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Multilevel Inverters With Equal or Unequal Sources 
For Dual-Frequency Induction Heating 

 
 

 Bill Diong and Sarala Basireddy  Keith Corzine and Yakov Familiant 
 Department of Electrical and Computer Engineering  Department of Electrical Engineering and Computer Science 
 The University of Texas at El Paso University of Wisconsin – Milwaukee 
 El Paso, TX 79968, USA Milwaukee, WI 53201, USA 
 
 
Abstract − Most existing power supplies for induction heating 
equipment produce voltage at a single (adjustable) frequency. 
Recently, however, induction heating power supplies that 
produce voltage at two (adjustable) frequencies have been 
researched and even commercialized. Dual-frequency power 
supplies are a significant development for heat-treating 
workpieces with uneven geometries, such as gears, since 
different portions of such workpieces are heated dissimilarly at 
a single frequency and so require a two step process using a 
single-frequency power supply. On the other hand, a dual-
frequency power supply can achieve the desired result for such 
workpieces in a one step process. This paper proposes the use 
of multilevel converters for providing induction heating power 
at two frequencies simultaneously, which may achieve higher 
efficiency, improved control, reduced electromagnetic 
interference and greater reliability than existing dual-
frequency power supplies.  It also describes how the stepping 
angles for the desired output from such converters can be 
determined for both the equal and unequal source cases. 
Furthermore, experimental results are presented as a 
verification of the analysis. 

 
I.  INTRODUCTION 

Many industries (automotive, aerospace, biomedical, 
etc) require the application of heat to targeted workpiece 
sections as part of processes such as hardening, brazing, 
bonding (curing), etc. One important environment-friendly 
approach to such heating is by electromagnetic induction, 
known as induction heating. Most existing induction heating 
power supplies produce power at a single (adjustable) 
frequency. Recently, however, supplies that produce power 
at two frequencies simultaneously have been investigated 
[1−4] as well as commercially introduced [5]. This is 
because for workpieces with uneven geometries, such as 
gears, different portions of the workpiece are heated 
dissimilarly at a single frequency and so their processing 
needs two steps (to allow a frequency adjustment) using a 
single frequency power supply. Hence, it’s extremely 
desirable to supply dual-frequency power simultaneously to 
the induction coil to attain the optimal result for such 
workpieces in just one pass.  However, drawbacks of the 
approach proposed by [1] include the restriction of dual-
frequency production to just the 1st and 3rd harmonics and 
the inability to independently adjust their levels and those of 
the adjacent (5th, 7th, etc.) harmonics, although some 
incremental improvements have recently been made to this 
approach [2−4]. Drawbacks of [5] include the significant 

power loss caused by the passive components and high-
frequency switching part of those units, and the two 
disparate control methods for the low-frequency and high-
frequency sub-circuits. 

This paper describes initial studies of a dual-frequency 
induction heating power supply based on multilevel 
inverters, which may achieve higher efficiency, reduced 
electromagnetic interference and greater reliability. 
Multilevel converters are a recent exciting development in 
the area of high-power systems. Several topologies exist, 
including the diode-clamped (neutral-point clamped), 
capacitor-clamped (flying capacitor), and cascaded H-bridge 
(Fig. 1), etc.  Presently, they are typically operated to 
produce approximately a single-frequency output voltage 
(Fig. 2 as example), which could be either fixed (utility) or 
varying (motor drive) [6]. While [7] has introduced the idea 
of multilevel inverters for multi-frequency induction 
heating, few analytical details were provided. 

 
II. ANALYSIS – EQUAL DC SOURCE VALUES 

For an output voltage waveform that is quarter-wave 
symmetric (as in Fig. 2) with s positive steps of equal 
magnitude E, it is well-known that the waveform’s Fourier 
series expansion is given by 

 vo(t) = ∑
h odd
 { Vh sin(hωt) } (1) 
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Figure 1.  Cascaded H-bridge (2-cell) multilevel converter circuit 
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Figure 2. 4-step, 9-level waveform 

 
where  

 Vh = 
4 E
h π [cos(hθ1) + cos(hθ2) + … + cos(hθs)] (2) 

and the θi, i = 1, … , s, are the angles (within the first quarter 
of each waveform cycle) at which the s steps occur.  On the 
other hand, if a negative step (down) instead of a positive 
step (up) occurs at a particular θi, the coefficient of the 
corresponding cosine term in (2) is −1 instead of +1. Note 
that the even harmonics are all zero. 

