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Adaptive Critic Designs
Danil V. Prokhorov,Student Member, IEEE,and Donald C. Wunsch, II,Senior Member, IEEE

Abstract— We discuss a variety of adaptive critic designs
(ACD’s) for neurocontrol. These are suitable for learning in noisy,
nonlinear, and nonstationary environments. They have common
roots as generalizations of dynamic programming for neural re-
inforcement learning approaches. Our discussion of these origins
leads to an explanation of three design families: Heuristic dy-
namic programming (HDP), dual heuristic programming (DHP),
and globalized dual heuristic programming (GDHP). The main
emphasis is on DHP and GDHP as advanced ACD’s. We suggest
two new modifications of the original GDHP design that are
currently the only working implementations of GDHP. They
promise to be useful for many engineering applications in the
areas of optimization and optimal control. Based on one of these
modifications, we present a unified approach to all ACD’s. This
leads to a generalized training procedure for ACD’s.

Index Terms—Adaptive critic design (ACD), backpropagation,
control, DHP, dynamic programming, GDHP, HDP, heuristic
dynamic programming, neural network, neurocontrol, reinforce-
ment learning.

I. ORIGINS OF ADAPTIVE CRITIC DESIGNS:
REINFORCEMENT LEARNING, DYNAMIC

PROGRAMMING, AND BACKPROPAGATION

REINFORCEMENT learning has been acknowledged by
physiologists since the time of Pavlov [1], and has

also been a major focus for the neural-network community
[2], [3]. At the time of these neural-network developments,
the existence of backpropagation [4]–[6], was considered a
separate approach. Developments in the separate field of
dynamic programming [7], [8], led to a synthesis of all these
approaches. Early contributors to this synthesis included Wer-
bos [9]–[11], Watkins [12], [13], and Bartoet al. [14]. An even
earlier development by Widrow [15] explicitly implements a
critic neural element in a reinforcement learning problem.

To begin tracing these developments, consider the differ-
ence between traditional supervised learning and traditional
reinforcement learning [16]. The former is a type of error-
based learning that was an outgrowth of simple perceptron
[17] or Adaline [18] networks. The latter is a form of match-
based learning that applies Hebbian learning [19], and, in its
simplest manifestation, is a form of classical conditioning
[1]. Meanwhile, dynamic programming was attempting to
solve a problem that neither neural-network approach could
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handle. If we have a series of control actions that must
be taken in sequence, and we do not find out the quality
of those actions until the end of that sequence, how do
we design an optimal controller? This is a much harder
problem than simply designing a controller to reach a set
point or maintain a reference trajectory. Although dynamic
programming can handle both deterministic and stochastic
cases, here we illustrate it in a deterministic context. Dynamic
programming prescribes a search tracking backward from
the final step, rejecting all suboptimal paths from any given
point to the finish, but retaining all other possible trajectories
in memory until the starting point is reached. This can be
considered a “smart” exhaustive search in that all trajectories
are considered, but worthless ones are dropped at the earliest
possible point. However, many trajectories that are extremely
unlikely to be valuable are nonetheless retained until the search
is complete. The result of this is that the procedure is too
computationally expensive for most real problems. Moreover,
the backward direction of the search obviously precludes the
use of dynamic programming in real-time control.

The other references cited above are to works that recog-
nized the fundamental idea of linking backpropagation with
reinforcement learning via a critic network. In supervised
learning, a training algorithm utilizes a desired output and,
having compared it to the actual output, generates an error
term to allow the network to learn. It is convenient to use back-
propagation to get necessary derivatives of the error term with
respect to training parameters and/or inputs of the network.
Here we emphasize this interpretation of backpropagation
merely as a tool of getting required derivatives, rather than
a complete training algorithm.

