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Abstract 

In Virtual Reality (VR), head movement is tracked through 
inertial and optical sensors. Computation and 
communication times result in delays between 
measurements and updating of the new frame in the head 
mounted display (HMD). These delays result in problems, 
including motion sickness. We use recurrent and time 
delay neural networks to predict the head location and use 
it to calculate the new frame. A predictability analysis is 
used in designing the prediction system 

Introduction 

In virtual reality systems, different optical and inertial 
sensors are used to track the movement of the user's head. 
Measured variables are the sampling time 2, three 
coordinates x, y, and z, and head angles CY, /3, and y. 
Processor as well as communication delays result in a 
delayed update of the scene on the head-mounted display 
0). This delayed display may produce dizziness and 
motion sickness of the user. A model which can predict 
the next head position and orientation can help computing 
and updating the display Edster, and reducing or 
eliminating dizziness. 

Many linear autoregressive models have been used in time 
series prediction. Neural networks have been shown to be 
powerful nonlinear models in predicting time series in 
various applications [l], [2]. In particular, time-delay 
neural networks ('I'D") and recurrent neural networks 
0, have been shown to be most suited for dynamic 
modeling of time series PI, [4]. In this case the network 
input is the value of the variable to be predicted at one or 
more previous time steps. The output is the prediction of 
its value at the next time step. Such one-step time series 
prediction can be iterated for predicting multisteps in the 
future. Such multistep time series prediction is extremely 
hard because of the accumulation of the prediction error at 

every step. In our case, we are only interested in single 
step prediction of the six position and orientation variables 
above. 

One question is whether the time series is predictable or 
not. For example, in a stock market, the random walk 
principle suggests that the stock price is random, and does 
not depend on the historical values of the stock. This may 
not always be true. Chaotic time-series look like random, 
but actually represent a deterministic dynamic system and 
can be modeled and hence predicted p]. In this paper we 
use predictability analysis tools in order to estimate the 
degree of determinism of the different series, and design 
the prediction system. 

Problem Description 

In our VR system, the display is computed based on the 
position coordinates x, y, and z, as well as head Euler 
angles a, /3, and y. Also, the sampling time of these six 
variables is not constant, but is affected by the processor 
load and communication delays. Therefore, the prediction 
model needs to first predict the next sampling time step, 
then predict the other six variables and use them in 
calculating the new h e  in the HMD. 

Approach 

Our approach is to train a neural network to learn an 
individual motion profile. Thus, a different network would 
be used for every user. The system wiII engage the neural 
network predictor only after it has learned to predict better 
than some threshold. 
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Three different approaches were considered. One 
approach is to use a unified network for multidimensional 
time series prediction. All seven variables are used as 
inputs to the network, and the network is trained to predict 
the next value of the all variables simultaneously. The 
advantage of this approach is to exploit the mutual 
information between the variables. On the other hand, if 
the variables are not correlated, doing a multidimensional 
time series prediction will be a harder task on the network. 

The second approach is to use two networks, one for 
predicting the position, and the other for predicting the 
angles. This approach should work better, if the angles are 
not correlated with the position. 

The last approach is to use a separate decoupled network 
for every time series. Thus, seven networks are used. 
Predicting a single time series should be an easier task for 
the neural network. The performance should be better, if 
the Werent series are not correlated. 

The predictability analysis described below was used to 
choose one of the three designs. 

Predictability Analysis 

Predictability analysis tools m e  in determining the 
degree to which a time series is random or chaotic. A 
chaotic series looks like a random one, but is governed by 
a detenninistic system, so is predictable. The head 
tracking variables can be a mixture of random and chaotic 
series, and thus predictable to different degrees. Different 
predictability analysis tools have been useful in analyzing 
the time series, and designing the prediction system, for 
example by choosing the delay between the TDNN inputs 
as well as the number of taps [3]. 

A. Phase Space Diagrams 
A phase space diagram (phase diagram) is the easiest test 
of chaotic behavior. It is a scatter plot where the 
independent variable is the value of a time series $2) at 
time 1, and the dependent variable is x(t+t). The delay z 
can be chosen as the first zero of the series autocorrelation 
coefficient. 

The phase diagram of a deterministic system is identified 
by its regularity. The trajectory is contained in a limited 
area of the range of the series called an attractor. This is 
in contrast to a random series where the trajectory covers 
all the range of the diagram. Phase diagrams can be plotted 
only in two or three dimensions, which is the main 
shortcoming of this technique 

B. Lyapunov Eqonent 
Chaos is characterized by sensitivity to initial conditions. 
The Lyapunov Exponent measures divergence of two orbits 
starting with slightly different initial conditions [51. If one 
orbit starts at xo and the other at xo + Axo , after n steps, 
the divergence between orbits becomes 

where x,,+l = Ax,, ). For chaotic orbits, Ax,, increases 
exponentially for large n: 

AX,,   AX^ ex", (2) 

where h is the Lyapunov Exponent: 

h = lim [ (lh) ln (Ax,, /Axo) 3 .  (3) 
n3oo 

A positive exponent indicates chaotic behavior. If the 
exponent is very small or negative, this means that the 
series is either random or periodic. 

