
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2001

A Parallel Computer-Go Player, using HDP Method A Parallel Computer-Go Player, using HDP Method

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Xindi Cai

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
D. C. Wunsch and X. Cai, "A Parallel Computer-Go Player, using HDP Method," Proceedings of the
International Joint Conference on Neural Networks, 2001. IJCNN '01, Institute of Electrical and Electronics
Engineers (IEEE), Jan 2001.
The definitive version is available at https://doi.org/10.1109/IJCNN.2001.938737

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229166983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1391&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1391&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2001.938737
mailto:scholarsmine@mst.edu

A parallel computer-Go player, using HDP method

Xindi Cai Donald C. Wunsch I1

Applied Computational Intelligence Laboratory
Dept. of Electrical and Computer Engineering

University of Missouri - Rolla
Rolla, MO 65409-0249 USA

cai@umr.edu dwunsch@ece.umr.edu

Abstract:

The game Go has simple rules to learn but requires
complex strategies to play well, and, the conventional tree
search algorithm for computer games is not suited for Go
program. Thus, the game Go is an ideal problem domain
for machine learning algorithms. This paper examines the
performance of a 19x19 computer Go player, using
heuristic dynamic programming (HDP) and parallel Alpha-
Beta search. The neural network based Go player learns
good Go evaluation functions and wins about 30% of the
games in a test series on 19x1 9 board.

1 Introduction

Go is a deterministic, perfect information, zero-sum game
of strategy between two players. Players take turns to place
black and write pieces (called stones) on the intersections of
the lines in a 19x1 9 grid, called the Go board. Once played,
a stone cannot be removed, unless captured by the other
player. To win the game, each player seeks to surround
more territory (empty grids) by one's own stones than the
opponent. Adjacent stones of the same color form strings,
and hence groups; an empty intersection adjacent to a stone,
a string, etc, is called its liberty. A group is captured when
its last liberty is occupied by the opponent's stone. To
prevent loop, it is illegal to make moves that recreate prior
board positions (rule of KO). A player can pass any time.
The game ends when both players pass in consecutive turns.
There are excellent books available on the game of Go [11.

'

The conventional tree search algorithms make poor Go
programs. The reasons why the brute-force search is not
efficient for Go are: (1) the possible moves at each position
(i.e., the branches of one node of the search tree) is a huge
number, let along the legal moves; (2) many situations,
especially in mid-game, in Go require a very deep looking
in order to lead; (3) the formulation of Go evaluation
function, which is not explicit, is very difficult.

The heuristic dynamic programming (HDP) has been used
to train neural networks for learning game evaluation

hnctions [2], [3], [4]. The HDP method is an elegant way
of doing reinforcement learning because: (1) it uses the
environment as its own model, and (2) it proposes to use a
neural networks of the form f(s, w), where w is the
adjustable weight vector, to approximate the value
function, f" (s) . Instead of storing a separate value
hnction for each state,. learning is achieved by adjusting the
weights to minimize the mean squared error between f(s, w)
and f " (s) . The HDP method is an incremental learning
procedure specialized for prediction problems where the
inputs are applied in sequence [5]. The algorithm adjusts
the weights as follows:

and it minimizes the following criterion function:

P N .

J(w)= ~ ~ A N p - k (z N p - G (x p (k))) ' (2)
p=l k = l

In the above equations, P is the number of examples, e.g.,
the number of games; N,is the number of steps in the

p f h example, which is unknown until the final outcome is

determined; zN, is the final output (determined by the

game rule) of the p f h example at the end of the game p.

Game p consists of a series of states x,(k), k=l, 2, ..,

N, . G(x, (k)) is the output of the network when x, (k)
is presented; and, A, between 0 and 1, is a parameter
which is used to place more emphasis on predictions
temporally close to the outcome.

One of the key determinants of a game playing program's
strength is the depth of the game tree search. Therefore,
parallelism is used to search deeper trees in the same
amount of real time. Tree decomposition algorithms extract

0-7803-7044-9/01/$10.00 02001 IEEE 2373

mailto:cai@umr.edu
mailto:dwunsch@ece.umr.edu

parallelism by creating split nodes, where the subtrees
rooted at the node are searched concurrently.

The Principle Variation Splitting (PVS) is a tree
decomposition algorithm for a depth-first Alpha-Beta
search 1161. It creates parallel work by splitting nodes along
the principal variation. Recurring down the principal
variation concentrates the parallel effort and backing up the
principal variation carries important window information
for the search of the next subtrees. The philosophy of the
PVS is to back up a score as quickly as possible to each
splitting node so that this score can be used by all
processors when they go their own way searching the
remaining moves at the node.