For the specific (introductory) problem of synthesizing 
a stepped waveform that has desired levels of V1 and V3 with 
two of the adjacent higher harmonics equal to zero, the 
stepping angles 0 ≤ θ1 < θ2 < … < θs ≤ π/2 must be chosen 
so that 
 4 E

π  [cos(θ1) + cos(θ2) + … + cos(θs)] = V1  (3a) 

 4 E
3 π [cos(3θ1) + cos(3θ2) + … + cos(3θs)] = V3  (b) 

 cos(5θ1) + cos(5θ2) + … + cos(5θs) = 0  (c) 
 cos(7θ1) + cos(7θ2) + … + cos(7θs) = 0  (d) 

Again, for a waveform with a step down instead of a 
step up occurring at a particular θi, the coefficient of the 
corresponding cosine term in (3) should be −1 instead of +1. 
Using the identities (also advocated by [8]) 
 cos(3θ) = 4 cos(θ)3 − 3 cos(θ) (4a) 
 cos(5θ) = 16 cos(θ)5 − 20 cos(θ)3 + 5 cos(θ) (b) 
 cos(7θ) = 64cos(θ)7 − 112cos(θ)5 + 56cos(θ)3 − 7cos(θ) (c) 
and defining ci as cos(θi), (3) can be re-written as 

 ∑
= si  , .. 1,  

 ci = V1 / 
4 E
π   = m1 (5a) 

 ∑
= si  , .. 1,  

 { 4 ci
3 − 3 ci } = V3 / 

4 E
3 π  = m3 (b) 

 ∑
= si  , .. 1,  

 { 16 ci
5 − 20 ci

3 + 5 ci } = 0 (c) 

 ∑
= si  , .. 1,  

 { 64 ci
7 − 112 ci

5 + 56 ci
3 − 7 ci } = 0 (d) 

Thus the set of trigonometric equations (3) has been 
transformed into a set of multivariate polynomial equations 
(5), the solution of which is discussed in [9], for example. 
Clearly, a necessary condition for the existence of nontrivial 
solutions to (5) is that the number of steps s be greater than 
or equal to the number of constraint equations. Consider 

now the two most basic problems of dual- frequency output 
voltage approximation by multilevel inverters: 
a. 2-step (s = 2) waveform with desired levels of 1st and 
3rd harmonics, and 
b.  3-step (s = 3) waveform with desired levels of 1st and 3rd 
harmonics and simultaneous elimination of the 5th.   

 
A.  2-step waveform problem 

There are two alternatives to consider: the PP case and 
PN case representing waveforms having two successive 
positive steps, and a positive step followed by a negative 
step, respectively (see Fig. 3). Their negations, the NN case 
and NP case, simply result in solutions that are 180° phase-
shifted respectively from the PP and PN solutions. 
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Figure 3.  2-step waveform alternatives (PP and PN) 
 

(i)  PP case 
The applicable equations are, from (5a) and (5b), 

 c1 + c2 = m1 (6a) 
 (4 c1

3 − 3 c1) + (4 c2
3 − 3 c2) = m3 (b) 

Solving for c1 and c2 yields 

 c1 = [ )3(33 31
4
1

2
1

2
1 mmmmm +−+ ] / 6 m1 (7a) 

 c2 = [ )3(33 31
4
1

2
1

2
1 mmmmm +−− ] / 6 m1 (b) 

From (6a), note that for admissible c1 and c2, m1 is 
restricted to a value between 0 and 2. Moreover, since c1 and 
c2 need to be real and greater than 0, these constrain m3 so that  
 m1

3 − 3m1 ≤ m3 ≤ 4m1
3 − 3m1,   for 0 ≤ m1 ≤ 1 (8a) 

 m1
3 − 3m1 ≤ m3 ≤ 4m1

3 − 12m1
2 + 9m1,   for 1 ≤ m1 ≤ 2 (b) 

The plot of these constraint curves in Fig. 4 for m3 versus m1 
indicates (and confirmed analytically) that the range of 
possible m3 is maximized at m1 = 1. Then for m1 = 1, the 
solutions for θ1 and θ2 are (they are unique) as shown in Fig. 
5 as m3 varies and the corresponding frequency-weighted 
total harmonic distortion (THD) are as shown in Fig. 6. Note 
that V3/V1 = m3/(3m1). 