This test is practical, and does not have the limitations of 
other tests such as the correlation dimension [6] which is 
limited by the number of available data points. 

Time Delay and Recurrent Neural 
Networks 

The Time-Delay Neural Networks ('I'D") used in this 
study are feedforward Multilayer Perceptrons, where the 
internal weights are replaced by finite impulse response 
(FIR) filters. This builds an intemal memory for time 
series prediction [7]. The input of the network consists of 
a delay line corresponding to each time series. The delay 
between each tap has been estimated using the first zero of 
the autocorrelation. This is usell in minimizing the 
redundancy between the different taps. 

The Recurrent Neural Network (RNN) considered in this 
paper (Fig. 1) is a type of DiscreteTime Recurrent 
Multilayer Perceptrons [SI. Temporal representation 
capabilities of this RNN can be better than those of purely 
feedforward networks, even with tapped-delay lines. 
Unlike other networks, RNN is capable of representing and 
encoding deeply hidden states, in which a network's output 
depends on an arbitrary number of previous inputs. 
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h o n g  many methods proposed for training RNNs, 
Extended Kalman Filter' (EKF) training stands out [9]. 
EKF training is a parameter identification technique for a 
nonlinear dynamic system (RNN). This method adapts 
weights of the network pattern-by-pattem accumulating 
training information in approximate error covariance 
matrices and providing individually adjusted updates for 
the network's weights. 

a 
B 
Y 

output 

A 0.417 
0.17 
0.21 

Hidden layer of 
fully recurrent nodes - Input 

Fig. 1. Recurrent network architecture. Z' represents a 
one time step delay unit. This network has a compact 
memory structure. The EKF described is well-suited for 
this architecture. 

Unlike TDNN, RNN is easier to implement, since there is 
no need of choosing the number of delays. The recurrence 
creates an intemal memory in the network. 

Experimental Results 

By plotting the sampling time, the sampling interval was 
found almost CoIlStsLIlt at about 20 ms, most of the time, 
except for some spikes of constant amplitude due to 
network commuuication, not processor load. Therefore, 
we decided to predict the other 6 variables independently 
from the sampling interval. 

A. Lyapunov Exponent 
The Lyapunov exponent has been calculated for all 6 
variables. Table 1 shows the calculated values for every 
variable. We notice that while the position has negative 
and small exponents, the angles have larger positive one. 

We note that the full name of the EKF method described 
here is parameter-based node-decoupled Em. 

This suggests that they are more predictable than the 
position. 

Table 1 Lyapunov exponent for position and angles of 
head. 

B. Correlation Coeficient 
The correlation between the different coordinates as well 
as between the different angles has been calculated. The 
following values have been obtained &=0.51, p==-0.72, 
b 4 . 8 3 ,  p d . 1 5 ,  p,=0.0074, pf l .44 .  This shows 
that generally the angles are less correlated than the 
position coordinates. This result agrees with the prediction 
results shown below, where decoupling the prediction of 
the angles performed better than the unified network. 

C. Prediction 
W e  started by predicting only the angles for two reasons. 
First, rotations produce the greatest amount of scene 
change in the graphics, since seated persons can only 
translate their head in a limited range. Second, these are 
more predictable than the coordinates according to the 
calculation of Lyapunov exponent. 

Comparing the unified and dmupled neural networks, we 
found that using a separate network for each angle resulted 
in a more accurate prediction. This agrees with the low 
correlation coefficients calculated above. Fig. 2 shows the 
predictions of the a angle using RNN and TDNN. In this 
case RNN provided better quality predictions. 

Conclusion 

Time series prediction with neural networks is used to 
minimize head tracking delay in VR. Recurrent and time 
delay neural networks are chosen for the internal memory. 
M-dimensional time series analysis is investigated using 
recurrent and time delay neural networks and applied to 
head tracking in VR systems. A predictability analysis is 
done, and the results are used in designing the prediction 
system. The resulting system achieved adequate 
performance using both techniques, although the RNN 
results were the most accurate. 
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Fig. 2 prediction of the a angle using RNN and TDNN respectively. The desired signal is indicated by the solid 
line. The prediction is mdicated by the line with square markers. The predictions are accurate enough to improve 

head tracking performance, especially, in this case, for the RNN approach. 
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