MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Electrical and Computer Engineering Faculty

Research & Creative Works Electrical and Computer Engineering

01 Jan 2006

Adaptive Distributed Fair Scheduling and Its Implementation in
Wireless Sensor Networks

Maciej Jan Zawodniok
Missouri University of Science and Technology, mjzx9c@mst.edu

Jagannathan Sarangapani
Missouri University of Science and Technology, sarangap@mst.edu

Steve Eugene Watkins
Missouri University of Science and Technology, watkins@mst.edu

James W. Fonda
Missouri University of Science and Technology, fonda@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

b Part of the Computer Sciences Commons, Electrical and Computer Engineering Commons, and the
Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation

M. J. Zawodniok et al., "Adaptive Distributed Fair Scheduling and Its Implementation in Wireless Sensor
Networks," Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2006,
SMC'06, Institute of Electrical and Electronics Engineers (IEEE), Jan 2006.

The definitive version is available at https://doi.org/10.1109/ICSMC.2006.384641

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICSMC.2006.384641
mailto:scholarsmine@mst.edu

2006 IEEE International Conference on
Systems, Man, and Cybernetics
October 8-11, 2006, Taipei, Taiwan

Adaptive Distributed Fair Scheduling and Its Implementation in
Wireless Sensor Networks

James W. Fonda*, Maciej Zawodniok, S. Jagannathan, and Steve E. Watkins

Abstract—A novel adaptive and distributed fair scheduling
(ADFS) scheme for wireless sensor networks is shown through
hardware implementation. In contrast to simulation, hardware
evaluation provides valuable feedback to protocol and hardware
development process. The proposed protocol focuses on quality-
of-service (QoS) issues to address flow prioritization. Thus, when
nodes access a shared channel, the proposed ADFS allocates the
channel bandwidth proportionally to the weight, or priority, of
the packet flows. Moreover, ADFS allows for dynamic allocation
of network resources with little added overhead. Weights are
initially assigned using user specified QoS criteria. These weights
are subsequently updated as a function of delay, enqueued
packets, flow arrival rate, and the previous packet weight. The
back-off interval is also altered using the weight update equation.
The weight update and the back-off interval selection ensure that
global fairness is attained even with variable service rates. The
algorithm is implemented using UMR/SLU motes for an
industrial monitoring application. Results the hardware
implementation demonstrates improved performance in terms of
fairness index, flow rate, and delay.

Index Terms— Fairness, Adaptive-fair-scheduling, Weight-
adaptation, Quality-of-Service, Embedded System.

I. INTRODUCTION

In this work hardware implementation of wireless sensor
networks (WSNs) with the adaptive and distributed fair
scheduling (ADFS) protocol are shown. Challenges for
hardware implementation of ADFS on WSNs include memory
limitations, low processing power, and selection of priority
sensor flows. Selection of fair bandwidth allocations for the
sensor flows, or based on quality of service (QoS), must also
be established based on user requirements.

Introduction of the 802.15 standard has accelerated the
application of WSNs in industrial environments. Use of small,
low power, radio enabled networks provide observability in a
cost effective and deployable platform. Research into WSNs
has shown the ability to provide dynamic routing [1],
intelligent processing of data, and observability in harsh
environments. Since bandwidth is a major constraint in
WSNs, one key in guaranteeing the QoS is to manage radio

Research supported in part by Dept. of Education GAANN Fellowship, Air
Force Research Laboratory Grant (FA8650-04-C-704) and Intelligent Systcms
Center.

James W. Fonda, Macei Zawadniok, S. Jagannathan, arc members of the
Embedded Networking Systems Laboratory and the Electrical and Computer
Engineering Department at the University of Missouri-Rolla, Rolla, MO
65409 (cmail: mjz9c(@umr.cdu, sarangap@umr.cdu).

Steve E. Watkins is a member of the Electrical and Computer Engineering
Department at the University of Missouri-Rolla, Rolla, MO 65409 (cmail:
steve.c.watkins@icce.org).

* Contact author: James W. Fonda can be reached via email:
fonda@umr.cdu, fax: (573) 341-4532, phone: (573) 308-6866

1-4244-0100-3/06/$20.00 ©2006 IEEE

resources effectively and fairly. The focus of this work is to
address challenges in, and present, a hardware implementation
of a fair scheduling network protocol [2] on a WSN test-bed.

