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Abstract 

Neural networks based on construction of orthogonal 
projectors in the tensor power of space of signals are 
described. A sharp estimate of their ultimate information 
capacity is obtained. The number of stored prototype 
patterns (prototypes) can many times exceed the number 
of neurons. A comparison with the error control codes is 
made. 

1. Introduction 

The number of patterns which the Hopfield network 
can store and precisely reproduce has been reported to be 
limited to 14% of "the number of neurons, and in this case 
the patterns must be weakly correlated. The most 
important is the condition of weak correlation, since in 
practice it is usually necessary to distinguish similar 
objects. For example, different letters of the alphabet are 
strongly correlated in most cases. 

A large body of research has been made to modify the 
Hopfield networks to eliminate the restrictions mentioned. 
One modification is the projective network (see, for 
example, 121). The main idea of the projective network is 
to turn the network connection matrix into an orthogonal 
projector. (A variety of other approaches have been 
analyzed by Michel, et. al. 171) 

In contrast to the original Hopfield network [I], the 
projective network can distinguish strongly correlated 
patterns. However, if among the prototypes there exist N 
linearly independent vectors (where N is the number of 
neurons, i.e. dimension of the space), then the network 
matrix becomes an identity matrix, and the network 
transmits the input signals without any change. 

The quadratic part of the "energy" H in the Hopfield 
networks is interpreted as an analogue of the potential 
energy of two-particle interaction. The transition to three-, 
four- and higher degrees of interaction gives rise to 
associative memory working much better than the 
Hopfield networks [3,4]. 

Similarly, in the case of projective network one can 
turn to the space of two-, three-, and of higher order k- 
particle functions [4,5]. The tensor networks proposed in 
the present paper combine the advantages of both 
projective and multi-particle networks. 

2. High order orthogonal tensor networks 
(HOOT-networks) 

Denote the set of prototypes as { x i } Z 1 .  The tensor 

@k 
Xil i z  ... ik power x @' is k-index variable 

m =xil  *x i2  .K.xik . The set of the vectors { ~ i } ~ = ~  is 

called dual to the set of vectors {fi}zl if the following 

conditions are satisfied: (fi , v i )  = 1, Z' = 1,K , vz ; 

( f i , v j ) =  0 under i # j and {vi}L1 belongs to the 

linear envelope of If the set of vectors {fi}zl 
is linearly independent, then the vectors of the dual set are 
calculated from the formula 

m 

j=l  
vi = C ( g - ' ) i j f j  7 (1) 
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where ( g-l )ij is the ij-th element of the matrix which 

is inverse to the Gram matrix of the set of vectors 

{h}E1, with the elements gu = (h , f j ) .  
Let the coordinates of the vectors be only +1. 

The tensor network of the valence k transforms the input 
vector x into output vector x’in the following way: 

where is the set of vectors, dual to the set 

@‘ ; @ Sign is a coordinate-wise acting function 
{xi >,1 
defined by the following formula: (Sign(y))l=sign(yi). 

63k 63k Since (a , b ) = (a, b>” , one can rewrite (2) in the 

following form: 

where (g-l )g is the ij-th element of the matrix which 

is inverse to the Gram matrix of the set of vectors 

{xFk}m with the elements g i j  = ( X i , X j ) k  . 
1=1 

Formula (3) does not use the tensors, thus the calculation 
time and the memory required for this do not depend on 
the valence of the tensors. 

3. Information capacity of HOOT-networks 

The benefit of transition to projecting in the tensor 
space can be briefly explained as follows: tensor powering 
can turn the linearly dependent vectors of prototypes, thus 
increasing the information capacity of the network. 

The memory of the projection network is “absolute”: 
when one of the prototypes is given to the input of 
network this prototype is also at the output. This merit of 
the network is useless when the number of prototypes 
exceeds a certain value and the network becomes 
“transparent” - every input vector yields the same output 
vector. Sometimes “transparency” can be eliminated by 
increasing valence. 

