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Abstract— In the power system stability problems the primary
actors in the mathematical system model are the differential
equations defining the dynamic state variables of generation
and load. These differential equations are coupled together by
load flow equations. Mathematically the load flow equations are
nonlinear algebraic equations. These differential equations and
nonlinear algebraic equations form the mathematical Differential
Algebraic Equations (DAE) model for the power system. The
fuzzy set theory is commonly used in analysis of dynamical
nonlinear systems. In this paper, we build a set of local dynamical
fuzzy logic models for the differential equations, thus transform-
ing the differential equations into nonlinear algebraic equations,
the DAE into nonlinear algebraic equations. We try to simulate
the system by solving the nonlinear algebraic equations rather
than by solving the DAE model. We also compare the application
of two types of dynamical fuzzy models: the discrete-time model
and discrete-event model in this approach. First we explain the
approach by a small DAE example, then we apply it to a 10-bus
power system.

I. INTRODUCTION

Voltage instability is an important subset of the power
system stability problems. Voltage stability analysis tools can
be classified into two primary types: static and dynamic.
Dynamic voltage stability analysis, also referred to as tran-
sient voltage stability analysis, utilizes nonlinear methods of
analysis, primarily relying on time simulations of the system.
This allows for accurate analysis of specific situations. Static
voltage analysis methods are numerical and predominantly
based upon computation of indices. This method is less
computationally intensive, [1–6]. The time simulation of a
power system involves the solution of thousands of differential
and algebraic equations. These equations exhibit nonlinearity
and time constants that differ by several orders of magnitude.
Thus the numerical simulation of power systems over extended
periods of time is very time consuming. Furthermore, in the
planning and operation of the power systems, the engineers
face the uncertainties of the loads in the buses and other
disturbance events. Many simulations of power flows will be
necessary to be performed to estimate an adequate level of
static voltage security. In the literature, an important method
referred to as fuzzy power flow to model the uncertainties has
been reported. This method uses fuzzy numbers to model the
generation and load to deal with the uncertainties, [7].
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The complexity and size of power systems rule out the
possibility of building a single fuzzy logic model to represent
the dynamics of a large-scale power system. A general dy-
namic model for voltage analysis is similar to that for transient
stability analysis. The overall system model consists of a set
of algebraic equations and a set of differential equations. The
set of algebraic equations describe the instantaneous response
of the network portion of the system. It can be expressed as:

� � ����� �� (1)

The set of differential equations describe the dynamics
of the system. The dynamic portion of the power system
comprises synchronous generators, induction motors and so
on. The dynamics can be captured by the following equation.

�� � ����� �� (2)

where � is a vector consisting of the corresponding state
variables of the synchronous generators and so on, � is a
vector of the algebraic variables such as bus voltages and
angles.

Form the above Equation (1) and Equation (2), we know
that the dynamics of a power system is the dynamics of
the components of the power system coupled together by
the network. For every component of the power system, the
dimension of the differential equations are very limited, even
though the dimension of the whole system is very large. Thus
we can build small local dynamic fuzzy logical models for the
individual components and coupled them together by algebraic
equations to represent the whole system. By doing so, we do
not need integration process to simulate the system. The main
purpose of building fuzzy logic model for the dynamic power
system is to explore the possibility of quick estimation of a
power system stability by computing some dynamic indices
and by using fuzzy logic to take some uncertainties into
consideration. The fuzzy modeling that this paper presents is
the first step. In Section II, the paper presents a small linear
DAE example to show the approach. In Section III, the paper
implements the approach in a 10-bus power system to show
the results. In Section IV, some conclusions are made and
some future work are mentioned.

II. SMALL LINEAR DAE EXAMPLE

The small linear DAE example consists of 4 differential
equations and 2 algebraic equations. The state variables are
��, ��, �� and ��, and the algebraic variables are �� and ��.
The differential equations are as follows:
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The algebraic equations are:
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where � changes from 0.1 to 0.2 at time 	 � �.
We can write the DAE in the form of�
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(6)

where matrices 
 and � are invertible.
The solution of the DAE is
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where �� is the initial condition.
The first two differential equations (3) form a dynamic

system, the last two differential equations (4) form another
dynamic system. The paper builds two dynamic fuzzy logical
models for these two groups of differential equations. Two
types of fuzzy logical models are used. The first type is the
discrete-time model, and the other is the discrete-event model.

