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Abstract 
A general approximation theorem is proved. It uniformly 
en9elopes both the classical Stone theorem and 
approximation of functions of several variables by means 
of superpositions and linear combmations of hctions of 
one variable. This theorem is interpmed as.a statement 
on universal approximating possibilities ("approximating 
omnipotence") of arbitrary nonlinearity. For the neural 
networks, our result states that the bc t ion  of neuron 
activation must be nonlinear - and nothing else. 

Keywords - Approximation, Superposition, Neural 
networks, Stone-Weierstrass theorem. 

1. INTRODUCTION 

The question of representing continuous functions of 
several variables by superposition of continuous 
functions with fewer variables has been the essence of 
Hilbefls 13th problem. 
In [I], Kolmogorov proved an elegant theorem: every 
continuousfinetion of n variables in the st&d 
n-dimensional cube can be represented in the following 
form: 

0-7803-4859-1198 $10.0001998 EEE 1271 

where the fiutctions hq (u) and q$' ( x p  ) are contimous, 

and moreover, thejimctions p4p(xp) are standard, i.e. 
they are indepruknt of the function$ 

It should be noted that the functions $ ( x P )  used here 
are essentially non-smooth and very exotic. 
The Kolmogorov theorem is often cited in papers and 
books on neural networks, though, as it is easy to see, it 
bears no relation to the latter for the following reasons: 
1) by means of neural networks approximations of 
functions of several variables are constructed, while the 
Kolmogorov theorem substantiates the possibility of their 
exDct representation; 
2) nonlinear elements used in neural networks can be 
practically a r b i i ,  and usually they calculate either 
smooth or piecewise linear hctions, while in the 
Kolmogorov theorem very specific nonsmooth functions 
are employed. 
Thus, the Kolmogorov theorem is devoted to 
representation of functions of several variables through 
very specific functions of one variable, but neural 
networks allow approximation of functions of several 
variables through practically arbitrary nonlinear function 
of one variable. 
The possibility of uniform approximation of continuous 
functions through polynomials is proved in the classic 
Weierstrass theorem. A strong generalization of the 
Weierstrass theorem is the Stone theorem [2]: 
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Let consider a compact space X and algebra C(2J of 
continuous finctions on X with real values. If E c C( X )  
is a closed subalgebra in C@J, 1 E E and the fitnetions 
fiom E separate the points in E 0.e. for any two different 
x,  y e X  exists such a finction g EE that 
g(x) f g(y)). then E=C(a. 

The Stone theorem generalizes the Weierstrass theorem 
in two directions. Fist, functions on arbitrary compact 
are considered rather than functions of several variables 
only. Second, the following statement was proved, which 
was new even for the functions of one variable: not only 
the set of polynomials of coordinate functions is 
complete, but, in general, a ring of polynomials of any set 
of functions separating the points. 
Therefore, the set of trigonometric polynomials ari 
complete, and the set of linear combinations of functions 
of the form exp(-(x - xo , Q(x - XO))) , where (x, Q(x)) 
is a positive definite quadratic form, e.g. 
In this paper, we study, approximate representations of 
functions of several variables by functions of one 
variable. In a contrast to the Kolmogorov theorem, the 
question we address is: how broad is the class of 
fimctions that can be approximated using a single, 
arbitrarily taken, and not specially constructed, nonlinear 
continuous function? 
The answer is: every continuous finction can be 
arbitrarily accurately approximated by operations of 
addition, multiphztion by a number, and superposition 
of an arbitrw number (one is suficient) of continuous 
nonlinearfinctions of one variable. 
Renewed interest in the classical question of 
approximation of functions of several variables by 
superpositions and sums of functions of one variable and 
a new version of this question (confined to one arbitrarily 
taken nonlinear function) have been invoked by 
neurocomputing studies. 
The question what functions they are able to approximate 
is becoming topical. Relevant theorems on completeness 
for several versions of the neural networks have been 
proved [3-6]. They are distinct in admissible architectures 
of the networks, in functions that are computed by an 
individual "neuron", etc. The present work proves the 
theorem on completeness for arbitrary continuous 
functions. 
For the neural networks, our result states that the function 
of neuron activation must be nonlinear - and nothing 
else. Whatever this nonlinearity is, the network of 
connections can be constructed, and coefficients of linear 
connections between the neurons can be adjusted in such 
a way that the neural network will compute any 

continuous function fiom its input signals with any given 
accuracy. 