Critic methods remove the learning process one step from
the control network (traditionally called “action network”
or “actor” in ACD literature), so that desired trajectory or
control action information is not necessary. The critic network
learns to approximate the cost-to-go or strategic utility func-
tion (the function of the Bellman’s equation in dynamic
programming) and uses the output of an action network
as one of its inputs, directly or indirectly. When the critic
network learns, backpropagation of error signals can continue
along its input pathway back to the action network. To the
backpropagation algorithm, this input pathway looks like just
another synaptic connection that needs weight adjustment.
Thus, no desired action signal is needed. What is needed
is a desired cost function . However, because of various
techniques for stretching out a learning problem over time
(e.g., [20] and [21]), it is possible to use these methods without
even knowing the desired, but knowing the final cost and the

1045–9227/97$10.00 1997 IEEE
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one-step cost (or its estimate) further referred to as the utility
. Thus, some of the architectures we will consider involve

time-delay elements.
The work of Bartoet al. [14] and that of Watkins [12]

both feature table-look up critic elements operating in discrete
domains. These do not have any backpropagation path to the
action network, but do use the action signals to estimate a
utility or cost function. Bartoet al. use an adaptive critic
element for a pole-balancing problem. Watkins [12] created
the system known as Q-learning (the name is taken from his
notation), explicitly based on dynamic programming. Wer-
bos has championed a family of systems for approximating
dynamic programming [10]. His approach generalizes previ-
ously suggested designs for continuous domains. For example,
Q-learning becomes a special case of an action-dependent
heuristic dynamic programming (ADHDP; note the action-
dependent prefix AD used hereafter) in his family of systems.
Werbos goes beyond a critic approximating just the function

. His systems called dual heuristic programming (DHP)
[23], and globalized dual heuristic programming (GDHP) [22]
are developed to approximate derivatives of the function
with respect to the states, and both and its derivatives,
respectively. It should be pointed out that these systems do
not require exclusively neural-network implementations: any
differentiable structure suffices as a building block of the
systems.

This paper focuses on DHP and GDHP and their AD forms
as advanced ACD’s, although we start by describing simple
ACD’s: HDP and ADHDP (Section II). We provide two new
modifications of GDHP that are easier to implement than the
original GDHP design. We also introduce a new design called
ADGDHP, which is currently the topmost in the hierarchy of
ACD’s (Section II-D). We show that our designs of GDHP and
ADGDHP provide a unified framework to all ACD’s, i.e., any
ACD can be obtained from them by a simple reconfiguration.
We propose a general training procedure for adaptation of the
networks of ACD in Section III. We contrast the advanced
ACD’s with the simple ACD’s in Section IV. In Section V,
we discuss results of experimental work.

II. DESIGN LADDER

A. HDP and ADHDP

HDP and its AD form have a critic network that estimates
the function (cost-to-go) in the Bellman equation of dynamic
programming, expressed as follows:

(1)

where is a discount factor for finite horizon problems
, and is the utility function or local cost. The

critic is trained forward in time, which is of great importance
for real-time operation. The critic network tries to minimize
the following error measure over time:

(2)

(3)

(a) (b)

Fig. 1. (a) Critic adaptation in ADHDP/HDP. This is the same critic network
in two consecutive moments in time. The critic’s outputJ(t+1) is necessary
in order to give us the training signalJ(t+ 1) + U(t), which is the target
value forJ(t). (b) Action adaptation.R is a vector of observables,A is a
control vector. We use the constant@J=@J = 1 as the error signal in order
to train the action network to minimizeJ .

where stands for either a vector of observables of
the plant (or the states, if available) or a concatenation of
and a control (or action) vector . [The configuration for
training the critic according to (3) is shown in Fig. 1(a).] It
should be noted that, although both and
depend on weights of the critic, we do not account for the
dependence of on weights while minimizing
the error (2). For example, in the case of minimization in
the least mean squares (LMS) we could write the following
expression for the weights’ update:

(4)

where is a positive learning rate.1

We seek to minimize or maximize in the immediate future
thereby optimizing the overall cost expressed as a sum of all

over the horizon of the problem. To do so we need
the action network connected as shown in Fig. 1(b). To get
a gradient of the cost function with respect to the action’s
weights, we simply backpropagate (i.e., the constant
1) through the network. This gives us and
for all inputs in the vector and all the action’s weights ,
respectively.

In HDP, action-critic connections are mediated by a model
(or identification) network approximating dynamics of the
plant. The model is needed when the problem’s temporal
nature does not allow us to wait for subsequent time steps
to infer incremental costs. When we are able to wait for this
information or when sudden changes in plant dynamics prevent
us from using the same model, the action network is directly
connected to the critic network. This is called ADHDP.