A. Discrete-Time Dynamic Fuzzy Logical Model

We construct two discrete-time dynamic fuzzy logical mod-
els for the above two groups of differential equations. The
procedure to build the first fuzzy logical model is as follows:

� Define complete fuzzy sets to cover the input and out-
put spaces. Suppose that � � ���� ��� � ���� ��� �
���� ���, where ���� ��� for variable ��, ���� ��� for
��, and ���� ��� for variable ��. For each ���� ����� �
�� 	�, define �� fuzzy sets 
��

�
��� � �� 	� � � � � ���; for

���� ���,define�� fuzzy sets ���
� . For example, we choose

the triangular fuzzy sets. Because the state variables ��
and �� have dual roles in the fuzzy model, that is, they are
not only the input variables but also the output variables,
we define ��

����� fuzzy sets 
���

� over ���� ��� and 
���

�

over ���� ��� as output fuzzy sets for the state variables
�� and �� respectively.

� construct the fuzzy system from the following ��
�����

fuzzy IF-THEN rules:

��: IF ��� is 
��
� , �� is 
��

� , and �� is ���
� ;

then �� is 
���

� , and �� is 
���

� .

where the fuzzy set center points �
��
� , �
��

� , ����
� are

the initial conditions of the first group of differential
equations (3), the fuzzy set center points �
���

� , �
���

� are
the outputs of the equations (3) at 	 � ���� second.

� Construct the fuzzy system based on the fuzzy rule base.
Similarly we can construct the other dynamic fuzzy logical

model for the second group of differential equations (4). From
the procedure of the construction, we know that when we
construct a fuzzy model, we do not consider the influence
of the rest of the system. Specifically, we do not consider
the dynamics of algebraic variables ���� � �� 	� during
one integration period when we construct the fuzzy rules.
The small dynamic fuzzy logical models are approximating
the equation (7) with initial conditions being �� during a
integration period. Therefore, we have to take this affect into
consideration when we try to solve the whole system by
defuzzifying the two fuzzy models.

We go back to the DAE model (6), now we set � to be ��,
we get the model:

�� � 
� ���� �� (7)

� � �� ���� (8)

During one integration period, the solution of Equation (7)
is as follows:

��	� � �� � �
�� ������ 	

� �� �	�
�

��� �
���� ���

�
	�

� �� ��
�

��� �
����� ���

�
	� � � � �

It is obvious that these two solutions are equal in the
first order term. If we need the higher order accuracy, the
defuzzification process will be more complicated, but we can
make the sampling time longer and fuzzy sets larger. In our
example, we only considered the first order approximation.
To solve the fuzzy system, we just regard it as a group of
nonlinear algebraic equations. The advantage is that we do
not need to integrate online by using rule base. We can see
the accuracy of this fuzzy model compared to the original
system from simulation results later. Figs. 1, 2, and 3 are the
simulation results of the discrete-time method compared to the
original system. The sampling time interval is ���� second. We
plot the two corresponding trajectories, one calculated with the
fuzzy model and the other with the original model, of every
state and algebraic variable of the system together. Because
they match each other very well, we plot their corresponding
error aside.

B. Discrete-Event Dynamic Fuzzy Logical Model

In the above subsection, we set the integration interval
before the integration starts. This method has a disadvantage
that the speed is limited if we set the time too small, but if we
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Fig. 1. State variables ��, ��, and the error.
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Fig. 2. State variables ��, ��, and the error.
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Fig. 3. Algebraic variables �� , ��, and the error.
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Fig. 4. State variables ��, ��, and the error.

set the time too large, the accuracy will be affected much. It’s
very difficult to select the time interval. Therefore we choose
to construct the discrete-event dynamic fuzzy logical model
for the differential equations (3) and (4). The procedure is
similar to the above discrete-time model.The difference lies in
the second step and the defuzzification:

� Define complete fuzzy sets to cover the input and output
spaces as the above discrete-time procedure.

� Construct the fuzzy system from the following ��
�����

fuzzy IF-THEN rules:

��: IF �� is 
��
� , �� is 
��

� , and �� is ���
� ;

then �� is 
���

� , and �� is 
���

� at 	 � 	�� .

where the fuzzy set center points �
��
� , �
��

� , ����
� are

the initial conditions of the first group of differential
equations (3), the fuzzy set center points �
���

� , �
���

� are
the outputs of the differential equations (3) at 	 � 	�� ,
where 	�� is variable according to the events that the
integration trajectory surpasses the limits of the fuzzy
sets where they belong initially.