Fairness is a critical issue when accessing a shared wireless
channel. Fair scheduling must then be employed in WSNs to
provide proper flow of information. In the literature, many
algorithms and protocols regarding QoS metrics are found;
however they do not address hardware constraints [1-9].

A number of fair scheduling schemes exist in the literature;
where some are centralized [3-6], and others are distributed
[7, 8]. There has been work on achieving fairness using
distributed MAC protocol for wireless networks [8]. A recent
work [7] proposes a distributed fair scheduling protocol for
wireless LANs. Distributed fair scheduling (DFS) [7] allocates
bandwidth proportional to the weights of the flows. This
protocol performs a fair allocation of bandwidth using a self-
clocked fair queuing algorithm. However, this protocol may
not be suitable for multi-hop networks with dynamic channel
state and topology. With node mobility, the network state can
change demanding weight updates. Moreover, DFS results in
large delay variations, or jitter, in reception of packets at the
destinations. Finally, selection of initial weights is not
addressed in DFS. Unless weights are selected appropriately,
fairness cannot be guaranteed even for wireless networks with
stationary nodes.

In general these fair scheduling schemes determine
appropriate weights in order to meet QoS criteria. In most
schemes weights are assigned and not updated when dynamic
network conditions apply, and thus do not provide the
advantage seen in an ADFS enabled network [3-8].

The notion of fairness must be guaranteed among a set of
contending flows. Moreover, the proposed scheme should be
computationally distributed in its nature. Thus, any distributed
solution to WSN fair scheduling must coordinate local
interactions to achieve global performance. This should be
achieved within the constraints imposed by the hardware.
Therefore, any fair scheduling algorithm proposed for a multi-
hop WSN must consider the following design criteria:

= Centralized vs. Distributed approaches. Distributed
fair scheduling algorithm for WSN is preferred over a
centralized scheme.

* Fairness Metric. Selection of an appropriate fairness
metric is important from a design aspect. It should
address the fair allocation of service proportional to
weights selected by user-defined QoS metrics.

® Scalability. The scheduling scheme should deploy well
in WSNs with dynamic topology and link failures.

3382

= Efficiency of the protocol. Since a trade-off exists
between throughput and fairness, fair scheduling
should render reasonable throughput to all flows.

= Persistency of Quality-of-Service. Fair scheduling

should meet QoS of all flows during topology changes
and dynamic channel states.

Applications for work presented here are based on
industrial needs for distributed sensing. Consider the case of
distributed sensing of air pressure and volumetric air flow in
compressed air systems used for tooling. In this case sensed
parameters must be communicated back to a base station
without aggregation or sensor fusion to provide observability
for each parameter. Thus, fair scheduling of sensor flows is
needed to provide equal observability to all priority
measurands. Moreover, non-aggregated data is required to
allow analysis of the independent sensors.

Work presented in this paper focuses on implementation of
the ADFS scheduling protocol [2]. The ADFS protocol was
initially developed at UMR for ad-hoc networks. In this paper,
the protocol is ported to WSN and implemented on a hardware
platform developed at UMR. Hardware implementation is
based on a platform developed at the University of Missouri-
Rolla (UMR). Hardware testing results are shown to provide a
comparison of the performance of ADFS scheme. Additional
simulations results are available in [2]. Hardware
implementation provides comparison of ADFS in a single
hardware cluster. Inter-cluster scheduling provides useful
bandwidth allocation to allow the cluster head (CH) to route
the sensor information through the rest of the network using
optimal energy delay sub-network routing (OEDSR) [1].

II. ADAPTIVE AND DISTRIBUTED FAIR SCHEDULING (ADFS)
ProTOCOL

The main goal of the proposed ADFS protocol [2] is to
achieve fairness in WSNs in the presence of dynamic channel
states since channel uncertainties such as shadowing affects
available bandwidth. Dynamic weight adaptation is used to
compensate for changing channel states. ADFS employs an
adaptive scheduling algorithm to provide fairness among local
queues, and the MAC protocol to provide fair channel access
via dynamic backoff. ADFS performance was previously
evaluated in the NS-2 simulator [2]. In this paper the
performance is assessed on the UMR/SLU motes.