B. DHP and ADDHP

DHP and its AD form have a critic network that estimates
the derivatives of with respect to the vector . The critic

1There exists a formal argument on whether to disregard the dependence of
J[Y (t+1)] onWC [24] or, on the contrary, to account for such a dependence
[25]. The former is our preferred way of adaptingWC throughout the paper
since the latter seems to be more applicable for finite-state Markov chains [8].
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network learns minimization of the following error measure
over time:

(5)

where

(6)

where is a vector containing partial derivatives of
the scalar with respect to the components of the vector

. The critic network’s training is more complicated than in
HDP since we need to take into account all relevant pathways
of backpropagation as shown in Fig. 2, where the paths of
derivatives and adaptation of the critic are depicted by dashed
lines.

In DHP, application of the chain rule for derivatives yields

(7)

where , and , are the
numbers of outputs of the model and the action networks,
respectively. By exploiting (7), each of components of the
vector from (6) is determined by

(8)

Action-dependent DHP (ADDHP) assumes direct connec-
tion between the action and the critic networks. However,
unlike ADHDP, we still need to have a model network because
it is used for maintaining the pathways of backpropagation.
ADDHP can be readily obtained from our design of ADGDHP
to be discussed in the Section II-D.

The action network is adapted in Fig. 2 by propagating
back through the model down to the action. The

goal of such adaptation can be expressed as follows:

(9)

For instance, we could write the following expression for the
weights’ update when applying the LMS training algorithm:

(10)

where is a positive learning rate.

Fig. 2. Adaptation in DHP. This is the same critic network shown in two
consecutive moments in time. The discount factor is assumed to be equal
to 1. Pathways of backpropagation are shown by dashed lines. Components
of the vector�(t + 1) are propagated back from outputsR(t + 1) of the
model network to its inputsR(t) and A(t), yielding the first term of (7)
and the vector@J(t+ 1)=@A(t), respectively. The latter is propagated back
from outputsA(t) of the action network to its inputsR(t), completing the
second term in (7). This corresponds to the left-hand backpropagation pathway
(thicker line) in the figure. Backpropagation of the vector@U(t)=@A(t)
through the action network results in a vector with components computed
as the last term of (8). This corresponds to the right-hand backpropagation
pathway from the action network (thinner line) in the figure. Following (8),
the summator produces the error vectorE2(t) used to adapt the critic network.
The action network is adapted as follows. The vector�(t+ 1) is propagated
back through the model network to the action network, and the resulting
vector is added to@U(t)=@A(t). Then an incremental adaptation of the action
network is invoked with the goal (9).

C. GDHP

GDHP minimizes the error with respect to bothand its
derivatives. While it is more complex to do this simultane-
ously, the resulting behavior is expected to be superior. We
describe three ways to do GDHP (Figs. 3–5). The first of these
was proposed by Werbos in [22]. The other two are our own
new suggestions.

Training the critic network in GDHP utilizes an error
measure which is a combination of the error measures of HDP
and DHP (2) and (5). This results in the following LMS update
rule for the critic’s weights:

(11)

where is given in (8), and and are positive learning
rates.

A major source of additional complexity in GDHP
is the necessity of computing second-order derivatives

. To get the adaptation signal-2 [the second
term in (11)] in the originally proposed GDHP (Fig. 3), we first
need to create a network dual to our critic network. The dual
network inputs the output and states of all hidden neurons of
the critic. Its output, , is exactly what one would
get performing backpropagation from the critic’s output to
its input . Here we need these computations performed
separately and explicitly shown as a dual network. Then we
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Fig. 3. Critic’s adaptation in the general GDHP design.X is a state vector of
the network.�1 (Adaptation Signal-1)+ �2 (Adaptation Signal-2) is the total
adaptation signal [see (11)]. The discount factor is assumed to be equal to
one. According to (3), the summator at the upper center outputs the HDP-style
error. Based on (6), the summator to the right produces the DHP-style error
vector. The mixed second-order derivatives@2J(t)=@R(t)@WC are obtained
by finding derivatives of outputs@J(t)=@R(t) of the critic’s dual network
with respect to the weightsWC of the critic network itself. (This is symbolized
by the dashed arrow that starts from the encircled 1.) The multiplier performs
a scalar product of the vector (6) with an appropriate column of the array
@2J(t)=@R(t)@WC, as illustrated by (16) in the Example.

can get the second derivatives sought by a straightforward but
careful backpropagation all the way down through the dual
network into the critic network. This is symbolized by the
dashed line starting from the encircled 1 in Fig. 3.