The solutions for θ1 and θ2 as well as the associated 
frequency-weighted THD were also obtained at other 
allowable values of m1 and m3, but these are not shown here 
due to space constraints. Note also that this case requires the 
production of a 5-level waveform and (at least) a 2-cell 
converter. With a 2-cell converter, it is possible to turn on 
and turn off each switch at the fundamental frequency to 
produce the desired waveform. 
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Figure 4.  Constraint curves for m3 versus m1 (PP case) 
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Figure 5.  Step angle solutions for θ1 (lower) and θ2 (upper) when m1 = 1  
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Figure 6.  Frequency-weighted THD for m1 = 1 

 
(ii)  PN case 

The applicable equations are 
 c1 − c2 = m1 (9a) 
 (4 c1

3 − 3 c1) − (4 c2
3 − 3 c2) = m3 (b) 

where the second equation is obtained instead of (6b) 
because the second step is down instead of up.  Then 
substituting (9a) into (9b) and solving for c1 and c2 yields 

 c1 = [ )3(33 31
4
1

2
1

2
1 mmmmm +−+ ] / 6 m1 (10a) 

 c2 = [ )3(33 31
4
1

2
1

2
1 mmmmm +−+− ] / 6 m1 (b) 

From (9a), note that for admissible c1 and c2, m1 is 
restricted to a value between 0 and 1.  Moreover, since c1 
needs to be real and less than 1, this constrains m3 such that  
 m1

3 − 3m1 ≤ m3 ≤ 4m1
3 − 12m1

2 + 9m1 (11a) 
whereas since c2 needs to be real and greater than 0, this 
constrains m3 such that  
 m1

3 − 3m1 ≤ 4m1
3 − 3m1 ≤ m3 (b) 

The plot of the constraint curves in Fig. 7 for m3 versus m1 
indicates (and confirmed analytically) that the range of 
possible m3 yielding admissible solutions is maximized at m1 
= 0.5. 
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Figure 7.  Constraint curves for m3 versus m1 (PN case) 
 

Then for m1 = 0.5, the step angle solutions for θ1 and θ2 
(they are unique) as m3 varies and the corresponding 
frequency-weighted THD are as shown in Fig. 8 and Fig. 9. 
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Figure 8.  Step angle solutions for θ1 (lower) and θ2 (upper) for m1 = 0.5  
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Figure 9.  Frequency-weighted THD for m1 = 0.5 
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The solutions for θ1 and θ2 as well as the associated 
frequency-weighted THD were also obtained at other 
allowable values of m1 and m3, but these are not shown here.  

Note that this case requires the production of a 3-level 
waveform and (at least) a 1-cell converter. With a 1-cell 
converter, the switches can be operated so that each turns on 
and off at twice the fundamental frequency. With a 2-cell 
converter, it is possible to turn each switch on and off at the 
fundamental frequency to produce the desired waveform. 

 
B.  3-step waveform problem 

There are four, i.e., ½(23), possible combinations of 3-
step waveforms to consider, excluding those that are the 
negations of the following cases: PPP, PPN, PNP and PNN.   

The applicable equations are, from (5a), (5b) and (5c), 
 c1 + k2 c2 + k3 c3 = m1 (12a) 
 (4 c1

3 − 3 c1) + k2 (4 c2
3 − 3 c2) + k3 (4 c3

3 − 3 c3) = m3 (b) 
 (16c1

5−20c1
3+5c1)+k2(16c2

5−20c2
3+5c2)+k3(16c3

5−20c3
3+5c3)=0 (c) 

where k2, k3 are separately either +1 or −1 for a positive step or 
a negative step, respectively. Substituting for c3 from (12a) 
into (12b), (12c), then yields two (nonlinear) polynomial 
equations in terms of c1 and c2. The exact solution of such 
equations (as opposed to running a search algorithm) is, in 
general, computationally intensive and increasingly difficult as 
the number of variables increases [9]. For two equations with 
two variables, however, the procedure is relatively straight 
forward as summarized in the Appendix. 

