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Weak-Group Unitary Space-Time Codes
Adam Panagos, Kurt Kosbar, Asif Iqbal Mohammad

Department of Electrical and Computer Engineering.
University of Missouri-Rolla

1870 Miner Circle, Rolla, MO 65409-0040
Email: panagos@umr.edu, kosbar@umr.edu, ammq2@umr.edu

Abstract— We propose a construction technique for unitary
space-time codes that use Givens rotation matrices. These con-
stellations have a desirable weak group property that leads
to reduced construction and decoding complexity. The newly
constructed constellations have the best known diversity product
and diversity sum for a wide range of constellation sizes and
number of transmit antennas.

I. INTRODUCTION

Unitary space-time codes are useful for multiple-input
multiple-output (MIMO) fading channels. They are particu-
larly well suited for fast fading channels since channel state
information (CSI) is not required at either the transmitter or
receiver. These codes were first introduced by Hochwald and
Marzetta [1] and a systematic construction technique was later
proposed by Hochwald et al [2].

The goal of unitary constellation design is to construct a set
of L unitary matrices, denoted {Φi} for i = 0, . . . , L−1 with
specific properties. For low signal-to-noise ratio (SNR), the
design metric of interest is the diversity sum, denoted δ, and for
high SNR the design metric is the diversity product, denoted
ζ. Calculating the diversity sum or diversity product generally
requires L2 calculations. Calculating the design metric for
large L can be computationally burdensome. However, if the
constellation construction technique has certain properties, the
diversity sum or product can be obtained with only L − 1
calculations. The original systematic construction technique
had this desirable property.

Since the original systematic construction technique was
proposed a variety of other construction techniques have been
investigated. The goal of these techniques was to improve the
diversity product or diversity sum of the unitary constellations.
Parametric codes and bounds on the optimal values of the
diversity product and diversity sum were introduced by Liang
and Xia [3]. Simple rotation matrices were used by Shan et
al [4] to generate codes with improved diversity products, but
were restricted to systems with an even number of transmit an-
tennas. This work was extended by Soh et al [5] to an arbitrary
number of transmitting antennas and improved constellations
were once again reported. Bruhat decomposition was used
to construct unitary constellations for an even number of
antennas by Konishi [6]. This work was later extended to
include odd antennas by Niyomsataya et al [7]. Coherent
space-time codes were mapped to the Grassman manifold
using an exponential mapping to construct non-coherent codes

in [8]. Recently, a geometrical interpretation of unitary space-
time codes and numerical techniques have been considered by
Han and Rosenthal [9]. We note that the codes of Han and
Rosenthal presented in [9] and on their website are often not
the best known codes. However, some of their theoretical work
is useful and will be used here. Also, the large database of
diversity product and diversity sum results they have tabulated
is quite useful, even though other techniques may be able to
achieve better results.

The work presented here extends work originally reported
by Panagos et al [10]. In this previous work, Givens rotation
matrices were used to construct unitary constellations with
improved diversity product. However, this previous construc-
tion technique required L2 operations to calculate the diversity
product. When used in conjunction with a greedy search
algorithm [11], the polynomial complexity in L made it
computationally expensive to search for large constellations.
In this work we also use Givens rotation matrices as generator
matrices for constellation construction. However, we modify
the construction to ensure the resulting constellation has a
weak-group property [9]. The weak-group property of the
constellation is important as only L operations are required
for calculating either the diversity product or diversity sum.

The next section provides background regarding weak group
codes, specifies the newly proposed unitary space-time con-
stellation construction technique, and compares this technique
to the other recently proposed method [10] that also uses
Givens rotation matrices. Section II discusses a reduced com-
plexity decoding technique that can be used on these codes
due to their weak group structure. A comparison of the codes
found using this technique to the other construction methods
mentioned in the introduction is given in Section III. In almost
all cases examined these new codes have the best diversity
product and diversity sum known.