We have recently proposed and successfully tested a GDHP
design with critic’s training based on deriving explicit for-
mulas for finding (Fig. 4) [28], and, to
the best of our knowledge, it is the first published successful
implementation of GDHP [34]. While this design is more
specialized than the original one, its code is less complex,
which is an important issue since correct implementation of
the design of Fig. 3 is not a trivial task. We illustrate how
to obtain for the critic’s training of this
GDHP design in an example below.

Finally, we have also suggested and are currently working
on the simplest GDHP design with a critic network as shown
in Fig. 5 [42]. Here the burden of computing the second
derivatives is reduced to the minimum by
exploiting a critic network with both scalar output of theesti-
mate and vector output of . Thus, the second derivatives
are conveniently obtained through backpropagation.

We do not perform training of the action network through
internal pathways of the critic network of Fig. 5 leading from
its output to the input because it would be equivalent to
going back to HDP. We already have high quality estimates of

as the critic’s outputs in the DHP portion of this GDHP
design and therefore use them instead.2 Thus, the action’s
training is carried out only by the critic’s outputs,
precisely as in DHP. However, theoutput implicitly affects
the action’s training through the weights’ sharing in the critic.
Of course, we do use the critic’s internal pathways from its

output to the input to train the action network in the
designs of Figs. 3 and 4.

2This situation is typical when ACD’s are used for optimal control. In other
application domains where the estimates of@J=@R obtained from the HDP
portion of the design may be of a better quality than those of the DHP portion,
the use of these more accurate estimates is preferable [40].

Fig. 4. Critic adaptation in our simplified GDHP design. Unlike GDHP in
Fig. 3, here we use explicit formulas to compute all necessary derivatives
@2J(t)=@R(t)@WC.

Fig. 5. Critic network in a straightforward GDHP design.

Example: This example illustrates how to calculate the
mixed second-order derivatives for the
GDHP design of Fig. 4. We consider a simple critic network
shown in Fig. 6. It consists of two sigmoidal neurons in its
only hidden layer and a linear output. This network is
equivalent to the following function:

(12)

Derivatives , , are obtained as follows:

(13)

where is the Kronecker delta. We can get the mixed
second-order derivatives with respect to the weights of the
output neuron as follows:

(14)

where , and . For the hidden layer
neurons, the required derivatives are

(15)



PROKHOROV AND WUNSCH: ADAPTIVE CRITIC DESIGNS 1001

Fig. 6. A simple network for the example of computing the second-order
derivatives@2J(t)=@R(t)@WC in our GDHP design given in Fig. 4.

where , , , and . Thus,
based on (11), we can adapt weights in the network using the
following expression:

(16)

where the indexes and are chosen appropriately. We
also assume that either

, or since is a constant
bias term.

The example above can be easily generalized to larger
networks.

It is clear that HDP and DHP can be readily obtained
from a GDHP design with the critic of Fig. 5. The simplicity
and versatility of this GDHP design is very appealing, and it
prompted us to a straightforward generalization of the critic
of Fig. 5 for AD forms of ACD’s. Thus, we propose action-
dependent GDHP (ADGDHP), to be discussed next.

D. ADGDHP

As all AD forms of ACD’s, ADGDHP features a direct
connection between the action and the critic networks. Fig. 7
shows adaptation processes in ADGDHP. Although one could
utilize critics similar with those illustrated in Figs. 3 and 4, we
found ADGDHP easier to demonstrate when a critic akin to
one of Fig. 5 is used. In addition, we gained versatility in that
the design of Fig. 7 can be readily transformed into ADHDP
or ADDHP.

