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Voltage Balancing Control of Diode-Clamped
Multilevel Rectifier/Inverter Systems

Zhiguo Pan, Student Member, IEEE, Fang Zheng Peng, Fellow, IEEE, Keith A. Corzine, Member, IEEE,
Victor R. Stefanovic, Fellow, IEEE, John M. (Mickey) Leuthen, Member, IEEE, and

Slobodan Gataric, Member, IEEE

Abstract—This paper presents a new voltage balancing control
for the diode-clamped multilevel rectifier/inverter system. A com-
plete analysis of the voltage balance theory for a five-level back-
to-back system is given. The analysis is based on fundamental
frequency switching control and then extended to pulsewidth mod-
ulation (PWM). The method involves obtaining optimal switching
angles; a process that is described in detail herein. The proposed
control strategy regulates the dc bus voltage, balances the ca-
pacitors, and decreases the harmonic components of the voltage
and current. Simulation and experimental results demonstrate the
validity of the optimizing method and control theory.

Index Terms—Multilevel converter, total harmonic distortion,
voltage balancing.

I. INTRODUCTION

A T THIS TIME, several researchers are familiar with the
diode-clamped multilevel power converter. Although this

concept was introduced over 20 years ago [1], [2], there has
been considerable recent research in this area [3]–[14], espe-
cially for medium-voltage applications [3], [4], [13]. Primar-
ily, the recent interest stems from advantages over traditional
“two-level” power converters that come about since the power
conversion is performed in smaller voltage steps. Specifically,
these advantages are higher power quality, better electromag-
netic compatibility, lower switching losses, and higher voltage
capability.

One of the original diode-clamped topologies was the three-
level or “neutral-point-clamped” [2] structure for which the
balancing of dc capacitor bank voltages is fairly straightfor-
ward. However, it has long been recognized that when a number
of levels greater than three is used, capacitor voltage balanc-
ing is only achievable if the modulation index is limited to
about 60% of its maximum value for loads with a typical 0.8
power factor [5]. For inverter applications, if the modulation
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index is set beyond this limit, the center capacitors tend to
discharge and eventually the converter converges to a three
level [6]. To address this limitation, isolated dc sources can be
used for multilevel inverter systems [4]. Alternatively, auxiliary
dc/dc converters can be added for capacitor voltage balancing
[7], [8]. Another option is to use an active rectifier as a front-
end to a multilevel inverter system. Recent research in this area
has focused on four-level [9], [10], five-level [6], [11], [12],
and six-level [13] systems.

In this paper, a voltage balancing control theory for the
multilevel “back-to-back” rectifier/inverter system is presented.
The method relies on coordination between rectifier and in-
verter switching angles to achieve capacitor charge balance and
at the same time minimize the switching harmonics of both
rectifier and inverter. The method differs from that presented
in [9]–[11] in that a voltage-source control is implemented on
both rectifier and inverter circuits. This yields good harmonic
performance and is readily implemented on a digital signal
processor (DSP). The proposed method is different from that
presented in [10] and [12] since it does not utilize redundant
switching states. Instead, the capacitor voltage balancing is
built into the modulation control and a balancing theory is
formulated to generate switching angles. Finally, the proposed
method differs from that of [6] and [13] in that it is extended
to include pulsewidth modulation (PWM), which reduces the
total harmonic distortion (THD). Some features of the proposed
control are as follows:

1) balance of the capacitor bank dc voltages;
2) unity power factor operation (or desired leading or lag-

ging power factor);
3) low harmonic content (even with fundamental frequency

switching);
4) nearly sinusoidal current with PWM control.
After introducing the proposed control, the voltage balancing

theory for a five-level “back-to-back” system is analyzed. The
principle of the proposed theory is derived from fundamental
frequency switching and then extended to PWM control. A
five-level experimental system has been constructed and used
to substantiate the theory.

II. VOLTAGE BALANCING THEORY

Fig. 1 shows a three-phase five-level rectifier/inverter back-
to-back system that can generate a nine-level line-to-line
voltage waveform. The system consists of two identical five-
level converters with shared dc buses. The left half-side is

0093-9994/$20.00 © 2005 IEEE
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Fig. 1. Schematic of a three-phase five-level rectifier/inverter system.

Fig. 2. Fundamental frequency switching of a five-level converter.

connected to the utility and acts as a rectifier; the right half-side
is connected to load and acts as an inverter.

The simplest way to control a multilevel converter is to use a
fundamental frequency switching control wherein the switching
devices generate an N -level staircase waveform that tracks a si-
nusoidal waveform. In this control, each switching device only
needs to switch one time per fundamental cycle, which results
in low switching losses and low electromagnetic interference.
Fig. 2 shows a five-level staircase waveform. Considering the
symmetry of the waveform, there are only two switching angles
that need to be determined in this control strategy: θ1 and θ2.

