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A Discrete-Time Model for Spatio-Temporally Correlated
MIMO WSSUS multipath Channels

Chengshan Xiao, Jingxian Wu, Sang-Yick Leong, Yahong R. Zheng, and Khaled B. Letaief†

Dept. of ECE, University of Missouri, Columbia, MO 65211, USA
†Dept. of EEE, Hong Kong University of Science & Technology, Hong Kong

Abstract— In this paper, a statistical discrete-time model
is proposed for simulating wideband MIMO channels
which experience spatially and temporally correlated, wide-
sense stationary uncorrelated scattering (WSSUS) multi-
path Rayleigh fading. A new method is also presented
to efficiently generate the correlated MIMO channel coeffi-
cients, which can be used for accurate simulation of physical
continuous-time MIMO channels. The statistic accuracy of
the discrete-time MIMO channel model is rigorously veri-
fied through theoretical analysis and extensive simulations
in different criteria.

I. Introduction

Multiple-input multiple-output (MIMO) communication
architecture has recently emerged as a new paradigm for
high data rate wireless cellular communications. It was
shown [1] that the MIMO capacity can scale linearly with
the number of antennas in independent Rayleigh flat fading
channels. However, for a wideband MIMO wireless systems
in the real world, subchannels of a MIMO wireless system
have spatial correlation and time dispersion, and the fading
of each subchannel has temporal correlation. These factors
may substantially affect the MIMO performance [2]. Fur-
ther researches in this field necessitate a realistic and effi-
cient MIMO channel simulation model to investigate, eval-
uate and test new algorithms and performance of MIMO
wireless systems under realistic fading scenarios.
Although numerous channel models have been estab-

lished for single-input single-output (SISO) and single-
input multiple-output mobile radio systems (see [3], [4] and
references therein), there are very few channel models for
MIMO wireless systems [5]-[7]. All of the previous MIMO
channel models are continuous-time based models, which
requires significant computational effort when the number
of multiple delayed fading paths is large and/or the differ-
ential delay between paths is small [8].
The main objective of this paper is to establish a

discrete-time MIMO channel model, which is statistically
accurate and computationally efficient to characterize the
continuous-time MIMO Rayleigh fading channel that has
spatial correlation, temporal correlation and time disper-
sion (or frequency selectiveness), in realistic fading scenar-
ios. The discrete-time MIMO channel model will trans-
late the effects of transmit filter, physical MIMO multipath
channel fading and receive filter into receiver’s sampling-
period spaced stochastic channel coefficients, and no over-
sampling is needed to handle multiple fractionally-delayed
fading paths. With the discrete-time channel model, the
simulation of a MIMO system is carried out in a pure dis-
crete manner. The statistic accuracy and computational

efficiency of the discrete-time MIMO channel model is rig-
orously verified through theoretical analysis and extensive
simulations in this paper.

II. MIMO Channel Description and Assumptions

The baseband representation of a MIMO channel with N
transmit antennas and M receive antennas is depicted in
Figure 1, where p

T
(t) and p

R
(t) represent the normalized

transmit filter and receive filter, respectively, and vm(t)
is AWGN with power spectral density N0. The (m,n)th-
subchannel connecting the nth-transmit antenna and the
mth-receive antenna is denoted by its time-varying impulse
response gm,n(t, τ), with τ being the time delay. The re-
ceived signal at each receive antenna is sampled at a period
of Ts = Tsym/γ, where Tsym is the symbol period of the
transmitted sequence sn(k) and γ is an integer. We de-
fine the combined impulse response (CIR) of the (m,n)th-
subchannel as follows

hm,n(t, τ) = p
R
(τ) � gm,n(t, τ) � p

T
(τ), (1)

where � is the convolution operator. The sampled output
of the received signal at the m-th receive antenna is given
by

ym(k) =
N∑

n=1

∑

l

xn(k − l)hm,n(k, l) + zm(k), (2)

where hm,n(k, l) = hm,n(kTs, lTs) is the Ts-space sampled
version of hm,n(t, τ), and zm(k) is sampled from zm(t),
which is the noise component of the receive filter output
and has the form

zm(t) = vm(t) � p
R
(t). (3)

xn(k) in (2) can be viewed as an oversampled sequence of
the transmitted signal sn(k) and is given by

xn(k) =
{
sn(k/γ), if k/γ is integer,
0, otherwise. (4)