In each case, we first determined the limits of m1 and m3 
for the existence of admissible solutions from (12). These 
limits are defined by the requirement for c1, c2, c3 to be real 
and, by definition of their relationship, for c1 to be less than 1 
and c3 to be greater than 0. Then, as example, the value of m1 
yielding the maximum range of m3 was determined and the 
step-angles for this m1 value found by solving (12) iteratively 
for incrementally increasing values of m3. These solutions then 
allowed the higher harmonic amplitudes to be plotted. 

 

(i)  PPP case 
Solutions exist and are probably unique (no multiple 

solutions have been found for the values of m1 and m3 tested 
so far) for the range of m1 and m3 delineated by the 
constraint curves of Fig. 10. The value of m1 yielding the 
maximum range of m3 is about 1.8. Plots of the step-angle 
solutions at this optimum and of the corresponding higher 
harmonic amplitudes are omitted due to length constraints. 
Note that this case requires the production of a 7-level 
waveform and (at least) a 3-cell converter. With a 3-cell 
converter, it is possible to turn on and turn off each switch at 
the fundamental frequency to produce the desired waveform. 
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Figure 10.  Constraint curves for m3 versus m1 (PPP case)  
 

(ii)  PPN case 
Solutions exist and are probably unique (no multiple 

solutions have been found for the values of m1 and m3 tested 
so far) for the range of m1 and m3 delineated by the 
constraint curves of Fig. 11. The value of m1 yielding the 
maximum range of m3 is about 1.1. Plots of the step-angle 
solutions at this optimum and of the corresponding higher 
harmonic amplitudes are omitted due to length constraints. 
Note that this case requires the production of a 5-level 
waveform and (at least) a 2-cell converter. But with a 3-cell 
converter, it is possible to turn on and turn off each switch at 
the fundamental frequency to produce the desired waveform, 
which is not possible with a 2-cell converter. 
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Figure 11.  Constraint curves for m3 versus m1 (PPN case)  
 

(iii) PNP case 
Solutions exist and are probably unique (no multiple 

solutions have been found for the values of m1 and m3 tested 
so far) for the range of m1 and m3 delineated by the 
constraint curves of Fig. 12. The value of m1 yielding the 
maximum range of m3 is about 0.588. Plots of the step-angle 
solutions at this optimum and of the corresponding higher 
harmonic amplitudes are shown in Fig. 13 and Fig. 14, 
respectively. Note that this case requires the production of 
just a 3-level waveform and (at least) a 1-cell converter. But 
with a 3-cell converter, it is possible to turn on and turn off 
each switch at the fundamental frequency to produce the 
desired waveform, which is impossible with a 1- or 2-cell 
converter. 
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values 

admissible 
values 

828



0.2 0.4 0.6 0.8 1
m1

-1

-0.5

0.5

1

1.5

m3

 
 

Figure 12.  Constraint curves for m3 versus m1 (PNP case)  
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Figure 13.  Step angle solutions for PNP case maximum m3 range 
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Figure 14.  Ratios of V7, V9 and V11 to V1  

 
(iv)  PNN case 

Solutions exist and are probably unique (no multiple 
solutions have been found for the values of m1 and m3 tested 
so far) for the range of m1 and m3 delineated by the 
constraint curves of Fig. 15. The value of m1 yielding the 
maximum range of m3 is at 0, which is not useful. Plots of 
the step-angle solutions at this optimum and of the 
corresponding higher harmonic amplitudes are omitted due 
to the length constraint on this paper.  