From the topology of the multilevel inverter, it can be seen
that the current flowing into each voltage level is determined by
the input current and the switching status of each phase leg of
the inverter side. When considering only the A phase leg, the
current flowing into junction labeled V5 is

iin5 =
{

iSa for vCa = V5

0 for vCa �= V5.
(1)

In general, the current flowing into junction Vx is

iinx =
{

iSa for vCa = Vx

0 for vCa �= Vx
(2)

where x equals 1, 2, 3, 4, or 5.

Fig. 3. Current flowing into the capacitor junctions. (a) Current flowing into
each level when the current is in phase with the phase voltage. (b) Current
flowing into each level when the current is 90◦ leading from the phase
voltage.

Fig. 3 illustrates the waveforms of the phase voltage of the
rectifier vCa (relative to the ground in Fig. 2) and the input
current iSa, in which it is assumed that the input current is
sinusoidal. Fig. 3(a) shows the case when the input current is in
phase with the voltage. The input current will flow into different
voltage levels V1, V2, V3, V4, or V5 according to the switching
status of the rectifier.

The different shaded areas shown in Fig. 3(a) express the
charge flowing into each voltage level over one period. It is
obvious that the currents flowing into voltage levels V4 and V5
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Fig. 4. Rectifier and inverter voltage and current waveforms. (a) Rectifier side.
(b) Inverter side.

Fig. 5. Capacitor junction equivalent circuit.

(iin4 and iin5) are always positive. Likewise, iin1 and iin2 are
always negative. The average current flowing into the junction
V3 (iin3) is zero on average because of the symmetry of the
current waveform.

Fig. 3(b) shows the case where the line current is 90◦ leading
from the phase voltage. It is obvious that the average current
flowing into each voltage level over one period is always zero,
which means that reactive currents have no effect on each
level’s average voltage.

From the above analysis, if only the rectifier side is consid-
ered, the levels of V4 and V5 have the tendency to increase
because there is always positive current flowing into these
levels, and the levels of V1 and V2 have the tendency to
decrease. In the back-to-back structure, due to the symmetry
of the system, the unbalance tendencies of both sides have
a potential to compensate each other. With a proper control
strategy, net current flowing into each level can be regulated
to zero.

Since the reactive components of the current for both rectifier
and inverter have no effect on the voltage balance, only the
active components of the currents need to be considered. The
voltage and active current waveforms are illustrated in Fig. 4.
Fig. 4(a) shows the voltage and current waveforms of the
rectifier, where vR and vR1 are the output staircase voltage
waveform and its fundamental component, respectively. The
variable iR is the active current waveform. Fig. 4(b) illustrates

the waveforms of the inverter. The average current flowing into
each voltage level can be expressed as

Iin1 =
1
T

2π−θ2∫
π+θ2

IR sin θdθ (3)

Iin2 =
1
T




π+θ2∫
π+θ1

IR sin θdθ +

2π−θ1∫
2π−θ2

IR sin θdθ


 (4)

Iin3 =
1
T




θ1∫
−θ1

IR sin θdθ +

π+θ1∫
π−θ1

IR sin θdθ


 (5)

Iin4 =
1
T




θ2∫
θ1

IR sin θdθ +

π−θ1∫
π−θ2

IR sin θdθ


 (6)

Iin5 =
1
T

π−θ2∫
θ2

IR sin θdθ (7)

where IR is the peak value of the input current.
From the symmetry of the sinusoidal waveform, it can

be concluded that Iin1 = −Iin5, Iin2 = −Iin4, and Iin3 = 0.
Accordingly, the simplified equivalent circuit can be drawn as
that in Fig. 5. In order to balance the dc capacitor voltage,
the average net charge following into the inner level V4 should
be zero, i.e.,

∑
abc

θR2∫
θR1

iRdθ =
∑
abc

θI2∫
θI1

iIdθ. (8)

Also, the input and output active power to the dc link
capacitors has to be balanced, which is also the charge balance
equation for level V5∑

abc

VRIR =
∑
abc

VIII . (9)

Assuming that the three-phase currents are balanced and
sinusoidal, only the fundamental components in (8) and (9)
need to be considered, i.e.,

VR1IR1 = VI1II1 (10)

and

IR1(cos θR2 − cos θR1) = II1(cos θI2 − cos θI1) (11)

where VR1, VI1, IR1, and II1 are the fundamental components.
On the other hand, the fundamental voltages can be obtained

from Fourier series analysis of the waveform shown in Fig. 4
and expressed as functions of the switching angles and the dc
link voltage by

VR1 = MR · Vmax = f(θR1, θR2, Vdc) (12)

and

VI1 = MI · Vmax = f(θI1, θI2, Vdc) (13)
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Fig. 6. Optimal switching angles for MR = 0.9.

