
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jul 2006

Cost-Driven Repair of a Nanowire Crossbar Architecture Cost-Driven Repair of a Nanowire Crossbar Architecture

Yadunandana Yellambalase

Shanrui Zhang

Minsu Choi
Missouri University of Science and Technology, choim@mst.edu

Nohpill Park

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/ele_comeng_facwork/1518

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Y. Yellambalase et al., "Cost-Driven Repair of a Nanowire Crossbar Architecture," Proceedings of the 6th
IEEE Conference on Nanotechnology (2006, Cincinnati, OH), vol. 1, pp. 347-350, Institute of Electrical and
Electronics Engineers (IEEE), Jul 2006.
The definitive version is available at https://doi.org/10.1109/NANO.2006.247648

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229166902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork/1518
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/NANO.2006.247648
mailto:scholarsmine@mst.edu

Cost-Driven Repair of a Nanowire Crossbar
Architecture

Yadunandana Yellambalase1, Shanrui Zhang1, Minsu Choi1, Nohpill Park2 and Fabrizio Lombardi3
1 Dept of ECE, University of Missouri-Rolla, Rolla, MO 65409-0040, USA

{ypymy9, sz2k2, choim}@umr.edu
2 Dept of CS, Oklahoma State University, Stillwater, OK 74078, USA,

npark@cs.okstate.edu
3Dept of ECE, Northeastern University, Boston, MA 02115,

lombardi@ece.neu.edu

Abstract— The recent development of nanoscale materials and
assembly techniques has resulting in the manufacturing of
high-density computational systems. These systems consist of
nanometer-scale elements and are likely to have many manufac-
turing imperfections (defects); thus, defect-tolerance is considered
as one of the most some algorithms for repairing defective
crosspoints in a nanoscale crossbar architecture; furthermore we
estimate the efficiency and cost-effectiveness of each algorithm.
Also, for a given design and manufacturing environment, we
propose a cost-driven method to find a balanced solution by which
figures of merit such as area, repair time and reconfiguration cost
can be taken into account. Probabilistic parameters are utilized
in the proposed cost-driven method for added flexibility.

I. INTRODUCTION

Recently, logic devices have been proposed based on
nanoscale components such as carbon nanotubes (CNTs)
and silicon nanowires (SiNWs); computing architectures have
also been proposed using these devices as primitive build-
ing blocks. Unlike CMOS, chemically-assembled nanoscale
devices (such as CNTs and SiNWs) are unlikely to be used
to construct complex aperiodic (non homogeneous) structures
[1], [2].

One of the most promising computational nanotechnologies
is the so-called crossbar-based architecture [1], [2], [3], [4],
[5], [6]; this is a two-dimensional array (nanoarray) formed
by the intersection of two orthogonal sets of parallel and
uniformly-spaced nanometer-sized wires, such as carbon nan-
otubes (CNTs) and silicon nanowires (SiNWs). Experiments
have shown that such nanoscale wires can be aligned to
construct an array with nanometer-scale spacing using directed
self-assembly.

Defects and faults are significant problems for nanoscale
integration. Although high density (such as 1012 devices
per cm2 [3]) well beyond the capabilities of scaled CMOS
can be realized in nanoscale technology, these systems (with
nanometer-scale elements) are likely to have many imper-
fections in diameter, pitch, length, alignment, etc,. Thus,
computing or storage systems designed based on conventional
defect & fault models are not practical [1]. It is anticipated
that CAEN (Chemically-Assembled Electronic Nanotechnol-
ogy) such as NanoFabric will have a significantly higher

defect density than CMOS, as high as 10% [3], [4], [5].
Fabrication could potentially be very inexpensive provided an
efficient chemical self-assembly could be attained; however
this will still require laborious testing, diagnosis, repair and
reconfiguration with significant costs. In this paper, repair
algorithms are investigated and their performance is evaluated
in terms of reconfiguration time, area and overall utilization of
programmable crosspoints. Subsequently, these performance
metrics are combined with various cost parameters; a method
for finding the best combination of repair and overall cost for
a given parameter set is proposed and validated.