Note that this case requires the production of just a 3-
level waveform and (at least) a 1-cell converter. But with a 
3-cell converter, it is possible to turn on and turn off each 
switch at the fundamental frequency to produce the desired 
waveform, which is impossible with a 1- or 2-cell converter. 
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Figure 15.  Constraint curves for m3 versus m1 (PNN case) 
 

C.  4-step waveform problem 
The above investigation was extended in a similar 

manner to the 4-step/4-equation problem (corresponding 
exactly to (3) with s = 4) with desired levels of 1st and 3rd 
harmonics and simultaneous elimination of the 5th and 7th 
harmonics, and then to the more practical problem of 
producing 1st and 5th harmonics with simultaneous 
elimination of the 3rd and 7th harmonics, which however 
cannot be detailed here due to space constraints. 

 
III.  ANALYSIS − UNEQUAL DC SOURCE VALUES  

Consider now the situation where the DC source values 
are not identical, which is more typical. For a quarter-wave 
symmetric waveform with s steps of magnitudes Ei, i = 1, … 
, s, its Fourier series expansion is given by (1) but with 

 Vh = 4
hπ[E1cos(hθ1) ± E2cos(hθ2) ± … ± Escos(hθs)] (13) 

where the θi, i = 1, … , s, are the angles (within the first 
quarter of each waveform cycle) at which the s steps occur 
and the signs are either + or − depending on whether a 
positive step or a negative step occurs at a particular θi. 

For the specific (introductory) problem of synthesizing 
a stepped waveform that has desired levels of V1 and V3 with 
two of the adjacent higher harmonics equal to zero, the step 
angles 0 ≤ θ1 < θ2 < … < θs ≤ π/2 must be chosen so that 
 4

π [ E1 cos(θ1) ± E2 cos(θ2) ± … ± Es cos(θs)] = V1  (14a) 

 4
3π [E1 cos(3θ1) ± E2 cos(3θ2) ± … ± Es cos(3θs)] = V3  (b) 

 E1 cos(5θ1) ± E2 cos(5θ2) ± … ± Es cos(5θs) = 0  (c) 
 E1 cos(7θ1) ± E2 cos(7θ2) ± … ± Es cos(7θs) = 0  (d) 
again with the signs being either + or − depending on the 
corresponding step direction. Next, applying the identities in 
(4) and defining ρi = Ei / Es, allow (14) to be re-written as 

 ∑
= si  , .. 1,  

  ρi ci = V1 / 
4 Es

π   = m1 (15a) 

 ∑
= si  , .. 1,  

  ρi { 4 ci
3 − 3 ci } = V3 / 

4 Es

3 π   = m3 (b) 

 ∑
= si  , .. 1,  

  ρi { 16 ci
5 − 20 ci

3 + 5 ci } = 0 (c) 

 ∑
= si  , .. 1,  

  ρi { 64 ci
7 − 112 ci

5 + 56 ci
3 − 7 ci } = 0 (d) 

admissible 
values 

h = 7 

h = 9 

h = 11 

admissible 
values 
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This set of multivariate polynomial equations can then be 
solved using the same procedures as for the case of equal 
source values. Unfortunately, in general, there is apparently 
not a simple relationship between these solutions and those 
solutions for the equal source case that can be exploited. 
Considering the PNP case as example, with E1 = 0.9, E2 = 
1.1, E3 = 1, the step-angle solutions obtained for m1 = 
0.587785 and varying m3 are shown in Fig. 16: note the 
difference from the equal source solutions shown in Fig. 13. 
Clearly, other source values and/or the other step-pattern 
cases can be treated accordingly. 
 

IV.  EXPERIMENTAL RESULTS 

 Laboratory measurements were obtained from a 5-level 
inverter demonstrating the unequal DC source (with E1 = E2 
= E3 = 200V, E4 = 67V) 4-step PNPP case as example, to 
generate desired 1st and 5th harmonic levels with V5/V1 = 1.0 
while canceling the 3rd and 7th harmonics. This waveform 
may be desired for an application where a span of 5 is 
needed between the two heating frequencies. The step 
angles were set to θ1 = 9.09°, θ2 = 34.43°, θ3 = 69.73°, θ4 = 
74.17° (as appropriately calculated). Fig. 17 shows the 
voltage and current waveforms for a fundamental frequency 
of 10kHz. The R-L load average power was 437.5W and 
conversion efficiency was estimated to be 95.6% (from 
estimate of the IGBT dual-module losses based on datasheet 
values). Table 1 shows a comparison of the analytical and 
measured voltage harmonic amplitudes indicating good 
agreement between them. Note that the higher harmonics are 
mostly filtered out by the load inductance resulting mainly 
in the desired dual-frequency current as shown in Fig. 18. 
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Figure 16.  Step angle solutions for PNP case with unequal sources 
 

Table 1.  Unequal source 4-step 5-level inverter voltage harmonics. 