Fig. 7. Junction voltages for MR = 0.9.

where MR and MI are modulation indices for the rectifier
and inverter, respectively, and Vmax is the maximum obtainable
output voltage when both θ1 and θ2 are zero.

Eliminating the variables IR1 and II1 from (8) and (9) results
in the constraint condition for the four switching angles to
balance both active power and charge, i.e.,

VI1(cos θR2 − cos θR1) = VR1(cos θI2 − cos θI1). (14)

In addition to this power and charge balance constraint, the
optimal switching angles can be determined by minimizing the
THD or fifth and seventh harmonic components, e.g.,

min
(
V 2

R5 + V 2
R7 + V 2

I5 + V 2
I7

)
(15)

where each harmonic component can be expressed as functions
of the switching angles and the dc link voltage by Fourier series
expansion.

For given modulation indices on the rectifier side and inverter
side MR and MI , the four switching angles of various inverter
modulation indices can be obtained by an iterative method.

Fig. 8. AC waveform for MR = 0.9 and MI = 0.8.

Fig. 9. Extension of the proposed method to PWM.

Fig. 6 shows the results when MR is set to 0.9. For a given
modulation index of the inverter MI , the switching angles
of both rectifier side and inverter side can be obtained from
the figure.

III. SIMULATION RESULTS

Using the optimal switching angles calculated above, simula-
tions have been conducted to verify the dc link voltage balance.
The former results and discussion are based on some idealized
assumptions that may not be guaranteed in the actual system
due to control errors and tolerances. This will result in a voltage
error of each level. Therefore, a closed-loop feedback control is
introduced to improve the performance of the voltage balance
strategy. A small corrective component will be added to each
switching angle to compensate the changing tendency of each
voltage level.

Figs. 7 and 8 show the simulation result of the control when
the modulation indices of rectifier and inverter are 0.9 and 0.8,
respectively. Fig. 7 shows the voltage of each level relative to
V1. It can be seen that the voltages are well balanced in steady-
state operation. Fig. 8 shows the line-to-line voltage and phase
current of the rectifier (input) and inverter (output). It can be
seen that the input and output currents are quite sinusoidal even
with fundamental frequency switching.

IV. VOLTAGE BALANCING FOR PWM CONTROL

Although fundamental frequency switching can achieve high
control performance and low harmonics at high modulation
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Fig. 10. Line-to-line voltage waveforms and their spectrum when MI = 0.7. (a) Rectifier THD (up to 27th) is 1.03% and total THD is 14.9%. (b) Inverter THD
(up to 27th) is 3.04% and total THD is 17.5%.

index, it still needs to be improved to be suitable for low
modulation index operation. One of easiest ways to improve
control performance is to extend the above voltage balancing
control theory to PWM control. Fig. 9 illustrates the volt-
age waveform of the proposed PWM strategy. There are K
transitions for each change from one voltage level to another.
Obviously, fundamental frequency switching is the special case
of this PWM strategy where K = 1.

Using the same theory as with fundamental frequency
switching, optimized switching angles can be obtained by min-
imizing the phase voltage THD with the constraint equations
of charge balance. In the following calculation, the number
of switches is set to K = 9 as an example. The optimizing
program will try to minimize the lower harmonics up to 27th.
Higher harmonics in the voltage have less effect on the current
waveform because of the filtering of line and load inductances.
The lower harmonics can be further reduced with larger K. The
modulation index of the rectifier MR is set to 0.8, and the mod-
ulation index of the inverter changes from 0.3 to 0.95. Fig. 10

illustrates the line-to-line voltage waveforms and the harmonic
spectra of the rectifier and inverter when the modulation index
of the inverter MI is 0.7, which shows that the lower harmonic
components have been effectively eliminated. Even when MI

is low, the proposed strategy can still obtain satisfactory results.
As a drawback, the switching loss of the PWM is much higher
than the fundamental frequency switching. Fig. 11 shows the
output voltage waveform and its spectrum when MI is 0.25.
Table I shows the THD of the output voltage for 2nd–27th
of the proposed PWM strategy, which shows a tremendous
reduction compared with the THD of fundamental frequency
switching.

The simulation result of this proposed PWM strategy with
voltage balance control when MI is 0.7 is shown in Figs. 12
and 13. Fig. 12 shows the voltage waveform of each voltage
level, and Fig. 13 shows the detailed voltage and current wave-
forms. As can be seen, the capacitor voltages remain balanced
and the voltage waveforms exhibit typical five-level PWM
shapes.
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Fig. 11. Line-to-line voltage waveform of the inverter and its spectrum when MI = 0.25.

TABLE I
OUTPUT LINE VOLTAGE THD COMPARISON FOR 2ND–27TH HARMONICS OF FUNDAMENTAL FREQUENCY SWITCHING VERSUS PWM

Fig. 12. Simulated voltage of each capacitor junction.