2. SEMIGROUPS OF CONTINUOUS FUNCTIONS 
OF ONE VARIABLE 

Consideration of functions of one variable is necessary 
for fiuther study of functions of many variables. On the 
other hand, the theorem on density of any semigroup of 
continuous functions which includes at least one 
nonlinear function is also of independent interest. 

Let us consider the space C(R) of continuous functions 
on a real axis in the topology of the uniform convergence 
on compact sets. The space C(R) with superposition of 
functions (fog)(x)=f(g(x)) on it is a semigroup. 
Function id(id(x) E x) is a unit in this semigroup. 
Theorem 1. Let E be a closed subspace in C(R) which is 
a semigroup, IGE and idcE (I is a finction identically 
equal to I). Then. either E=C(R) or E is a subspace of 
linear functions g(x) =ax+b). 
The proof is based on several lemmas. 
Lemma 1. Under the conditions of Theorem I ,  let there 
exist a function f e E  which is not linear. Then, there 
exists a twice continuously diHerentiab1e function g c E  
which is not linear. 
Lemma 2. Under the conditions of Theorem I ,  let there 
exist a twice di$.iwentiable finction geE which is not 
linear. Then, thefinction q(x)=x2 is in E. 
Lemma 3. Let under the conditions of the Theorem I the 
finction q(x)=x2 be in E. Then, E is a ring: for every 
Jg. E their product fge  E. 
From the lemmas 1-3 it follows that under the conditions 
of the Theorem 1, if E has even one nonlinear function 
then E is a ring, and contains, in particular, all 
polynomials. Hence, by the Weierstrass theorem, it 
follows that E= C(R). 

3. GENERAL APPROXIMATION THEOREM 
FOR FUNCTIONS OF SEVERAL VARIABLES 

Consider a compact space X and algebra C ( X )  of 
continuous real functions on X. Let E E C ( X )  be a linear 
space, C(R) be a space of continuous functions on the 
real axis R, f E C(R) be a nonlinear function and for any 
g E E , f (g )  E E holds. In this case let us say that E is 
closed with respect to nonlinear unary operation$ 
Example: a set offnctions of n variables, which can be 
exactly represented using the given jiinction f of one 
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variable, linear functions and superposition operation is 
a linear space, closed with respect to nonlinear unary 
operation f The closure of this set in the space of all 
continuous functions possesses the same property. 
Remark The linear space E EC(X) is closed with 

respect to nonlinear operation f ( x )  = x 2  if and only  if^ 
baring. Indeed, fg=-[(f+g)2-f2-g2],therefore 1 

2 
for the linear space E E C ( X )  the closedness with 

respect to the unary operation f ( x )  = x2 is equivalent to 
closedness with respect to the product of functions. 
According to the above remark, the Stone theorem can be 
reformulated as follows. Let E E C ( X )  be closed linear 
subspace in C ( X )  , 1 E E ,  the functions fiom E separate 
points of X and E be closed with respect to nonlunear 
unary operation f (x) = x ~ Then E = C(X)  . 
Our generalization of the Stone theorem consists in 
change of f ( x )  = x2 with arbitrary nonlinear continuous 
function. 
Theorem 1. Let E E C( X )  be closed linear subspace in 
C ( X ) ,  1 E E , the functions fi-om E separate points of X 
and E be closed with respect to nonlinear unary 
operation f E C(R) . Then E = C( X )  . 
Prooj: Consider the set of all such p EC(R)  that 
p(E) E E ,  i.e. for any g E E holds p(g) E E . Let us 
denote this set PE . It possesses the following properties: 

1) PE is a semigroup with respect to superposition of 
functions; 

2) PE is closed linear subspace in C(R)  (in the uniform 
convergence topology on compacts); 

3) l € P E  and id€PE (id(x)=x); 

4) PE includes at least one continuous nonlinear 
function. 
The rest of the proof follows from Theorem 2, which in 
our work is, essentially, a preparation theorem on 
semigroups of functions. 