Two assumptions are made on the physical channel of a
wideband MIMO wireless system, as follows:

Assumption 1: The (m,n)th-subchannel of a MIMO sys-
tem is a wide-sense stationary uncorrelated scattering (WS-
SUS) [9] Rayleigh fading channel with zero mean and its
autocorrelation is given by

E
{
gm,n(t, τ)g∗

m,n(t−ξ, τ ′)
}
=J0(2πfdξ)G(τ)δ(τ−τ ′), (5)

where (·)∗ is the conjugate operator, J0(x) is the zeroth-
order Bessel function of the first kind, and G(τ) is the delay

power profile with
∫ ∞

−∞
G(τ)dτ = 1.
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Fig. 1. A conventional continuous-time baseband MIMO channel model.

It is important to note that Assumption 1 is commonly
employed for SISO channels in the literature [8], [10], [11],
and in the wireless standards documents [12], [13] for both
TDMA-based GSM and EDGE systems, and CDMA-based
CDMA2000 and UMTS systems.

Assumption 2: The spatial correlation between any two
subchannels of the MIMO system is given by

E
{
gm,n(t, τ)g∗

p,q(t− ξ, τ ′)
}
=

ρ(m,p)
Rx

· ρ(n,q)
T x

· J0(2πfdξ) ·G(τ) · δ(τ − τ ′), (6)

where ρ(m,p)
Rx

is the receive correlation coefficient between
receive antennasm and p, and ρ(n,q)

T x
is the transmit correla-

tion coefficient between transmit antennas n and q. Both
of them satisfy 0 ≤

∣∣ρ(n,q)
∣∣ ≤ ρ(n,n) = 1. They can be

calculated by mathematical formulas [2]or obtained from
experimental data.
This assumption is a straightforward extension of the

MIMO Rayleigh flat fading case in [14] to the MIMO WS-
SUS multipath Rayleigh fading case. It should be pointed
out that Assumption 2 may not be extendable to Rice fad-
ing MIMO channels [15].

III. The Discrete-time MIMO Channel Model

A discrete-time MIMO channel model is presented in
this section with its statistical properties analyzed in de-
tails. These statistical properties are further used to build
a discrete-time MIMO channel simulator with high compu-
tational efficiency and accurate statistics compared to its
counterpart in the continuous-time domain.

A. The Discrete-Time Channel Model

The time varying CIR hm,n(k, l) is normally non-causal
with infinite impulse response (IIR), because the transmit
and receive filters are of infinite time duration in theory to
maintain limited frequency bandwidth. However, in prac-
tice, the time-domain tails of the filters are designed to fall
off rapidly. When |l| exceeds a certain value, |hm,n(k, l)|
will be so small that its effects on the channel output are
negligible. Therefore the IIR channel can be truncated to

a finite impulse response (FIR) channel. Without loss of
generality, we assume that the coefficient index, l, is in
the range of [−L1, L2], where L1 and L2 are non-negative
integers, and the channel length is L with L ≤ L1+L2+1.
Based on the above discussion and equation (2), we can

now describe the input-output relationship of the MIMO
channel in the discrete-time domain as follows:

y(k) =
L2∑

l=−L1

Hl(k) · x(k − l) + z(k), (7)

where the vectors x(k) = [x1(k), x2(k), · · · , xN
(k)]t, z(k) =

[z1(k), z2(k), · · · , zM
(k)]t and y(k) = [y1(k), y2(k), · · · ,

y
M
(k)]t are the input vector, noise vector and output vec-

tor at time instant k, respectively, with (·)t being transpose
operator; Hl(k) is the lTs delayed channel matrix at time
instant k, and the element on the m-th row, n-th column
of Hl(k) is [Hl(k)](m,n) = hm,n(k, l). The block-diagram of
this discrete-time MIMO channel model is shown in Figure
2.