II. WEAK GROUP CODES: BACKGROUND AND NEW

CONSTRUCTION

In this section we review several results regarding weak
group codes originally derived and stated by Han and Rosen-
thal [9]. We then use these results to propose a weak group
code structure based on Givens rotation matrices. We also
compare this new construction technique to another recently
proposed construction technique that also used Givens ro-
tation matrices [10]. This comparison shows that the new
technique of this paper has significantly reduced construction
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and decoding complexity, without suffering any performance
degradation.

A. Background

Definition 2.1: Let Φi and Φj be unitary matrices. The
matrices Φi and Φj are equivalent if there exists a unitary
matrix U such that Φi = UΦjU

−1 or Φi = UΦ−1
j U−1.

Definition 2.2: Let C = {Φ1,Φ2, . . . ,ΦL} be a unitary
constellation of L signals. The constellation C has a weak
group structure if for any two distinct elements Φi and Φj ,
the quantity Φ−1

i Φj is equivalent to some Φk.
Lemma 2.3: Let C = {I,Φ1,Φ2, . . . ,ΦL−1} be a unitary

constellation with a weak group structure. Computing the
diversity product or diversity sum requires only L−1 distance
computations.

Theorem 2.4: Let C = {Φ1,Φ2, . . . ,ΦL} be a unitary
constellation of L signals. If C has a weak group structure
then C takes one of the following forms:

{I,A,A2, . . . , AL−1} or {I,AB,A2B2, . . . , AL−1BL−1}
(1)

Based on the result of this theorem, we are interested in
constructing unitary space-time constellations of one of two
forms. We note that this theorem is only necessary, i.e. if a
constellation has a weak group structure than it is in one of
two forms.

B. New Construction

Based on the insight provided by Theorem 2.4 we propose
unitary space-time signals of the following form

Φl = (Gprod)l · Dl (2)

where
Gprod � G1G2 · · ·GM(M−1)

2
, (3)

for l = 0, . . . , L − 1.
The Gj for j = 1, 2, . . . , M(M−1)

2 are Givens rotation
matrices defined as [12]

G(i, k, θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cj · · · sj · · · 0
...

...
. . .

...
...

0 · · · −sj · · · cj · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




, (4)

where cj � cos(θj) and sj � sin(θj). For simplicity we have
suppressed the (θ) notation and defined Gi ≡ Gi(θi).

These plane rotation matrices are modifications of the
appropriately sized identity matrix and are formed by placing
cj at coordinates (i, i) and (k, k), sj at coordinate (i, k), and
−sj at coordinate (k, i). These matrices can be used to rotate
each individual (i, k) coordinate plane by θ radians.

The matrix D is a diagonal unitary matrix defined as

D =




ejφ1 0 · · · 0
0 ejφ2 0
...

. . .
...

0 0 · · · ejφM


 (5)

As a specific example, the Givens rotation matrices for an
M = 4 system are of the form

G1 =




c1 s1 0 0
−s1 c1 0 0
0 0 1 0
0 0 0 1


 ,G2 =




c2 0 s2 0
0 1 0 0

−s2 0 c2 0
0 0 0 1


 ,

G3 =




c3 0 0 s3

0 1 0 0
0 0 1 0

−s3 0 0 c3


 ,G4 =




1 0 0 0
0 c4 s4 0
0 −s4 c4 0
0 0 0 1


 ,

G5 =




1 0 0 0
0 c5 0 s5

0 0 1 0
0 −s5 0 c5


 ,G6 =




1 0 0 0
0 1 0 0
0 0 c6 s6

0 0 −s6 c6


 .