II. REPAIRING A CROSSBAR ARCHITECTURE

A nanowire crossbar architecture supports flexible utiliza-
tion of crosspoint devices through reconfiguration for defect
rates as high as 10%. The internal lines in the crossbars are
completely interchangeable and the switch block can provide
connections between input and output signals of adjacent
crossbar blocks. It is then possible to utilize this flexibility
and reconfigurability to tolerate defective crosspoints.

Few papers have discussed testing of a nanowire crossbar ar-
chitecture [2] [5]. An external tester is usually employed. The
crossbar is programmed using an internal tester that can then
be used to test the remaining parts of the architecture. Except
for the external tester, this process can be basically viewed as
a built-in self test method. Also, testing can be performed in
parallel such that the test time can be reduced. For nanometer
devices, the assumed defect model is substantially different
from CMOS. Defects can be categorized as follows: 1) Defects
in programmable crosspoints, 2) Defects in nanowires [6].
Nanowires with a short or a break can be easily detected
and screened. Physically, defects in programmable crosspoints
are due to the structure of the junctions, that are bistable
molecules between two layers of nanowires. Reprogramma-
bility of a crosspoint originates from the bistable property of
the molecules located in the crosspoint area. If there are not
enough molecules at a crosspoint, then the junction may not
be able to be programmed to a ”closed” state, or the ”closed”
state may have a higher resistance than the threshold to enable
the whole crossbar to operate properly. If a crosspoint cannot

1-4244-0078-3/06/$20.00 (c) 2006 IEEE

be programmed to an ”open” state (i.e. the two crossing
nanowires are always connected, as equivalent to a short), then
a nanowire defect rather than a junction defect is said to occur.
Those crosspoints that cannot be programmed into a ”closed”
state, but they can be programmed into an ”open” state are
referred to as non-programmable crosspoints. Although non-
programmable crosspoints are defective, they do not affect
the other crosspoints on the same rows and columns. So,
when functions are mapped to the crossbar devices, the non-
programmable crosspoints are placed to the unused locations,
thus providing flexibility in logic mapping.

To realize a function set I on the crossbar, a logic synthe-
sizer generates a netlist that allocates some of the nanowires
as inputs, and some as outputs; it also indicates the crosspoints
that must be set to the ”close” state. A M×M matrix I is used
to represent the netlist. Each row (column) represents one of
the logic rows (columns). If the node value is 1, this means the
corresponding crosspoint must be programmed to a ”closed”
state; if the node value is 0, the crosspoint is not used. Due
to the reconfigurability of the crossbar architecture, the order
of the rows (and columns) can be rearranged. After testing,
a defect map that indicates the locations of the defective
crosspoints, is constructed. A N × N matrix D is used to
represent the defect map. Both I and D are assumed to be
symmetric matrices (only for simplicity in simulation). If there
is a non-programmable crosspoint at a location, 1 is used for
the corresponding node, otherwise a 0 is used. For a row or
column, a successful matching from a function set I to the
physical array D can be generated as follows:

1) Every node that needs to be programmed to a ”closed”
state, must fall into a non-defective crosspoint.

2) Every node that is ”unused” can fall into either a non-
defective crosspoint or a non-programmable crosspoint.

If matrices are used for modeling purposes, repair consists
of finding an algorithm that successfully assigns all the 1s
from matrix I to fall into the 0 nodes of the matrix D. The 0s
from I are not important as far as which node in D must be
matched. Therefore, the 1 nodes in I cannot overlap with the
1 nodes in D. This is accomplishing by ANDing one row or
column from I and one row or column from D. If the result
is all 0s, then a successful matching is said to have occurred.
Otherwise, another row must be selected to find a successful
matching. Also, it is desirable to achieve minimal area and
time overheads in the execution of the repair algorithm.