2 

4, ALGEBRAIC VARIANT 
OF APPROXIMATION THEOREM 

The retum to the classic problem on representation of 
functions of several variables through superpositions and 
sums of functions of one variable is connected with 
investigations of neural networks. There are two, not one, 

classic problems, and only the second of them directly 
relates to neural networks 
1. Is it possible to obtain exact representation of a 
function of several variables by means of superposition of 
functions of smaller number of variables? 
2. Is it possible to obtain arbitrarily close 
approximation of a hc t ion  of several variables by 
means of some simpler functions and operations? 
In the present section, the central place belongs to a 
theorem which is similar in form to the generalized 
approximation theorem, but relates to the furst rather than 
the second problem, since it states the possibility of exact 
representation of all polynomials of several variables by 
means of arbitrary nonlinear polynomial of one variable, 
linear functions and superposition operations. The 
distance between the fmt and the second problems 
appears to be not so large. 
Let RfX] be a ring of polynomials of one variable over a 
field R of characteristics 0, and E c f i X l  be a linear 
space of polynomials over R. The following simple 
proposition is an algebraic analogue of Theorem 1. 
Proposition 1. I f E  is closed with respect to superposition 
of polynomials, and contains all the polynomials of the 
first power and at least one polynomial p ( x )  of the 
power m>l,then E = a X ] .  

Denote RIXl,  ..., X,] the ring of polynomials of n 
variables over field R of characteristic 0. 

For any linear subspace E c R[X1, ..., X,,] consider 
the set of algebraic unary operations which transform 
elements of E into elements of E: 

PE = ( P  4x1 IP(g(x1, -9 X n ) )  E E  for any 

d X l ,  -*-7 x,) E E  ) - 
Proposition 2. For any linear subspace 
E E RIXI,  .-., X n ]  , the set of polynomials PE is a 
linear space mer R closed with respect to superposition 
and contains all uniform polynomials offirst power. 

Proposition 3. Zfa linear subspace E E R[XI ,  . . . , X n ]  
contains 1 and PE includes at least one polynomial of 
degree m > 1 (i.e. nonlinear), then PE = RfX] . 

Theorem 3. Let E E R[X1, ..., X,,] be linear subspace 
in R[X1, ..., X,] ,  E contains all the polynomials of the 
first power and is closed with respect to nonlinear unary 
operation p E R [ X ] .  Then E = R[X,, ..., X n ] .  
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Prooffollows fiom Propositions 2, 3 and the fact that a 
ring of polynomials that includes all the polynomials of 
first power coincides with R [ X l ,  ..., X , ] .  

Let p be a polynomial of one variable, E ,  [XI, . . . , X, ] 
be set of polynomials of n variables, which can be 
obtained from p and polynomials of fmt power belonging 
to 4x1, ..., X,] by means of operations of 
superposition, addition and multiplication by number. 
The following two propositions give a convenient 
characterization of E,[X1, ..., Xn] and follow directly 
from defmitions. 

Proposition 4.  he set E,[x,, ..., x,] is a linear 

space over R and for any polynomial g(q, . . . , x, ) Qom 

E ~ [ x ,  e.-, x n ]  

P(dX1,  .-. Y x,)) EEp[XIr ..., x , ] .  
Proposition 5. For given p the family of linear subspaces 
L c R I X I ,  ..., X n ]  containing all the polynomials of 

f i s t  power and satkfiing the condition 

..., x, )  E L ,  then P(g(x1, e-., x,)) E L  

is closed with respect to intersetiom. The minimal 
inclusionelement of this family is E,[XI,  ..., Xn]. 
From Propositions 4, 5 and Theorem 3 we obtain the 
following statement. 
Corollary. For anypolynomidp ofpower m > 1 

E , [ X l ,  ..., x,] = R[X, ,  ..., 4. 
Thus, fkom p and polynomials of the first power by 
means of operations of superposition, addition and 
multiplication by a number it is possible to obtain all the 
elements of R[x,, . . . , x,] . 

5. DISCUSSION 

Investigation of neural networks has complemented 
WeieIstrass and Stone theorems. In addition, the theorem 
on approximation of functions of several variables is 
valid evefy continuous function of several variables can 
be approximated arbitrarily accurately using linear 
functions, superposition operation and an arbitrary 
function of one variable. 
When we can use superposition of functions, linear 
functions and at least one arbitrary non-linear continuous 

function of one variable we can approximate every 
continuous function of several variables. 
These theorems can be interpreted as statements about 
universal approximation propexties of every nonlinearity: 
linear operations and cascade combinations can be used 
to produce from arbitrary nonlinear elements every 
required results with preassigned accuracy. 
The theorem proved uniformly envelopes both the 
classical Stone theorem and approximation of functions 
of several variables by means of superpositions and linear 
combinations of functions of one variable. 
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