Consider training of the critic network. We can write

(17)

(18)

Fig. 7. Adaptation in ADGDHP. The critic network outputs the scalarJ
and two vectors,�R and�A. The vector�A(t+1) backpropagated through
the action network is added to�R(t+ 1). The vector�R(t+ 1) propagates
back through the model, then it is is split in two vectors. One of them goest
into the square summator to be added to the vector@U(t)=@R(t) and to
the rightmost term in (18) (not shown). The second vector is added to the
vector@U(t)=@R(t) in another summator. both of these summators produce
two appropriate error vectorsE2(t), as in (19) and (20). According to (3),
the right oval summator computes the errorE1(t). Two error vectorsE2(t)
and the scalarE1(t) are used to train the critic network. The action network
is adap ted by the direct path�A(t + 1) between the critic and the action
networks.

where

and , are the numbers of outputs of the model and the
action networks, respectively.

Based on (17) and (18), we obtain two error vectors,
and from (6) as follows:

(19)

(20)

As in GDHP, the critic network is additionally trained by the
scalar error according to (3). If one applies the LMS
algorithm, it results in an update rule similar to (11).

Fig. 7 also shows the direct adaptation path
between the action and the critic networks. We express the
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goal of action’s training as follows:

(21)

Similar with what we stated in the Section II-C on GDHP,
training of the action network is not carried out through the
internal pathways of the critic network leading from its
output to the input since it would be equivalent to returning
to ADHDP. To train the action network, we use only the
critic’s outputs so as to meet (21). The goal (21) is
the same for all AD forms of ACD’s.

III. GENERAL TRAINING PROCEDURE AND RELATED ISSUES

This training procedure is a generalization of that suggested
in [26], [30], [33], [38], and [43], and it is applicable to
any ACD. It consists of two training cycles: critic’s and
action’s. We always start with critic’s adaptation alternating it
with action’s until an acceptable performance is reached. We
assume no concurrent adaptation of the model network, which
is previously trained offline, and any reasonable initialization
for and .

In the critic’s training cycle, we carry out incremental opti-
mization of (2) and/or (5) by exploiting a suitable optimization
technique (e.g., LMS). We repeat the following operations
times:

for HDP, DHP, GDHP for ADHDP, ADDHP, ADGDHP
1.0. Initialize t = 0 andR(0) Initialize t = 0; R(0), andA(0)
1.1. V (t) = fC [R(t); WC ] V (t) = fC [R(t); A(t); WC ]

1.2. A(t) = fA[R(t); WA] R(t+ 1) =

fM [R(t); A(t); WM ]

1.3. R(t+ 1) =

fM [R(t); A(t); WM ]

A(t+ 1) = fA[R(t + 1); WA]

1.4. V (t+ 1) = fC [R(t+ 1); WC ] V (t+ 1) =

fC [R(t+ 1); A(t+ 1); WC ]

1.5. ComputeE1(t); E2(t) from (2) and/or (5), and@V (t)=@WC , to be

used in an optimization algorithm, then invoke the algorithm to

perform one update of the critic’s weightsWC . For the update

example, see (4) and (11).
1.6. t = t+ 1; continue from 1.1.

Here stands for or , , ,
and are the action, the critic and the model
networks, with their weights , respectively.

In the action’s training cycle, we also carry out incremental
learning through an appropriate optimization routine, as in the
critic’s training cycle above. The list of operations for the
action’s training cycle is almost the same as that for the critic’s
cycle above (lines 1.0–1.6). However, we need to use (9) or
(21), rather than (2) and/or (5); and instead of

before invoking the optimization algorithm for
updating the action’s weights [see (10) for the update
example].

The action’s training cycle should be repeated times
while keeping the critic’s weights fixed. We point out
that and are lengths of the corresponding training
cycles. They are problem-dependent parameters of loosely
specified values. If we can easily combine

Fig. 8. Test results of the autolander problem given for one of the most
challenging cases where wind gusts were made 50% stronger than in standard
conditions. After the ACD’s were trained on the number of landings shown,
they were tested in 600 more trials, without any adaptation. Although the
average training is much longer for GDHP and DHP than for HDP and
ADHDP, we could not observe an improvement of performance for either
HDP or ADHDP if we continued their training further. Tight success means
landing within a shortened touchdown region of the runway (it is the most
important characteristic). Loose success means landing within the limits of
the standard runway. Similar results were obtained in various other flight
conditions.

both the cycles to avoid duplicating the computations in lines
1.1–1.4. After the action’s training cycle is completed, one
may check action’s performance, then stop or continue the
training procedure entering the critic’s training cycle again, if
the performance is not acceptable yet.3

It is very important that the whole system consisting of
ACD and plant would remain stable while both the networks of
ACD undergo adaptation. Regarding this aspect of the training
procedure, we recommend to start the first training cycle of
the critic with the action network trained beforehand to act as
a stabilizing controller of the plant. Such a pretraining could
be done on a linearized model of the plant (see, e.g., [45]).

