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A parallel computer-Go player, using HDP method 
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Abstract: 

The game Go has simple rules to learn but requires 
complex strategies to play well, and, the conventional tree 
search algorithm for computer games is not suited for Go 
program. Thus, the game Go is an ideal problem domain 
for machine learning algorithms. This paper examines the 
performance of a 19x19 computer Go player, using 
heuristic dynamic programming (HDP) and parallel Alpha- 
Beta search. The neural network based Go player learns 
good Go evaluation functions and wins about 30% of the 
games in a test series on 19x1 9 board. 

1 Introduction 

Go is a deterministic, perfect information, zero-sum game 
of strategy between two players. Players take turns to place 
black and write pieces (called stones) on the intersections of 
the lines in a 19x1 9 grid, called the Go board. Once played, 
a stone cannot be removed, unless captured by the other 
player. To win the game, each player seeks to surround 
more territory (empty grids) by one's own stones than the 
opponent. Adjacent stones of the same color form strings, 
and hence groups; an empty intersection adjacent to a stone, 
a string, etc, is called its liberty. A group is captured when 
its last liberty is occupied by the opponent's stone. To 
prevent loop, it is illegal to make moves that recreate prior 
board positions (rule of KO). A player can pass any time. 
The game ends when both players pass in consecutive turns. 
There are excellent books available on the game of Go [ 11. 

' 

The conventional tree search algorithms make poor Go 
programs. The reasons why the brute-force search is not 
efficient for Go are: (1) the possible moves at each position 
(i.e., the branches of one node of the search tree) is a huge 
number, let along the legal moves; ( 2 )  many situations, 
especially in mid-game, in Go require a very deep looking 
in order to lead; (3) the formulation of Go evaluation 
function, which is not explicit, is very difficult. 

The heuristic dynamic programming (HDP) has been used 
to train neural networks for learning game evaluation 

hnctions [2], [3], [4]. The HDP method is an elegant way 
of doing reinforcement learning because: (1) it uses the 
environment as its own model, and (2) it proposes to use a 
neural networks of the form f(s, w), where w is the 
adjustable weight vector, to approximate the value 
function, f" (s) . Instead of storing a separate value 
hnction for each state,. learning is achieved by adjusting the 
weights to minimize the mean squared error between f(s, w) 
and f " ( s ) .  The HDP method is an incremental learning 
procedure specialized for prediction problems where the 
inputs are applied in sequence [5]. The algorithm adjusts 
the weights as follows: 

and it minimizes the following criterion function: 

P N .  

J(w)= ~ ~ A N p - k ( z N p  - G ( x p ( k ) ) ) ' ( 2 )  
p=l k = l  

In the above equations, P is the number of examples, e.g., 
the number of games; N,is the number of steps in the 

p f h  example, which is unknown until the final outcome is 

determined; zN, is the final output (determined by the 

game rule) of the p f h  example at the end of the game p. 

Game p consists of a series of states x,(k), k=l, 2,  .., 

N, . G( x, ( k )  ) is the output of the network when x, ( k )  
is presented; and, A, between 0 and 1, is a parameter 
which is used to place more emphasis on predictions 
temporally close to the outcome. 

One of the key determinants of a game playing program's 
strength is the depth of the game tree search. Therefore, 
parallelism is used to search deeper trees in the same 
amount of real time. Tree decomposition algorithms extract 
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parallelism by creating split nodes, where the subtrees 
rooted at the node are searched concurrently. 

The Principle Variation Splitting (PVS) is a tree 
decomposition algorithm for a depth-first Alpha-Beta 
search 1161. It creates parallel work by splitting nodes along 
the principal variation. Recurring down the principal 
variation concentrates the parallel effort and backing up the 
principal variation carries important window information 
for the search of the next subtrees. The philosophy of the 
PVS is to back up a score as quickly as possible to each 
splitting node so that this score can be used by all 
processors when they go their own way searching the 
remaining moves at the node. 