A. Protocol Implementation

To achieve fairness at the scheduling level the proposed
ADFS protocol implements the start-time fair queuing (SFQ)
[2, 3] scheme, defined as follows:

1) On arrival, the ;™ packet of flow f pjf} , and has length
!5 and weightg g, is stamped with start tag S(p}) , defined
as
S(p}) = max{ (AP, F(p)) | j 21)

where F(p’) , finish tag of packet p7, is defined as
Py g 7

. o]
F(”f’)zs‘f’f'“f; j>1 @)

whereF(p(}) =0.

2) Initially, the virtual time, v(?), at a given wireless node is
set to zero. During transmission, the node’s virtual time at
time ¢, v(2), is defined to be equal to the start tag of the packet
being transmitted at time 7 . At the end of a transmission, v(?)
is set to the maximum of finish tag assigned to any packets
that have been transmitted by time ¢.

3) Packets are transmitted in the increasing order of the start
tags.

1) Dynamic Weight Adaptation

To account for the dynamic traffic demands and channel
states that affect the fairness and end-to-end delay, the weights
for the flows are updated dynamically. The actual weight for

the i flow, ;™ packet denoted by ¢y , 18 updated as

Gy (k+)=ad;(k)+PE; (3)
where ¢3,J (k) i1s the previous weight of the packet, & and S

are design constants, {a, f} € [-1,1], and the network

state, E; , is defined as:
+ 1 @)

eij ,delay

E. =c¢

ij ij, queue

where ¢;

i, queve 18 the error between the expected length of the

queue and the actual size of the queue and e; is the error

ij, delay
between the expected delay and the delay experienced by the
packet so far. According to (3) and (4), as queues buildup, the
packet weights will be increased to clear the backlog.
Moreover, the weights of the packets with large end-to-end
delays (delays closer to the expected delay) will be increased

(due to smaller values of e 4,) in order to speed up their

transmission. However, packets experiencing delays greater
than the expected delay will be dropped. Note that the

term, £;;, is a bounded value since the queue length and delay

are finite values at each node. Equation (3) takes into account
the channel state and buffer availability at each node via
weight adaptation. The following two lemmas provide support
to (3) [2].

Lemma 1: If the weights are updated using (3) for a
sufficiently long interval[r,7,], then the weight

error g;,-j(k +1) is bounded, provided |a| <l.

Lemma 2: The actual weights q;ij at each node using (3)

converge close to their target values in a finite time.

To calculate the backoff interval and to implement the
scheduling scheme, the updated weights at each node have to
be transmitted in the data frame of the MAC protocol. To
enable this, changes are made to the data packet header to
accommodate the current weight of the packet. Whenever a
packet is received, the current weight is used to update the

3383

weights dynamically using (3). Then the weight field in the
packet header is replaced with the updated weight.
2) MAC Protocol - Dynamic Backoff Intervals

The proposed ADFS protocol uses the CSMA/CA scheme
similar to the IEEE 802.11 protocol. When multiple nodes of a
wireless network compete to access the shared channel the
selection of the backoff interval plays a critical role in
deciding which node is granted access to the channel. In order
to achieve global fairness, the nodes must access the channel
in a fair manner.

The proposed ADFS scheme is implemented as a novel
MAC protocol in order to provide access of the shared
medium by adjusting the dynamic backoff intervals. ADFS
calculates the backoff interval relative to the weight of the
packet. Since the weights are updated using (3), the backoff
interval is also updated at each node. Backoff interval, B/ i s

. -th . .
for i" flow] " packet with packet length l;; and weight ¢;

is defined as

P

where SF' is the scaling factor and p is a random variable

i
Bl =| p*SF*-)

with mean 1. Collision handling mechanism is incorporated
similar to the one in [7]. This results in fair allocation of the
bandwidth. Next the fairness guarantee is presented with
relevant theorems.

B. Fairness Guarantee

To prove that ADFS is fair, the bound on
Weti,t2) W, (1.t ,
| st LT)| has to be obtained for a sufficiently
Rz bn |

long interval [#),#,] in which both flows, f andm, are
backlogged, the proof for this can be found in [2].