 V1 V3 V5 V7 V9 V11 V13 V15 
Analytical 153.0 0 153.0 0 10.0 12.0 32.5 22.9 
Measured 145.3 8.4 150.0 6.1 1.7 9.7 33.2 22.8 
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Figure 17.  Unequal source 4-step, 5-level inverter waveforms. 
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Figure 18.  Unequal source 4-step, 5-level inverter output spectrums. 
 

V.  CONCLUSIONS 

Fundamental results have been presented on the use of 
multilevel inverters for producing power at two frequencies 
simultaneously, as desirable for certain induction heating 
applications. A complete analysis has been shown for the 2-
step case and for the 3-step case, considering either equal or 
unequal DC sources.  

For the 2-step case (with equal sources) to generate 
desired levels of 1st and 3rd harmonics, the PP waveform 
results in lower harmonic distortion compared to the PN 
waveform but requires a 5-level waveform instead of a 3-
level waveform.  Moreover, for required magnitudes of m3 ≤ 
1 with the PP waveform, positive m3 is preferable to 
negative m3 for reduced distortion.  However, the PN 
waveform allows a broader range of achievable 1st and 3rd 
harmonic level combinations.  
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For the 3-step case (with equal sources), the PNP 
waveform allows for a broad range of achievable 1st and 3rd 
harmonic level combinations although yielding a fair 
amount of harmonic distortion. Moreover, it only requires 
producing a 3-level waveform. However, to have all devices 
operate at the fundamental frequency to produce this 
waveform still requires a 3-cell converter. 

Finally, experimental results have been presented for 
the unequal source 4-step case that validates the proposed 
approach to dual-frequency voltage generation by multilevel 
inverters with equal or unequal DC sources.  Unfortunately, 
the analysis also suggests there is no simple relationship 
between the solutions for the unequal source case and those 
solutions for the equal source case. 
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APPENDIX 

Fact [9]:  Given two polynomials 
f(x, y) = a0(x) yl + a1(x) yl-1 + … + al,   a0(x) ≠ 0,   l > 0 

g(x, y) = b0(x) yn + b1(x) yn-1 + … + bn,   b0(x) ≠ 0,   n > 0 
all possible solutions (x*, y*) of f(x, y) = 0 and g(x, y) = 0 
can be obtained by finding x* as the eigenvalues of the 
Sylvester matrix formed from the aj(x), j = 1, … , l, and 
bk(x), k = 1, … , n, and then y* as the roots of f(x*, y) = 0. 
 
Procedure for calculating the 3-step angle solutions: 
1. From (12a), substitute c3(c1, c2) into (12b) and (12c) to 
obtain two polynomial equations in c1 and c2. 
2. From the two polynomials f(c1, c2) and g(c1, c2), extract 
the coefficients of the powers of c2 and label them 
appropriately as a0, a1, … , al, b0, b1, … , bn. 
3. Form the Sylvester matrix [9] from these coefficients and 
then find its eigenvalues. These eigenvalues are the candidate 
solutions for c1 in our problem, which also needs to be a real 
number and satisfy 0 ≤ c1 ≤ 1; so discard the inadmissible 
ones. 
4. For each remaining candidate solution for c1, substitute 
its value into f(c1, c2) and find the candidate solutions for c2 
in our problem, which needs to be a real number and satisfy 
0 ≤ c2 ≤ c1; so discard the inadmissible ones. 
5. For each remaining candidate solution for c2, substitute 
its value and the corresponding candidate solution for c1 into 
(12a) to find the candidate solution for c3, which needs to be 
a real number and satisfy 0 ≤ c3 ≤ c2 to be admissible.   
6. The admissible triples of (c1, c2, c3) are then the 
solution(s) to the 3-step waveform problem. 
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