The PVS works as follows: Just as in single-processor 
systems, the PVS carries out a sequence of iteratively 
deepening searches. Let the principal continuation of 
moves found on the (n-1)st iteration be denoted by 
m, , m2 ,..., mn-, and the nodes (corresponding to game 
positions ) on this continuation be denoted by 
vo , v, ,v2 ,..., vn-l where vo is the root of the tree and 

Vn-l corresponds to the position reached at the end of the 
continuation. On the nth iteration, all processors initially 
search this continuation down to vn-l and then 
dynamically divide up search for- the moves rooted there. 
When search of these moves is complete, a score is back up 
to vn-,. Then, the remaining moves rooted at Vnd2 are 
dynamically divided up and searched. When search of 
these moves is complete, a score is back up to Vn-*, and so 
on. This process is repeated at each splitting node, until 
finally, moves at the root are dynamically divided up and 
searched and a new score and new principal continuation 
are determined. 

As mentioned above, HDP is good at learning the implicit 
evaluation function by using the environment as the model, 
and PVS can give us more power to have a deeper look in 
Go. In this paper, we try to combine HDP and PVS in 
playing 19x19 Go and report some results of the new idea 
implemented utilizing the experience of [7]. 

. . 2 NetworkArchitecture 

The network architecture is shown on Figure 1 .  Our Go 
player contains four systems, i.e., likely move generator, 
big move prediction, critic net evaluation and parallel 
Alpha-Beta search. The likely move generator uses neural 
networks as the learning structure and is trained on high 
quality games played by human masters. The target is to 
select 30 - 40 plausible moves at any board position. 
Together, some examples of "bad" moves are also provided 

for fast learning. The big move prediction module 
identifies moves that affect the safety of groups, for either 
player. A group consists of several strings, which are not 
directly connected, but have a close relationship. For both 
sides, the potential safety and connectivity of groups will 
greatly affect the final result of the game, and hence 
determine the next move, or a series of moves, which we 
may treat as a strategy. The big move prediction offers 
some directions for the likely move generator to consider. 
The critic net evaluation is composed two subsystems, 
temtory control prediction unit and string safety prediction 
unit, which use neural networks to predict territory measure 
of each empty board intersection and safety possibility of 
each string, respectively. Thus evaluation function, 
according to their outputs, can assign credits on the possible 
moves generated. The parallel alpha-Beta search does the 
job of finding a best path from the current board to certain 
depths afterwards. The credits on the leaf nodes are the 
outputs of the evaluation function, after predicting those 
different boards. Wally [8], a weak public domain program 
(rating -30 Kyu), is served as the opponent, providing the 
BLACK moves. 

Figure 1: Block diagram of Go player network 

3 Networks Training and Results 

For each intersection on the board, seven components, 
representing influence value for empty point, No. of stones 
and liberties in the string, if occupied, for both sides, are 
created. A 7x7 diamond window, which reads 25 board 
intersections per prediction, has 25x7 items in the input 
vector. This determines the neurons in the input layer 
roughly. In big move prediction, influence values are used 
to combine strings into groups, determine potential group 
eye space and mark crucial stones. The two subsystems, 
namely territory control unit and string safety unit, in the 
critic network are trained separately on different area of the 
board, i.e., corner, side and center, to construct three 
convolutional networks each. However, there is only one 
neural network for likely move generator system. After 
training on 100 games, the performance of each network is 
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listed on Table 1, 2 and the likely move generator system 
can guess the plausible moves 72% of the time, considering 
the top 20 moves. Also, the speedup of the parallel Alpha- 
Beta search, based on a game tree of depth 8 and width 16 
is listed on table 3. Finally, the Go-player is tested with 
100 games and wins about 30 of them. 

Territory 
Control 

Unit 
82% 92% 81% 94% 91% 

I I corner I side I center I black I white I 

Table 2: Rate of correct string safety prediction on 
different areas of board, and for live and dead 

number 

4 Conclusion 

act as a strong Go player, but it demonstrates that the 
principle of dynamic programming can be' utilized to in 
corporate machine learning in playing the game Go. 
Adding more Go-related knowledge will surely improve the 
performance, in forming a meaningful J function and 
predicting it accurately. 
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The results show that our computer Go player can learn to 
play from zero knowledge. This simple Go engine does not 
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