Theorem 1: For any interval [¢,,7,] in which flows f

and m are backlogged during the entire interval, the
difference in the service received by two flows at a ADFS
wireless node is given as

R Y
| ¢f,l ¢m,1 l ¢f,1 ¢m,l

Theorem 2: If Q is the set of flows served by an ADFS
node following FC service model with

parameters (A(z, 1,), w (1)), andz¢n,, < Alty,1,), then
neQ
for all intervals [f,,7,]in which flow fis backlogged

Q)

throughout the interval, W, (1, 1,) is given as
Wf(“lstz)Z ¢f,/(t2 _tl)_
ZneQ l'l’nax l//(ﬂ‘) _ lmax (7)

ST B A I

Theorem 3: If Q is the set of flows served by an ADFS
node following EBF service model with
parameters (ﬂ'(tl ’ t2)’ B’ w, l//()“)) 57 20 »

and ' R,(v) < A(t,,1,) for allv then the departure time of
neQ

packet P/ at the node, denoted by 7, (P/’), is given by

max
/,

P[Td(P/)STa<Pf’¢f,f)+ 2 Menty)

neQan#f

]f
%) S N B 8)

+
1(’1, 1) ﬂ’(tl’ n) Ay,)

C. Overhead Analysis

Analysis is also performed to estimate the data transmission
overhead in the case of the hardware implementation. The
additional overhead in ADFS protocol is due to inclusion of
the current weight value and time-stamp in the header of each
packet. In the implementation the weight was encoded using
8-bits and the time-stamp using 32-bit variables. This
information then added 5 bytes of overhead to each packet.
This means a 5% overhead for the packet. Additional
overhead is introduced due to the interface to the 802.15.4
module. Packetization of the data for the radio interface adds
7 more bytes of overhead. This results in another 7% overhead
for a total of 12%. Addition of the ADFS protocol overhead is
negligible compared to the benefits of the fairness guarantee
and improved QoS.

D. Initial Weights Selection

The initial weights are selected according on the user
specified QoS. Initial weights are assigned to the flows based
on the class they belong to. The flows within the same class
are assigned the same initial weight. For instance, in some
simulations [2] (including both star and random topologies)
the flows are classified into 4 different classes. On the other
hand, for some simulation scenarios with n flows, it is
assumed that all the flows belong to the same class and
therefore the initial weight assigned to each flow is I/ and all
the flows are treated equally. In both cases, the initial weights
are selected in such a way that the overall sum of weights of
all the flows is equal to unity.

Initial flow weights are used to assign a target QoS.
Moreover, the proposed ADFS protocol uses dynamic weight
adaptation to react to the varying channel state and network
topology. Then the goal is to achieve an overall fair allocation
of bandwidth proportional to the initial weights of the flows.

III. HARDWARE IMPLEMENTATION DESCRIPTION

In this section, an overview of the hardware implementation
of the ADFS scheduling protocol is given. Use of customized
hardware for development of sensing, processing, and
networking is also presented. A description of capabilities,
limitations, and support for networking applications is next
presented. Also, in this section an overview of the software

3384

architecture is given with respect to the ADFS protocol and its
requirements on the hardware.

A. Hardware Description

Hardware for implementation of the ADFS was selected to
be energy conservative, performance oriented, and of small
form-factor. Use of Silicon Laboratories” 8051 variant
hardware was selected for its ability to provide fast 8-bit
processing, low-power consumption, and ease of interfacing
to peripheral hardware components. A Maxstream XBee™ RF
module was also employed for this work. The use of external
RAM (XRAM), UART interfacing, and A/D sensing allow the
microcontroller to perform the tasks needed for a sensor node
platform. Next, a treatment of the hardware capabilities and
limitations will be given.

1) Considerations and Limitations

Hardware implementation of any algorithm is constrained
by the limitations of the hardware. Use of specific hardware
must be weighed against the precision, speed, and criticality of
an algorithm’s implementation. For this protocol, low-power
consumption was given the highest priority. In turn, the
demand for low power limits the types of processor
architectures that can be deployed. The selection of the Silicon
Laboratories” 8051 variants was based on these criteria.
Limitations for the implementation that are incurred through
the use of the 8051 variant family are a small memory space
and a maximum processing speed. In the next section, a
description of the specifications for the hardware implemented
nodes will be given.