III. DEFECT MATRIX GENERATION PROCEDURE

The defect layout of a nanowire crossbar can be repre-
sented as a matrix. A non-programmable cross-point at a
node location is identified by a 1, while a programmable
cross-point is marked by a 0. In this paper, the defect maps
were randomly generated as clusters with a negative binomial
distribution [9]. The probability of having a defect at a cross-
point during a time interval ∆t in the manufacturing process
is given by p(∆t|k, l1, l2 · · · ln) = c(x, y) + bk +

∑n
l=0 bili,

where c(x, y) is the susceptibility function, k is the number
of defects already present in the area, the index i pertains

to the adjacent and neighboring cross-points, n indicates the
number of neighboring cross-points considered, b is the global
cluster parameter, bi is the local cluster parameter and li is
the number of defects that occur in the neighboring area. A
constant susceptibility parameter C has been used throughout
this paper.

The values of b, bi, li, n and k were set to obtain the
desired density and distribution. The resulting defect pattern
was generated with a 150 × 150 matrix, for C = 0.005,
b = 0.00001, bi = 0.02, and li = number of defects already
present in the surrounding 3 × 3 matrix of a cross-point.

IV. REPAIR ALGORITHMS

For repair, a row-wise or column-wise algorithm (1-D)
is trivial, because a greedy algorithm always results in the
optimal solution. However, for the two-dimensional (2-D) case
(that is similar to a two-dimensional memory), only a brute-
force algorithm can always guarantee an optimal solution as
this problem is NP-complete [8]. So, algorithms that find sub-
optimal solutions with a reasonable execution time, are usually
pursued. For repairing a crossbar architecture, the following
three algorithms have been evaluated: 1) 1-D greedy repair, 2)
2-D sequential shuffle algorithm (i.e., search row-wise then
column-wise, or vice versa), 3) 2-D repair with redundant
input columns (if available). Simulation of these algorithms
was performed using Matlab. The following assumptions were
used throughout the simulation: 1) A defect rate of 10% is
used, 2) A so-called function usage rate Pf is used. When a
M×M matrix I is generated, each crosspoint has a probability
Pf probability to be 1, 3) It is also assumed that N ≥ M . Two
metrics are defined for the repair algorithms: 1) Utilization:
The number of columns or rows that have been successfully
matched to the physical array divided by the physical array
size N , 2) Coverage: The number of columns or rows that
have been successfully matched to the physical array divided
by the given function size M .

V. COST-DRIVEN REPAIR

In this section, three figures relating to overhead as for repair
time, area and switch block reconfiguration are analyzed and
discussed as result of the crossbar repair process.

A. Repair Time

The advantages of 2-D over 1-D repair algorithms are in
both Utilization and Coverage. However, 2-D algorithms are
computationally more intensive than 1-D algorithms and result
in a larger repair time. Repair time accounts for a significant
cost parameter in manufacturing (other cost parameters are
introduced and evaluated in the following section). They can
be combined to establish a balanced repair solution.

The execution time of each algorithm was measured by
Matlab and used for time overhead. A Pentium M 1.9Ghz
processor and a 1GB RAM were utilized. A method to
calculate the time overhead will be discussed in Section VI.

1-4244-0078-3/06/$20.00 (c) 2006 IEEE

40 50 60 70 80 90 100 110 120 130 140 150 160
0

1

2

3

4

Physical array size

N
um

be
r

of
 a

rr
ay

s
re

qu
ire

d
Number of arrays required to achieve 100% coverage

Algorithm 1
Algorithm 2
Algorithm 3

Fig. 1. Number of logic blocks needed to implement a function set I .

B. Area

After completing the design phase, the size of the function
set M can be determined as the manufacturing process defines
the real array size N . Each array size N will result in
different overhead for Utilization and area. Initially, the area
to implement a function set for a size M and a physical
array size N must be found. From the simulation results
shown in Figure 1, to achieve 100% Coverage, multiple
crossbar blocks are required for implementing the function
set. First, the number of arrays required for a combination
of M and N must be found, i.e. the average number of
required arrays is given by Na = �Coverage−1�. Na is
used as a starting value and increased or decreased until
100% Coverage (for the smallest value Na) is achieved.
The detailed process can be described as follows: initially,
try to match I to Na physical arrays. If 100% coverage is
achieved, then decrease Na by 1 otherwise increase Na by
1 until 100% coverage is obtained. Then, obtain Nf as the
minimal number of arrays for implementing I . Utilization
is calculated again after achieving 100% coverage and the
unused area as Nf × N2 − M2. Simulation was conducted
and, among the three considered algorithms, algorithm 3 had
the best performance in terms of area.