This constellation construction techniques has M values
of φ associated with the diagonal matrix D and M(M−1)

2
values of θ associated with the rotation matrices Gi. Thus,
a total of M + M(M−1)

2 = M2+M
2 parameters are available

for parameterizing the unitary constellation C.
Lemma 2.5: The construction technique of Equation 2

yields a weak group constellation.
Proof: We must show that for distinct matrices Φi and
Φj that Φ−1

i Φj is equivalent to some other Φk. Without
loss of generality assume i < j. Let k � j − i. We have
Φi = Gi

prodD
i and Φj = Gj

prodD
j . Thus

Φ−1
i = (Gi

prodD
i)−1 = D−iG−i

prod (6)

and

Φ−1
i Φj = D−iG−i

prodG
j
prodD

j

= D−iGj−i
prodD

j

= D−iGj−i
prodD

jD−iDi

= D−iGj−i
prodD

j−iDi

= D−iGk
prodD

kDi

= D−iΦkDi

= UΦkU−1

where U � D−i is a unitary matrix. Thus, Φ−1
i Φj is

equivalent to Φk by Definition 2.1 and the constellation forms
a weak group by Definition 2.2.
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C. Construction Technique Comparison

The authors of this paper have recently proposed another
unitary space-time code constellation construction technique
based on Givens rotation matrices [10]. The construction rule
for the previous technique was

Φl = (G1
prod)l · Dl · (G2

prod)l. (7)

This previous technique uses the generator matrices
G1

prod,D, and G2
prod. Due to the additional generator matrix

the constellations formed using this method do not form
a weak group. When calculating the diversity product or
diversity sum for these constellations, L(L−1)

2 distances are
required. For the newly proposed constellations that have the
weak group property, only L − 1 distance calculations are
required as stated in Lemma 2.3. For constellations with large
numbers of signals (i.e. high rate codes), the computational
savings due to the weak group property of the constellation
are significant.

The number of parameters used to construct the constella-
tion have also been reduced. The previous parameterization
used M2 parameters. The new parameterization uses only
M2+M

2 .
Because of these differences the speed at which searches can

be performed has increased significantly. The search technique
used is based on our original work in [11]. Parameters are
randomly generated, the constellation is constructed, and the
diversity product or sum is calculated. This process is repeated
numerous times and the parameters corresponding to the best
found constellation are saved. A local search is then performed
in the neighborhood of the best known parameters using
gradient based techniques. Only requiring L − 1 calculations
instead of L(L−1)

2 makes it possible to quickly search over
significantly larger constellations then was possible previously.
The reduction in the number of parameters is also significant as
the numerical routines for estimating gradients and ascending
to local maximum values of the diversity product or diversity
sum now take less time as well.

Even more promising are the diversity product and diversity
sum results obtained using this technique. Thus far, the best
known codes found using the construction of [10] have been
replicated using this new technique. These results suggest that
the reduced complexity of the search process due to the weak
group property of the new constellations does not come at the
expense of reduced constellation performance.

III. REDUCED COMPLEXITY DECODING

The previous section discussed the significant reduction
in code search complexity obtained due to the weak group
property of the constellation.

In this section we discuss the reduction in decoding com-
plexity due to the weak group structure of the constellation.
We show how these weak group codes lend themselves to very
efficient decoding using a sphere decoder.

Let Xτ be the received signal at time τ . For this first case we
assume a single receive antenna (i.e. N = 1). Rephrasing the

following for cases N > 1 is straightforward. The received
vector at time τ is an M × 1 vector. The elements of the
received vector will be denoted xτ,m.

For our proposed construction technique with differential
transmission, the maximum likelihood (ML) decoder solves
the optimization problem

l̂ = arg min
l

||Xτ − Gl
prodDlXτ−1||2F (8)

to determine which of the L signals was transmitted. For large
constellations this exact ML decoding rule is prohibitively time
consuming.