B. Architecture of the Hardware System and Software

This section outlines the hardware and software
components of the ADFS implementation. A presentation of
hardware capabilities is given. The software implementation is
also discussed in this section. Software architecture, control-
flow, and hardware implications are shown. In this section the
system architecture of the nodes is discussed.

Fig. 1. G4-SSN

1) Sensor Node Hardware

The Generation-4 Smart Sensor Node (G4-SSN), seen in
Fig. 1, was originally developed at UMR and subsequently
updated at St. Louis University. The G4-SSN has various
abilities for sensing and processing. The former include strain
gauges, accelerometers, thermocouples, and general A/D
sensing. The later include analog filtering, compact flash (CF)

memory interfacing, and 8-bit data processing at a maximum
of 100 MIPS.

2) G4-SSN Capabilities

The abilities of the UMR/SLU motes nodes are shown in
Table 1. As seen in the table the G4-SSN provides powerful 8-
bit processing, a suitable amount of RAM, and a low-power
small form-factor. Another strong point of the G4-SSN is the
available code space found on the Silicon Laboratories”
C8051F12x variant.

TABLE 1
G4-SSN CAPABILITIES
lc@ | Flash ADC
3.3V | Memory [bRylt\zns] Sampling l':::;t':;; MIPS
[mA] | [bytes] Rate [kHz]
8448 100 @ | 100-pin
G4-SSN| 35 | 128k | bytes | 1012t | Larp | '

ADFS requires that the sensor nodes are synchronized. For
this reason a test was performed on the G4-SSN real-time
clock (RTC) capabilities. Experimentation consisted of a
statistical analysis of the RTC accuracy. Extended use of the
RTC without re-synchronization can cause drift to occur and
this drift must be quantified to provide a confidence measure
of the RTC. A 32.768 kHz quartz crystal is used to feed a
timer on the 8051 and is used at the time-base of the RTC.
The RTC was allowed to run for 10 minutes and the results
are tabulated in Table II.

TABLE I
G4-SSN RTC DRIFT TESTING RESULTS
Test Time At Variance Mean STD Error
[min] [sec] [u-sec] [sec] [sec] [sec]
10 0.05 50.45 0.0504 0.007 0.515

As seen in the table the RTC has a drift error of around a
half-second over ten minutes, this translates to 3.5 seconds per
hour. In the context of this application this drift is acceptable
as the RTC will be synchronized with the BS every 30
seconds.

IV. HARDWARE IMPLEMENTATION RESULTS

In this section hardware implementation results are shown.
Using the 802.15.4 standard with 250kbps RF data bandwidth
the scheduling algorithm is tested. CBR traffic is generated on
the source nodes and it routed to the base station via OEDSR
[1]. The nodes internally provide 38.4 kbps throughput to the
802.15.4 module. There is no data aggregation, or data fusion,
performed yet in the network since the considered application
requires data from independent locations whereas the
proposed scenario is a good test for queuing schemes for
testing fairness. Due to hardware limitations of the 802.15.4
module interfacing the back-off interval time slots are
constrained to a minimum of 15 mili-seconds. This limits the
overall performance of the implementation; however the issue
can be addressed in future work using the Chipcon CC2420.

3385

Testing of the hardware implementation is now discussed.
The results were obtained by use of a star topology with 5
source nodes and a single CH. CBR traffic is generated at
each source node and the initial weight of each flow is equal
to 1/5 and a value of a= 0.4, and B=0.6. Other parameters
include SF=0.032 and the packet length of maximum 100
bytes with an 88 byte data payload. During testing the base
station is used to record network activity for analysis.
Performance of the ADFS implementation is evaluated using
the exponential back-off scheme and drop-tail queuing. A
comparison of these two methods shows the performance
increase in the ADFS enabled network.

The ADFS scheduling scheme takes into account the weight
of the packets and proportionally allocated bandwidth to the
flows. In contrast, the networks without ADFS functionality
lack the ability to differentiate QoS in this manner. Thus, poor
fairness is observed in networks without ADFS.

In Table III the results for throughput and fairness index
(FI) are shown. The fairness index (FI) [9] of the network is
calculated using (9) and is used as a metric to further evaluate
the performance of the ADFS protocol.