� Construct the fuzzy system based on the fuzzy rule base.
Similarly we can build another fuzzy model for the other

group of differential equations (4). Because the time is differ-
ent for each rule, the fuzzy logic should have to deal with this
factor when the system is defuzzified. First we find out the
fired rules, and select the smallest time 	���, then we set the
time of the other fired rules to be 	���. Since we adopt the first
order approximation, we make the outputs 
���

� and 
���

� of
the other fired rules shrink according to the same proportion
as the time does. Now we can solve the fuzzy system as the
discrete-time model. Figs. 4, 5, and 6 are the simulation results
of the discrete-event method compared to the original system.
The figures are arranged in the similar way as the discrete-time
method.

From the above figures, we see the error is relatively large,
especially at the end of the trajectories. This error is due to
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the definition of the event, that is, an event happens when
the integration trajectory surpasses the limits of the fuzzy
sets where they belong initially. As the system converges, the
trajectories do not surpass the limits of the sets where they
belong initially, so during this period of time, the rules regard
the the system as static. Therefore the event is redefined as
that the trajectories surpass the limits of the fuzzy sets where
they belong initially or the duration of time they stay in the
corresponding initial sets is over 0.1 second. In this way, we
set the largest time interval to 0.1 second, while the time for
each rule is still variable. The rule matrix is similar as before,
but the accuracy improves much. Figs. 7, 8, and 9 show the
better results.

III. APPLICATION TO A 10-BUS POWER SYSTEM

The 10-bus power system and the system data can be found
in [8]. In this system, two loads are fed from a 500-kV bus
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Fig. 10. Bus variables ��, �� , and ��, �� .

in the load area. An industrial load is served directly via
a ULTC transformer at bus 7. Residential and commercial
load is served at bus 10 via two ULTC transformer. The load
area is heavily shunt compensated and includes a 1600 MVA
equivalent generator. Two remote generators deliver 5000 MW
to the load area over five 500-kV transmission lines. The
system is disturbed by a 20 percent load increase at bus 10.

The load at bus 10 is equivalent to a 3rd order induction
machine. The generators have 10-order dynamic models. Ac-
tually for such voltage stability analysis, it is unnecessary to
use such high order dynamic generator model. Because of the
highness of the order, the rule base requires too much memory.
We simulate the system by first finding the fuzzy sets to which
the inputs belong, then construct the fuzzy rules according
to the discrete-time procedure online and lastly defuzzifying
the system. The computation burden is very heavy. Anyway,
the approach works. Later we will reduce the generator’s
model order, by doing so, the computational speed is supposed
to increase exponentially, and try to construct higher-order
dynamic fuzzy logical models. Figs. 10, 11, 12, and 13 show
the results that the magnitudes and angles of the bus voltages
of the system calculated with the fuzzy model match those
calculated with a numerical analysis software. In each figure,
there are two trajectories plotted one on top of the other. One
of the plots is the result of the fuzzy model and the other is
the result of a full time domain dynamical simulation.

IV. CONCLUSION

The paper studies a new method to construct small local
dynamic fuzzy logical models to represent large-scale DAE
systems such as large-scale power systems. The paper shows
that the independent construction of local fuzzy logical models
can approximate the original system by one order accuracy
without linearizing the nonlinear system. For the small exam-
ple, the approach works perfectly, the computation speed is
very fast when the discrete-event method is applied. For the
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power system, the approach still works although the compu-
tation burden is heavy. This approach shows that it is feasible
to construct a fuzzy model for a large-scale system such as a
power system. This is a way to solve the dimension problem
in the application of fuzzy theory. When Taylor’s series of the
solution are used, the solution is in polynomial form, the fuzzy
logic can approximate it accurately. By comparing the higher
order terms of Taylor’s series of the solutions of the fuzzy
logical model and the original model, we can set up rule base
directly related to those terms to achieve higher order accuracy
and faster solution of the fuzzy model because we can use
larger fuzzy sets. This remains to be done in the future. We
will also explore the possibility to use fuzzy logic to take the
uncertainties into consideration.
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