The information capacity of the tensor network of k 
valence is considered to mean the number of prototypes 
which the tensor network of this valence is capable to 
remember and reproduce without errors. The question of 
the upper bound of the information capacity is reduced to 

the question of maximum possible rank of the vectors’ set 

f X F k  3” 
1 J j = l  

The simplest but very excessive estimate is given by the 
value nk . To be more exact the rank sought for does not 
exceed the dimension of the symmetrical tensor space. 
This dimension is found by the Euler formula and is equal 

to ctTi-1 (where c, is the binomial coefficient of m 
by 1). Yet, even this estimate is excessive. 

1 

Theorem. With k < n 
k 

i=O 
max{rank{x@’}}= Z C i - 1 .  

Denote this valuer& . A small modification of Pascal’s 

triangle (Fig. 1) is used to calculate rnk . The first line 
contains two, since with n=2 there always are two non- 
collinear vectors in the set. In the transition to the next 
line the first element is produced by adding a unity to the 
first element of the previous line, the second - as the sum 
of the first and second elements of the previous line, the 
third - as the sum of the second and the third elements, 
and so on. 

The last element is produced by doubling the last 
element of the previous line. 

Table 1 compares three estimates for certain values of 
n and k. One can easily see that the correction in transition 
to the estimate r,k is quite considerable. The limit 
information capacity can, on the other hand, considerably 
exceed the number of neurons. 

4. Reliability of HOOT-networks 

It is important to find out how reliable is the operation 
of the neural network in the presence of noise, and how 
often it correctly transforms the input vector into the 
nearest prototype. The operation of tensor networks in the 
presence of noise was compared to the potentialities of the 
linear codes correcting errors. By a linear code correcting 
k errors we call a linear subspace in the n-dimensional 
space over GF2 all vectors of which are distant from each 
other not less than by 2k+l (see, for example [6]).  A 
linear code is called perfect when for every vector of the 
n-dimensional space there is a cod e vector distant from 
the given one by not more than k. The tensor network 
input was given all code vectors of the code taken for the 
sake of comparison. 

Numerical experiment with perfect codes demonstrated 
that the tensor network of the minimum required valence 
decodes all vectors correctly. For the imperfect codes the 
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picture was worse - among the stable images there were 
spurious states - vectors that did not belong to the set of 
prototypes. 

Detailed results of experiments are given in Tables 2 
and 3. In the case of n=10, k=l (see Tables 2 and 3, line 
1) with valences 3 and 5 the tensor network operated as an 
identical operator - all input vectors were transmitted to 
the network output without changes. With the valence of k 
= 7 the number of spurious states drastically dropped and 
the network decoded more than 60% of the signal 
correctly. At this, all vectors distant from the nearest 
prototype by distance of 2 were decoded correctly, while 
the part of vectors distant from the nearest prototype by 
the distance of 1 ,  remained spurious states . In the case of 
n=10, k=2 (see Tables 2 and 3, lines 3, 4, 5 )  the number 
of spurious states was observed to decrease with 
increasing valence. The network correctly decoded more 
than 50% of signals. However, even at n=15, k=3 and the 
valence more than 3 (see Tables 2 and 3, lines 6, 7) the 
network decoded all signals with three errors correctly. In 
most experiments the number of prototypes exceeded the 
number of neurons. 

So, the quality of operation of the tensor network 
increases with dimension of space and valence, while in 
terms of eliminating errors it approaches the error- 
correcting code. 
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2 
3 4  

4 7 8  
5 11 15 16 

6 16 26 31 32 
7 22 42 57 63 64 

8 29 64 99 120 127 128 
9 37 93 163 219 247 255 256 

10 46 130 256 382 466 502 511 512 

’11,l ’11,2 q1,3 ’11,4 ’11.5 ’11,6 ’11,l q1,8 ?1,9 ’11,lO 

Fig. 1. Modified Pascal triangle 

Table 1 

5 2 1  25 I 15 
3 1  125 35 I 15 

6 1  10000oO I 5005 I 466 
8 I 100o000oO I 24310 I 51 1 
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