2 2
T T, 9)
FI = e 7y -z (
[Z/ ¢1j / Z’("’J
where T, is the throughput of flow /', ¢, is the initial

weight of flow f , and 7 is the number of flows.

In case of ADFS implementation, the throughput is higher
for every flow since it is able to maintain a steady and
proportional traffic thus reducing buffer overflows. The
reference scheme is not able to distribute the available
bandwidth proportionally to all flows, thus the buffer
overflows occurs more often than in case of ADFS protocol.
Overall the ADFS network achieves a /3.3% increase in the
throughput over the First-In-First-Out (FIFO) queued scheme.

Moreover, a larger FI value is observed for the ADFS
implementation than for the reference scheme. The ADFS
scheme allocates the resources proportionally to the packet
weight thus adapting to a changing channel and network state.

TABLE 11
THROUGHPUT AND FAIRNESS INDEX RESULTS FOR HARDWARE TESTING
Flow 1 |Flow 2 | Flow 3 | Flow 4 | Flow 5
kB/s] | (kBis] | kBis] | kBis] | kess] | OVe@]
ADFS | 888 | 851 | 847 | 817 | 81.0 | 843 [o.9989
FIFO | 838 | 677 | 767 | 687 | 753 | 74.4 |o.9938

In Figs. 2 and 3 the throughput of each flow for a star-
topology using drop-tail queuing and proposed ADFS
respectively are shown. The non-ADFS protocol experiences
high throughput variance, while the ADFS system provides
more constant performance through establishing fairness of
the scheduling. Moreover, ADFS achieves higher overall
throughput since it allows all flows to share bandwidth in a
more even manner over time when compared to FIFO queued

network. This clearly demonstrates the fairness of ADFS
protocol.

Per Flow Throughput .vs. Time
100-- - [

@
0
j}
s
m
5
Q
ey
jo2}
5 =~ flow 1 i
£ =« flow 2 i
- = flow 3
flow 4
-4 flow 5 :
n T T "]
% 100 200 300 400 500
: Time, [sec]
Fig.2 Throughput of FIFO Queued Network
Per Flow Throughput .vs. Time
100———— : . . —
i e bt
@
173
Q
s
22
5
[o%
£
o
=
[
=
=

% 400 200 300 400 500
Time, [sec]
Fig. 3 Throughput of ADFS cnabled network

In Table IV the results for average end-to-end delay and its
standard variation (std) are shown. The mean delay values for
both protocols are similar with ADFS achieving smaller delay
for 4 flows out of 5 flows when compared to the FIFO
protocol with Drop tail queue and exponential back-off.
Overall the improvement of 2% in end to end delay is
observed for the ADFS scheme over the FIFO queue even
though there is an additional overhead with the proposed
protocol. The advantage of ADFS is due to a fair allocation of
radio resources since the ADFS selects a back-off interval
proportionally to a packet weight. Moreover, the standard
deviation is higher in case of the FIFO queued scheme due to
higher variation in the back-off.

TABLE III
DELAY RESULTS FOR HARDWARE TESTING
[sec] Flow 1 | Flow 2 | Flow 3 | Flow 4 | Flow 5 | Overall
mean| 11.24 | 11.41 1169 | 11.56 | 11.30 | 11.44
ADFS
std 1.011 1.167 | 1.068 | 1.015 | 0.834 0.17
mean| 11.11 11.60 | 11.71 11.61 12.30 | 11.66
FIFO
std 1.434 1.12 1.459 | 1.212 | 1.512 0.38

The results show that the proposed protocol can achieve fair
allocation of bandwidth with a 13.3% increase in throughput,
slightly lower end-to-end delays and delay variations reduced

3386

by 55% (std), resulting in a better QoS. This shows the ability
of the ADFS scheduler to be effectively applied to WSN
systems to enhance network performance

V. UMR/SLU MOTE FUTURE DIRECTION

Future work on the UMR/SLU motes includes increased
capabilities for RF communications, memory density, and
efficient networking implementations. Specifically, a
discussion of the current state and direction of the RF
communication module is now given. Currently a Maxstream
XBee™ module is used to implement the RF layer of the G4-
SSN. Future introduction of the Chipcon CC2420 transceiver
chipset to the G4-SSN is now being developed at UMR. With
this introduction several advantages are perceived. The
primary perceived advantage is direct access to the physical
layer in terms of parameter access and control. For example,
direct and real-time sensing of channel access (CA) state will
reduce back-off interval slots. Next, power savings in are
expected with the CC2420 on the order of 62%. Additionally,
more finely adjustable RF transmission power levels will
allow for distributed power control in the WSN. The CC2420
also provides a smaller physical footprint to enable higher
level of integration and miniaturization. Finally, the
subsequent frame processing step on the XBee™ is avoided
and frames are passed directly to the transceiver.