V. EXPERIMENTAL RESULTS

A five-level three-phase back-to-back 10-kW rectifier/
inverter prototype was constructed for laboratory validation of
the proposed control. Fig. 14 shows the control block diagram
for the rectifier, where V ∗

dc is the reference of the dc voltage,
δ is the phase shift of the rectifier, and I∗SQ is the reference
of the reactive component of source current is. The reactive
power can be directly controlled in this system. For example,
choosing I∗SQ = 0 will result in unity power factor. Also, this
system can generate either leading or lagging reactive power to
compensate the power system. The dc link voltage is controlled
by changing the phase difference δ between rectifier voltage
and input voltage.

Fig. 15 illustrates the layout of the prototype system. The
control strategy is implemented by a DSP board based on

Fig. 13. Simulated ac voltage and current waveforms.

ADSP-21065L by Analog Devices. There are four dc voltage
sensors to sense the voltage on each capacitor. Two ac voltage
sensors are used to detect ac line voltage, which will be used
in phase detecting. Two current sensors are used to measure
the input currents in order to calculate the phase difference
between the voltage and the current. The load used is an induc-
tion motor with a resistance–inductance (RL) load to achieve
10-kW rating.

Since the converter has six phase legs and each of them has
eight switching devices, there are 48 switching devices in total.
The gate drive signals of these 48 switching devices were sent
to the converters by optical fibers. The fault signal for each
phase leg is transmitted into the DSP board. All gate drive
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Fig. 14. Prototype system control block diagram.

Fig. 15. Prototype system schematic diagram.

Fig. 16. Experimental waveforms showing each voltage level (100 V/division;
time 100 ms/division).

signals were set to shut off for protection if a fault signal is
detected. The speed command was sent to DSP by an external
potentiometer.

Fig. 16 shows the voltage waveforms of each voltage level
during steady-state operation. Therein, the vertical axis ranges
from 0 to 800 V. It can be seen that the voltage of the dc bus
is stabilized at 720 V and all voltage levels are well balanced.
Fig. 17 illustrates the detail of the ripple voltage on each
capacitor. It is shown that the capacitor voltage ripple is only
2 V out of the 720-V dc bus, which shows the voltage balance
strategy is very effective.

Fig. 17. Input and output waveforms for MI = 0.9.

Fig. 17 illustrates the detailed waveforms when the modu-
lation index of the inverter is 0.9 and the output frequency is
60 Hz. Therein, Ch1 is the input current, Ch2 is the motor
current, which is much smaller than the input current because
RL load current is excluded, and Ch3 and Ch4 are the staircase
line-to-line voltage waveforms of rectifier and inverter, respec-
tively. The scale of the voltage is 200 V/division, and the scale
of the current is 5 A/division.

From Fig. 17, it can be seen that the input current is almost
sinusoidal. To get the THD of the waveform, a fast Fourier
transform (FFT) is applied to obtain the spectrum of the input
current, which is shown in Fig. 18. The THD of the input
current is 6.1%. Similarly, the THDs of other waveforms were
obtained and are shown in Table II.

Figs. 19 and 20 show the comparison of fundamental fre-
quency switching and PWM control when the modulation
index of the inverter drops to 0.7. It can be seen that the
harmonic component of the fundamental frequency switching
has increased, while PWM can still create nearly sinusoidal
current waveforms. The THDs of the waveforms in both control
methods have been calculated and shown in Table III.

VI. CONCLUSION

In this paper, a control theory for the charge balancing of
the diode-clamped multilevel rectifier/inverter system has been
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Fig. 18. Spectrum of the input current.

TABLE II
THD OF THE WAVEFORM (FUNDAMENTAL FREQUENCY

SWITCHING AND MI = 0.9)

Fig. 19. Fundamental frequency switching waveform measurements.

presented. Simulation and experimental results were shown to
verify the analysis and to demonstrate the following advantages
of the proposed control.

1) Since it can generate a nine-level line-to-line staircase
waveform, the five-level converter generates almost sinu-
soidal voltage and current waveforms even at fundamen-
tal switching frequency.

2) The voltages on the dc link capacitors are well balanced
with very small ripple.

3) The system has low harmonics in the input current. The
total harmonic distortion (THD) of input current was as

Fig. 20. PWM waveform measurements.

TABLE III
COMPARISON OF THD OF FUNDAMENTAL FREQUENCY

SWITCHING AND PWM CONTROL (MI = 0.7)

low as 6.1% at full load with fundamental frequency
switching and 4.6% with pulsewidth modulation (PWM)
control.

4) Each switch in the converter can swtich only once per
cycle when performing fundamental frequency switcing;
this results in high efficiency.
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