and
any one of the following hold [8]

2 2~~~
5 -71'S 3 - 7 216 73 710

3 (k) D> D4(k)l > D2 (A.15)
75 7' y)4-2y 52y,6 2y4P82

2DM DM
76 22max- 9(g20+g2)m 3 71'

F3 7 38 2/314 - 78'1 - 7913 71
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(A.12)-7, (1 - a,10 (k)||2 )(Q (k) + -X3 (k) 03 (k)) 2 ( Y51 - 71152 ) el2(k)
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