VI. CONCLUSIONS

In this paper, the implementation of a novel adaptive and
distributed fair scheduling (ADFS) scheme for WSNs is
discussed. The objective is to evaluate the hardware
capabilities and implementation viability. The results indicate
where hardware constraints must be alleviated, thus providing
direction for future hardware redesign that meets the
requirements of the ADFS protocol. More topologies will be
utilized to evaluate the protocol.

In the proposed protocol, weights are updated and the
updated weights are used in making the scheduling decisions
and also in the calculation of the back-off intervals in the
CSMA/CA paradigm. Initial weights are assigned to the flows
based on the service they expect from the network.

The performance of the proposed ADFS scheme is
presented and analytically evaluated. The effectiveness of the
proposed ADFS protocol was evaluated through hardware
experimentation. The results show that the proposed protocol
can achieve fair allocation of bandwidth with a 13.3%
increase in throughput, lower end-to-end delays and delay
variations reduced by 55% (std), resulting in a better QoS.
This shows the ability of the ADFS scheduler to be effectively
applied to WSN systems to enhance network performance;
however further study is needed to address the current
hardware constraints and improve overall performance of the
implementation.

ACKNOWLEDGMENT

Thanks go to Dr. Kyle Mitchell of St. Louis University, St.
Louis, MO. His continued support and advice on the G4-SSN
system and hardware implementation issues is much
appreciated.

REFERENCES

S. Ratnaraj, S. Jagannathan and V. Rao, “OEDSR: Optimal Encrgy
Delay Subnet Routing Protocol for Wircless Scnsor Networks”, Proc.
of the IEEE Conference on Sensing, Networking, and Control, pp. 787-
792, April 2006.

N. Regatte and S. Jagannathan, “Adaptive and Distributed Fair
Scheduling Scheme For Wireless Adhoc Networks”, Proc. of the Word
Wireless Congress, pp. 101-106, May 2004.

P. Goyal, HM. Vin, and H. Cheng, “Start-Time Fair Qucuing: A
Scheduling Algorithm for Integrated Scrvices Packet Switching
Networks”, IEEE/ACM Transactions on Networking, October 1997,
vol. 5, pp. 690 — 704.

S.J. Golestani, “A Sclf-clocked Fair Qucuing Scheme for Broadband
Applications”, [EEE INFOCOM’94 Nctworking for Global
Communications, June 1994, vol. 2, pp. 636 — 646.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queuing Algorithm”, Proc. ACM SIGCOMM'89, pp. 3-12.

J.C.R. Bennett and Hui Zhang, “WF2Q: Worst-Casc Fair Weighted
Fair Qucuing”, IEEE INFOCOM’96, March 1996, Vol. 1, pp. 120 —
128.

N.H. Vaidya, P. Bahl, and S. Gupta, “Distributed Fair Scheduling in a
Wircless LAN”, 6th Annual Intcrnational Conference on Mobile
Computing & Networking, August 2000, pp. 167-178.

H. Luo, P. Mecdvedev, J. Cheng, and S. Lu, “A Sclf-Coordinating
Approach to Distributed Fair Queucing in Adhoc Wircless Networks”,
[EEE INFOCOM, 2001, pp. 1370 — 1379.

R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, Call
Establishment Latency and other Performance Metrics”, Tech. Rep.
ATM_Forum/96-1173, August 1996.

(1]

2]

(3]

[4]

[5]
[6]

7

(8]

(%]

3387

	Adaptive Distributed Fair Scheduling and Its Implementation in Wireless Sensor Networks
	Recommended Citation

	Adaptive distributed fair scheduling and its implementation in wireless sensor networks IEEE International Conference on Systems, Man and Cybernetics, 2006, SMC'06.