Bradtke et al. [26] proved that, in the case of the well-
known linear quadratic regulation, a linear critic network
with quadratic inputs trained by the recursive least squares
algorithm in an ADHDP design converges to the optimal cost.
If the regulator always outputs actions which are optimal with
respect to the target vector for the critic’s adaptation, i.e.,

(22)

where ,
then the sequence is stabilizing, and it converges to the
optimal control sequence.

Control sequences obtained through classical dynamic pro-
gramming are known to guarantee stable control, assuming
a perfect match between the actual plant and its model used
in dynamic programming. Balakrishnanet al. [43] suggested
to stretch this fact over to a DHP-based ACD for linear
and nonlinear control of systems with known models. In
their design, one performs a training procedure similar to the

3Like many other training procedures, ours also implicitly assumes a
sufficiently varied set of training examples (e.g., different training trajectories)
repeated often enough in order to satisfy persistent excitation—a property well
known in a modern identification and adaptive control literature (see, e.g.,
[37]).
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above. Each training cycle is continued till convergence of the
network’s weights (i.e., , in the procedure
above). It is also suggested to use a new randomly chosen
on every return to the beginning of the critic’s training cycle
(line 1.6 is modified as follows: ; continue from 1.0).
It is argued that whenever the action’s weights converge one
has a stable control, and such a training procedure eventually
finds the optimal control sequence.

While theory behind classical dynamic programming de-
mands choosing the optimal vector of (22) for each
training cycle of the action network, we suggest incremental
learning of the action network in the training procedure above.
A vector produced at the end of the action’s training
cycle does not necessarily match the vector . However,
our experience [28], [30], [44], [46], along with successful
results in [33], [38], and [43], indicates that choosing
precisely is not critical.

No training procedure currently exists that explicitly ad-
dresses issues of an inaccurate or uncertain model .
It appears that model network errors of as much as 20%
are tolerable, and ACD’s trained with such inaccurate model
networks are nevertheless sufficiently robust [30]. Although
it seems consistent with assessments of robustness of con-
ventional neurocontrol (model-reference control with neural
networks) [31], [32], further research on robustness of control
with ACD is needed, and we are currently pursuing this work.

To allow using the training procedure above in presence
of the model network’s inaccuracies, we suggest to run the
model network concurrently with the actual plant or another
model, which imitates the plant more accurately than the model
network but, unlike this network, it is not differentiable. The
plant’s outputs are then fed into the model network every so
often (usually, every time step) to provide necessary align-
ments and prevent errors of multiple-step-ahead predictions
from accumulating. Such a concurrently running arrangement
is known under different names including teacher forcing
[35] and series-parallel model [36]. After this arrangement
is incorporated in an ACD, the critic will usually input
the plant’s outputs, rather than the predicted ones from the
model network. Thus, the model network is mainly utilized
to calculate the auxiliary derivatives and

.

IV. SIMPLE ACD’S VERSUS ADVANCED ACD’S

The use of derivatives of an optimization criterion, rather
than the optimization criterion itself, is known as being the
most important information to have in order to find an ac-
ceptable solution. In the simple ACD’s, HDP, and ADHDP,
this information is obtained indirectly: by backpropagation
through the critic network. It has a potential problem of being
too coarse since the critic network in HDP is not trained to
approximate derivatives of directly. An approach to improve
accuracy of this approximation has been proposed in [27]. It is
suggested to explore a set of trajectories bordering a volume
around the nominal trajectory of the plant during the critic’s
training, rather than the nominal trajectory alone. In spite of

this enhancement, we still expect better performance from the
advanced ACD’s.