C. Switch Block Reconfiguration

Crossbar blocks are interconnected via switch blocks. Pro-
grammable crosspoints in switch blocks provide flexible rout-
ing to the crossbar architecture. The programming process
of the crosspoints also involves a reconfiguration time. So
the switch block programming cost should be also taken
into consideration. It is assumed that switch blocks have
programmed crosspoints initially arranged in a diagonal pat-
tern. After completing the repair process by matching and
reconfiguring the crossbar block, the connectivity between two
crossbar blocks may be changed. So, switch blocks should be
reprogrammed. According to [6], the programming process
takes place one crosspoint at a time. Within a switch block,
programming cannot be executed in parallel. Thus, the number

40 50 60 70 80 90 100 110 120 130 140 150 160
0

1

2

3

4

5
x 10

4

Physical array size

C
os

t

Overall Repair Cost (M = 50, Pf = 70%)

Algorithm 1
Algorithm 2
Algorithm 3

Fig. 2. Plots of the repair cost for M = 50 and Pf = 70% case.

of crosspoints not falling on the initial diagonal pattern (i.e. the
number of crosspoints that must be reconfigured) determines
the time overhead of the programming process. The number of
crosspoints that are required by the three repair algorithms was
calculated and considered in the overall cost-driven technique
as described in the next section.

VI. COST-DRIVEN REPAIR

After analyzing the time overhead, the area and the switch
block reconfiguration overheads (as described in a previous
section) have been considered as cost parameters for finding
the solution that has a balanced repair performance. The ap-
proach proposed in [7] can be utilized to balance performance
and overall cost of the repair process. The cost of the area
overhead can be calculated as follows: obtain the normalized
manufacturing cost value (e.g., in dollar) per one device.
For a mature fabrication plant, this cost can be empirically
estimated. Then divide the fabrication cost for a single device
by the total number of crosspoints in the crossbar blocks,
such that the unit cost per crosspoint is found. Let α denote
the unit area cost-parameter. Finally, multiply the unit cost
for a crosspoint α by the number of unutilized crosspoints
so that it is possible to find the cost of the area overhead
in the normalized cost value. The time overhead cost can be
calculated as follows: find the ratio η for the implementation
time and the simulation time using the proposed simulator.
This requires to know the operational frequency of the testers,
the machine touching down time, the number of I/O pins on the
interface device, etc. Then for a manufacturing process, find
the cost of machine usage, power consumption and related
features per unit time. Let β denote the cost-parameter per
unit manufacturing time multiplied by η. So, multiply the
simulation time by β to get the normalized cost of the time
overhead.

For the cost of reprogramming a switch block, an approach
similar to the time overhead analysis is applicable. Moreover
it is required to find the cost per unit time for manufacturing
and the elapsed time to reconfigure one crosspoint (that is also

1-4244-0078-3/06/$20.00 (c) 2006 IEEE

40 50 60 70 80 90 100 110 120 130 140 150 160
0

1

2

3

4

5

6
x 10

4

Physical array size

C
os

t
Overall Repair Cost (M = 70, Pf = 50%)

Algorithm 1
Algorithm 2
Algorithm 3

Fig. 3. Plots of overall repair cost for M = 70 and Pf = 50% case.

determined by the specifications of the tester). Let γ denote
the cost for programming a crosspoint. For each parameter,
as long as the ratios among the costs (α, β and γ) are the
same, the plot for the total cost will be the same. It is then
possible to add the parameters to obtain the overall repair
cost as: Costoverall = α × # of unused crosspoints +
β × execution time of repair algorithm + γ ×
of reconfigured switching points.