The PVS works as follows: Just as in single-processor
systems, the PVS carries out a sequence of iteratively
deepening searches. Let the principal continuation of
moves found on the (n-1)st iteration be denoted by
m, , m2 ,..., mn-, and the nodes (corresponding to game
positions) on this continuation be denoted by
vo , v, ,v2 ,..., vn-l where vo is the root of the tree and

Vn-l corresponds to the position reached at the end of the
continuation. On the nth iteration, all processors initially
search this continuation down to vn-l and then
dynamically divide up search for- the moves rooted there.
When search of these moves is complete, a score is back up
to vn-,. Then, the remaining moves rooted at Vnd2 are
dynamically divided up and searched. When search of
these moves is complete, a score is back up to Vn-*, and so
on. This process is repeated at each splitting node, until
finally, moves at the root are dynamically divided up and
searched and a new score and new principal continuation
are determined.

As mentioned above, HDP is good at learning the implicit
evaluation function by using the environment as the model,
and PVS can give us more power to have a deeper look in
Go. In this paper, we try to combine HDP and PVS in
playing 19x19 Go and report some results of the new idea
implemented utilizing the experience of [7].

. . 2 NetworkArchitecture

The network architecture is shown on Figure 1 . Our Go
player contains four systems, i.e., likely move generator,
big move prediction, critic net evaluation and parallel
Alpha-Beta search. The likely move generator uses neural
networks as the learning structure and is trained on high
quality games played by human masters. The target is to
select 30 - 40 plausible moves at any board position.
Together, some examples of "bad" moves are also provided

for fast learning. The big move prediction module
identifies moves that affect the safety of groups, for either
player. A group consists of several strings, which are not
directly connected, but have a close relationship. For both
sides, the potential safety and connectivity of groups will
greatly affect the final result of the game, and hence
determine the next move, or a series of moves, which we
may treat as a strategy. The big move prediction offers
some directions for the likely move generator to consider.
The critic net evaluation is composed two subsystems,
temtory control prediction unit and string safety prediction
unit, which use neural networks to predict territory measure
of each empty board intersection and safety possibility of
each string, respectively. Thus evaluation function,
according to their outputs, can assign credits on the possible
moves generated. The parallel alpha-Beta search does the
job of finding a best path from the current board to certain
depths afterwards. The credits on the leaf nodes are the
outputs of the evaluation function, after predicting those
different boards. Wally [8], a weak public domain program
(rating -30 Kyu), is served as the opponent, providing the
BLACK moves.

Figure 1: Block diagram of Go player network

3 Networks Training and Results

For each intersection on the board, seven components,
representing influence value for empty point, No. of stones
and liberties in the string, if occupied, for both sides, are
created. A 7x7 diamond window, which reads 25 board
intersections per prediction, has 25x7 items in the input
vector. This determines the neurons in the input layer
roughly. In big move prediction, influence values are used
to combine strings into groups, determine potential group
eye space and mark crucial stones. The two subsystems,
namely territory control unit and string safety unit, in the
critic network are trained separately on different area of the
board, i.e., corner, side and center, to construct three
convolutional networks each. However, there is only one
neural network for likely move generator system. After
training on 100 games, the performance of each network is

2374

listed on Table 1, 2 and the likely move generator system
can guess the plausible moves 72% of the time, considering
the top 20 moves. Also, the speedup of the parallel Alpha-
Beta search, based on a game tree of depth 8 and width 16
is listed on table 3. Finally, the Go-player is tested with
100 games and wins about 30 of them.

Territory
Control

Unit
82% 92% 81% 94% 91%

I I corner I side I center I black I white I

Table 2: Rate of correct string safety prediction on
different areas of board, and for live and dead

number

4 Conclusion

act as a strong Go player, but it demonstrates that the
principle of dynamic programming can be' utilized to in
corporate machine learning in playing the game Go.
Adding more Go-related knowledge will surely improve the
performance, in forming a meaningful J function and
predicting it accurately.

References

[l]. Arthur Smith, The game of Go, Charles Tuttle Co.
Tokyo, Japan, 1956.
[2]. G. Tesauro, "Practical Issues in temporal difference
learning", Machine Learning, No. 8, pp. 257-278, 1992.
[3]. R. Zaman, D. Prokhorov and D. Wunsch, "Adeptive
Critic Design in Learning to play Game of Go", Proc. of
IC", Houston, Vol. 1, pp. 1-4, 1997.
[4]. N. N. Schraudolph, P. Dyan and T. J. Sejnowski,
"Temporal learning of position evaluation in the game of
Go", Advances in Neural Information Processing, Vol. 6,

[SI. S. Sutton, "Learning to predict by the method of
temporal differences", Machine Learning, No. 3, pp. 9-44,
1988.
[6]. M. Newborn, "Unsynchronized iteratively deepening
parallel Alpha-Beta search", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 10, No. 5, pp. 687-
694,1988.
[7]. R. Zaman, Applications of neural networks in
Computer Go, Ph.D. dissertation, Texas Tech University
1998.
[SI. B. Newman, "Wally - a simple minded Go-program",
shareware Go program available by anonymous flp from
ftp://imageek. york.cuny .eddnngs/Go/comp/.

pp.8 17-824,1994.

The results show that our computer Go player can learn to
play from zero knowledge. This simple Go engine does not

2375

ftp://imageek

	A Parallel Computer-Go Player, using HDP Method
	Recommended Citation

	A parallel computer-Go player, using HDP method