Furthermore, Baird [39] showed that the shorter the dis-
cretization interval becomes, the slower the training of AD-
HDP proceeds. In continuous time, it is completely incapable
of learning.

DHP and ADDHP have an important advantage over the
simple ACD’s since their critic networks build a representation
for derivatives of by being explicitly trained on them
through and . For instance, in the
area of model-based control we usually have a sufficiently
accurate model network and well-defined and

. To adapt the action network we ultimately need
the derivatives or , rather than the function
itself. But an approximation of these derivatives is already
a direct output of the DHP and ADDHP critics. Although
multilayer neural networks are well known to be universal
approximators of not only a function itself (direct output of the
network) but also its derivatives with respect to the network’s
inputs (indirect output obtained through backpropagation) [41],
we note that the quality of such a direct approximation is
always better than that of any indirect approximation for given
sizes of the network and the training data. Work on a formal
proof of this advantage of DHP and ADDHP is currently in
progress, but the reader is referred to the Section V for our
experimental justification.

Critic networks in GDHP and ADGDHP directly approxi-
mate not only the function but also its derivatives. Knowing
both and its derivatives is useful in problems where avail-
ability of global information associated with the function
itself is as important as knowledge of the slope of, i.e., the
derivatives of [40]. Besides, any shift of attention paid to
values of or its derivatives during training can be readily
accommodated by selecting unequal learning ratesand
in (11) (see Section II-C). In Section II-C we described three
GDHP designs. While the design of Fig. 5 seems to be the
most straightforward and beneficial from the viewpoint of
small computational expenses, the designs of Figs. 3 and 4
use the critic network more efficiently.

Advanced ACD’s include DHP, ADDHP, GDHP, and
ADGDHP, the latter two being capable of emulating all
the previous ACD’s. All these designs assume availability
of the model network. Along with direct approximation of
the derivatives of , it contributes to a superior performance
of advanced ACD’s over simple ones (see the next Section
for examples of performance comparison). Although the final
selection among advanced ACD’s should certainly be based
on comparative results, we believe that in many applications
the use of DHP or ADDHP is quite enough. We also note
that the AD forms of the designs may have an advantage in
training recurrent action networks.

V. EXPERIMENTAL STUDIES

This section provides an overview of our experimental work
on applying various ACD’s to control of dynamic systems. For
detailed information on interesting experiments carried out by
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(a)

(b)

Fig. 9. Test results of two neurocontrollers for the ball-and-beam system. Edges of the beam correspond to�1, and its center is at zero. Dotted lines are the
desired ball positionsxd (set points), solid lines are the actual ball trajectoryx(t). (a) Conventional neurocontroller trained by the truncated backpropagation
through time with NDEKF; (b) DHP action network tested on the same set points as in (a).

other researchers in the field, the reader is referred to [33]
and [43].

The first problem deals with a simplified model of a com-
mercial aircraft which is to be landed in a specified touchdown
region of a runway within given ranges of speed and pitch
angle [22]. The aircraft is subject to wind disturbances that
have two components: wind shear (deterministic) and turbulent
wind gusts (stochastic). To land safely, an external controller
should be developed to provide an appropriate sequence of
command elevator angles to the aircraft’s pitch autopilot.
Along with actual states of the plane, a controller may also
use desired values of the altitude and the vertical speed

supplied by an instrument landing system (ILS).
To trade off between closely following the desired landing

profile from the ILS when far from the ground, and meeting
the landing constraints at the touchdown, one could use the
following utility function:

(23)

where , , are experimentally determined con-
stants, and , , and are the actual altitude,
vertical speed, and horizontal position of the plane. To avoid

a singularity at , we treat both terms as fixed
to unity whenever ft.

We found the problem with its original system of con-
straints not challenging enough since even the nonadaptive
PID controller provided in [22] could solve it very well. We
complicated the problem by shortening the touchdown region
of the runway by 30%.

We have compared the PID controller, ADHDP, HDP, and
DHP for the same complicated version of the autolander
problem. Implementation details are discussed in [28] and
[30], and results are summarized in Fig. 8. The most important
conclusion is that in going from the simplest ACD, ADHDP,
to the more advanced ACD’s one can attain a significant
improvement in performance.