Simulation was performed to validate the proposed cost-
driven model, in which the production parameters were given
by α = 1, β = 500 and γ = 5. The results are shown
in Figures 2 and 3. From Figure 2, it can be observed that
by algorithm 3 and the physical array size of 80 × 80, the
lowest overall repair cost can be achieved, while successfully
implementing the function set I . For algorithm 1 and 2, a
50× 50 crossbar size can achieve the least costs. To simulate
different environments, various values for α, β and γ were
chosen. Besides these parameters, the function set I affects
the overall cost. The simulation results shown in Figure 2 are
based on a function set I with Pf = 70%. Note that in general,
other physical designs may not need such a high usage rate
for the crosspoints. It is easier to find a matching for a lower
row or column usage provided the defect rate is kept the same.
The function usage rate Pf is also a significant parameter in
determining the overall cost.

Consider the impact on the overall cost with different values
of M . M = 70, Pf = 50% and the same cost parameters
α = 1, β = 500 and γ = 5 are assumed for simulation
purposes. The results are shown in Figure 3; algorithm 3 finds
an physical array size of 90×90 while algorithm 1 and 2 find
a physical array size of 50 × 50 and 55 × 55, respectively.
Compared with the result shown in Figure 2, the cost in Figure
3 is much higher, thus demonstrating the importance of M .

VII. CONCLUSION

For nanowire crossbar-based systems, higher defect densi-
ties are anticipated due to the unique nature of a bottom-up

assembly process. Novel methods are required for tolerating
defects. As defects in nanoscale wires can be screened out by
testing, this paper focuses on avoiding defective crosspoints in
an cost-effective manner. Area, time and reconfiguration have
been shown to be important parameters in determining the cost
of repair in a crossbar architecture. A model that includes
the above parameters, has been proposed and analyzed in
detail. The proposed cost-driven repair method is flexible and
versatile to provide an estimate of the total cost for the repair
solution. Extensive simulation results have been provided.

REFERENCES

[1] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, ”A defect-
tolerant computer architecture: Opportunities for nanotechnology,” Sci-
ence, Vol. 280, pp. 1716-1721, 1998.

[2] M. Mishra and S. Goldstein, ”Scalable defect tolerance for molecular
electronics”, Workshop Non-Silicon Computation (NSC-1), pp. 78,
2002.

[3] J. Huang, M. B. Tahoori and F. Lombardi, ”On the defect tolerance of
nano-scale two-dimensional crossbars,” IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pp. 96-104, Oct 2004.

[4] M. Jacome, C. He, G. de Veciana, and S. Bijansky, ”Defect tolerant
probabilistic design paradigm for nanotechnologies,” IEEE/ACM Design
Automation Conference (DAC), pp. 1-6, 2004.

[5] M. Tehranipoor, ”Defect Tolerance for Molecular Electronics-Based
NanoFabrics Using Built-In Self-Test Procedure,” IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 305-
313, Oct 2005.

[6] H. Naeimi and A. DeHon, ”A greedy algorithm for tolerating defective
cross points in nanoPLA design,” IEEE International Conference on
Field-Programmable Technology, pp. 49-56, 2004.

[7] S. Zhang, M. Choi, N. Park and F. Lombardi ”Cost-Driven Optimization
of Fault Coverage in Combined Built-In Self-Test/Automated Test
Equipment Testing,” IMTC 04, 2004

[8] M. Choi and N. Park, ”Dynamic yield analysis and enhancement
of FPGA reconfigurable memory systems”, IEEE Transactions on
Instrumentation and Measurement, Vol. 51, No. 6, pp. 1300 - 1311,
December 2002.

[9] Stapper, C.H. ”Simulation of spatial fault distributions for integrated
circuit yield estimations,” IEEE Transaction on Computer -Aided
Design, Vol. 8, No. 12, pp. 1314-1318, 1989.

1-4244-0078-3/06/$20.00 (c) 2006 IEEE

	Cost-Driven Repair of a Nanowire Crossbar Architecture
	Recommended Citation

	Cost-driven repair of a nanowire crossbar architecture