One can verify that the exact ML decoding rule is equivalent
to [9]

||Xτ − Gl
prodDlXτ−1||2F = ||G−l

prodXτ − DlXτ−1||2F . (9)

Also, since both Gprod and D are M ×M unitary matrices,
they can be written as

Gprod = Udiag
(
eig1 eig2 · · · eigM

)
U†, (10)

and
D = V diag

(
eid1 eid2 · · · eidM

)
V †, (11)

where U and V are also unitary matrices.
Thus, the ML decoding rule can be re-written as [9]

l̂ = arg min
l

||Udiag
(
e−ilg1 e−ilg2 · · · e−ilgM

)
U†Xτ

−V diag
(
eild1 eild2 · · · eildM

)
V †Xτ−1||2F . (12)

The original ML decoding rule has been written such that
Xτ − Gl

prodDlXτ−1 is just a linear combination of trigono-
metric functions and the variable l. Following techniques
suggested in [9], [13] (such as sphere decoding least-squares
methods) will allow the ML solution to be obtained in poly-
nomial time, an essential feature for high rate constellations.
Thus, the new constellations constructed with this method not
only have the best known diversity product and diversity sum,
but also can be decoded efficiently.

IV. NEW CONSTELLATIONS

In this section we summarize the codes found with this
new construction technique. To the authors knowledge, the
best known diversity product and diversity sum results for
constellations of size 2k for k = 3, 4, 5 and 6 were most
recently reported in [5]. Of the thirty results presented in
this previous work, our new technique has found improved
constellations in twenty-six cases. In three cases we have
matched their results, and in only one case have we been
unable to find a constellation as good as previously known.
The comparison of our codes to these previous codes for both
the diversity product and diversity sum design metrics can be
found in Tables I and II.

For constellation sizes that aren’t a power of two, Han [9]
has tabulated a large number of diversity product and sum
results on his website. In Figure 1 we compare the diversity
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TABLE I

COMPARISON OF DIVERSITY PRODUCT

M L Our Code Code in [5] Code in [4] Cyclic Code

3 8 0.700 0.647 NA 0.513
16 0.600 0.565 NA 0.448
32 0.468 0.459 NA 0.334
64 0.425 0.416 NA 0.277

4 8 0.722 0.707 0.707 0.595
16 0.627 0.615 0.615 0.545
32 0.595 0.595 0.545 0.383
64 0.480 0.437 0.406 0.340

5 8 0.710 0.670 NA 0.544
16 0.605 0.601 NA 0.457
32 0.555 0.549 NA 0.410

6 8 0.715 0.707 0.707 0.595
16 0.622 0.603 0.595 0.507
32 0.565 0.553 0.522 0.448
64 0.494 0.507 0.450 0.379

TABLE II

COMPARISON OF DIVERSITY SUM

M L Our Code Code in [5] Code in [4] Cyclic Code

3 8 0.745 0.707 NA 0.618
16 0.715 0.673 NA 0.588
32 0.707 0.658 NA 0.480
64 0.614 0.609 NA 0.424

4 8 0.752 0.707 0.707 0.707
16 0.717 0.707 0.707 0.707
32 0.712 0.707 0.707 0.555
64 0.707 0.707 0.567 0.523

5 8 0.752 0.707 NA 0.655
16 0.713 0.687 NA 0.638
32 0.692 0.681 NA 0.575

6 8 0.748 0.707 0.707 0.707
16 0.720 0.707 0.707 0.625
32 0.707 0.707 0.640 0.618
64 0.707 0.662 0.633 0.567

product of our construction technique with his for M = 3
transmit antennas. We see that in every case the diversity
product achieved using our technique is superior. Results
are similar for M > 3 and can be found on our website
(http://www.umr.edu/∼ panagos).

V. CONCLUSION

A new construction technique for unitary space-time codes
has been presented. The weak group property of the con-
stellations constructed using this method lead to reduced
complexity construction as only L−1 calculations are required
to calculate the diversity product or diversity sum design
metrics. As shown in Section III, the weak group structure also
allows the codes to be decoded efficiently. The comparison of
diversity product and diversity sum results in Section IV show
these codes are currently the best known for almost all cases
examined. We are currently performing simulations to quantify
the symbol-error-rate improvement these codes achieve over
the previously best known codes. These results will be a topic
of a future paper.
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Fig. 1. Comparison of diversity product (ζ) for M = 3 transmit antennas
and various constellation sizes, L. The recently proposed codes from [9] are
marked with o’s and our proposed codes are marked with �’s. Our codes offer
superior diversity product in every case.
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