We have also applied DHP to control of actual hardware,
a ball-and-beam system [44].4 The goal is to balance the
ball at an arbitrary specified location on the beam. We use
the recurrent multilayer perceptron for both model and action
networks. The model network inputs the current position of the
ball, , and the servo motor control signal, the latter being
the only output of the action network with a sigmoidal output
node. It predicts the next ball position, . The action
networks inputs from the model network and ,
the desired ball position at the next time step. The critic

4Although we initially attempted an HDP design, we failed to make it work:
its critic was not accurate enough to allow the action’s training.
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(a)

(b)

(c)

(d)

Fig. 10. Performance of HDP [plots (a) and (b)] and DHP [(c) and (d)] for the MIMO plant. Dotted lines are the reference trajectoriesy
�

1
and y

�

2
, solid

lines are the actual outputsy1(t) and y2(t). The rms error for DHP is 0.32 versus 0.68 for HDP.

network uses and to produce an output,
.

We trained the action network off-line using a sufficiently
accurate model network trained in the parallel identification
scheme [36]. We trained the DHP design according to the
training procedure described in Section III. As the utility ,
we have used the squared difference between and .
Training was performed using the node-decoupled extended
Kalman filter (NDEKF) algorithm [31]. The typical training
trajectory consisted of 300 consecutive points, with two or
three distinct desired locations of the ball. We were usually
able to obtain an acceptable controller after three alternating
critic’s and action’s training cycles. Starting with in
(6), we moved on to and 0.9 for the second and the
third critic’s cycles, respectively.

Fig. 9 shows a sample of performance of the DHP action
network when tested on the actual ball-and-beam system
for three set pointsnot used in training. For comparison,

performance of a conventional neurocontroller is also given.
This neurocontroller of the same architecture as the action
network was trained with the same model network by truncated
backpropagation through time with NDEKF [32].

Another example experiment deals with a nonlinear
multiple-input/multiple-output (MIMO) system proposed by
Narendra and Mukhopadhyay [45] controlled by HDP and
DHP designs [46]. This plant has three states, two inputs, and
two outputs, and it is highly unstable for small input changes.
The maximum time delay between the first control input and
the second output is equal to three time steps. The goal is
to develop a controller to track two independent reference
signals as closely as possible.

Although Narendra and Mukhopadhyay have explored sev-
eral control cases, here we discuss only the case of fully
accessible states and known plant equations. Thus, instead
of the model network, we utilize plant equations within the
framework of both ACD’s.
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The action network inputs the plant state variables, ,
, and the desired plant outputs and

, to be tracked by the actual plant outputs
and , respectively. Since we

have different time delays for each control input/plant output
pair, we used the following utility:

(24)

The critic’s input vector consists of , ,
, , , . Both the action and the

critic networks are simple feedforward multilayer perceptrons
with one hidden layer of only six nodes. This is a much smaller
size than that of the controller network used in [45], and we
attribute our success in training to the NDEKF algorithm.

The typical training procedure lasted three alternations of
critic’s and action’s training cycles (see Section III). The
action network was initially pretrained to act as a stabilizing
controller [45], then the first critic’s cycle began with
in (6) on a 300-point trajectory.

Fig. 10 shows our results for both HDP and DHP. We
continued training both designs until their performance was
no longer improving. The HDP action network performed
much worse than its DHP counterpart. Although there is still
room for improvement (e.g., using a larger network), we doubt
that HDP performance will ever be as good as that of DHP.
Recently, KrishnaKumar [47] has reported HDP performance
better than ours in Fig. 10(a) and (b). However, our DHP
results in Fig. 10(c) and (d) still remain superior. We think
that this is a manifestation of an intrinsically less accurate
approximation of the derivatives of in HDP, as stated in
Section IV.

VI. CONCLUSION

We have discussed the origins of ACD’s as a conjunction
of backpropagation, dynamic programming, and reinforcement
learning. We have shown ACD’s through the design ladder
with steps varying in both complexity and power, from HDP
to DHP, and to GDHP and its action-dependent form at the
highest level. We have unified and generalized all ACD’s via
our interpretation of GDHP and ADGDHP. Experiments with
these ACD’s have proven consistent with our assessment of
their relative capabilities.
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