z−1z−1z−1

· · ·

· · ·· · ·

· · ·
H0(k) H1(k)H−L1 (k) H

L2 (k)

x(k + L1) x(k) x(k − 1) x(k − L2)

Σ

z(k)

y(k)
H−L1(k)x(k+L1) H1(k)x(k − 1)

Fig. 2. The equivalent discrete-time MIMO channel model.

B. Statistical Properties of the Discrete-Time Channel

It is noted that there are (MNL) stochastic channel co-
efficients, and an M -element random noise vector in this
MIMO Rayleigh fading model (7). Since all of them are
complex-valued Gaussian random variables, the first-order
and second-order statistics will be sufficient to fully char-
acterize the MIMO channel.
The statistics of the noise vector z(k) can be directly

derived from (3). z(k) is zero-mean Gaussian distributed

355



with auto-covariance matrix Rzz(k1 − k2) given by

Rzz(k1 − k2) = E
[
z(k1) · zh(k2)

]

= N0 ·Rp
R

p
R
[(k1 − k2)Ts] · IM

, (8)

where (·)h stands for Hermitian operation, Rp
R

p
R
(ξ) is the

auto-correlation function of the receive filter p
R
(t), and I

M

is an M ×M identity matrix.
The autocorrelation of the channel coefficients hm,n(k, l)

and hp,q(k, l) can be obtained by using eqn (1) and As-
sumptions 1 and 2, and it is given by

E
[
hm,n(k1, l1)h∗

p,q(k2, l2)
]
= ρ(m,p)

Rx
ρ(n,q)

T x
c(l1, l2)

·J0 [2πfd(k1−k2)Ts] , (9)

where

c(l1, l2)=
∫ +∞

−∞
Rp

T
p

R
(l1Ts−τ)R∗

p
T

p
R
(l2Ts−τ)G(τ)dτ, (10)

with Rp
T

p
R
(ξ) being the convolution of p

T
(t) and p

R
(t).

For convenient discussion, we define the MIMO channel
coefficient vector hvec(k) as follows:

hvec(k) =
[
h1,1(k), · · ·,h1,N (k) | · · · | hM,1(k), · · ·,hM,N (k)

]t
, (11)

where the row vector hm,n(k) is the (m,n)th-subchannel’s
FIR coefficients at time k, and given by

hm,n(k) =
[
hm,n(k,−L1) · · · hm,n(k, L2)

]
. (12)

The statistics of hvec(k) is given by the following theorem.
Theorem 1: The channel coefficient column vector

hvec(k) is zero-mean Gaussian distributed, its covariance
matrix is given by

Ch(k1−k2) = E
{
hvec(k1) · hh

vec(k2)
}

= (ΨRx ⊗ΨT x ⊗CSISO ) J0 [2πfd(k1−k2)Ts] , (13)

where ⊗ denotes the Kronecker product [16], [Ψ
Rx
](m,n) =

ρ(m,n)
Rx

, [Ψ
T x
](m,n) = ρ(m,n)

T x
and [C

SISO
](l1,l2) = c(l1, l2).

Proof: With eqns (9) and (11), this theorem can be
proved. Details are omitted here for brevity.

C. Generation of Discrete-Time MIMO Channel Fading

Based on subsection III-B, the stochastic fading channel
coefficients hvec(k) can be efficiently generated for com-
puter simulations of MIMO systems, using the following
theorem.

Theorem 2: The zero-mean time-varying Rayleigh fading
channel vector hvec(k) can be generated by

hvec(k) = Ch
1/2(0) · Φ(k)

=
(
Ψ1/2

Rx
⊗ Ψ1/2

T x
⊗ C1/2

SISO

)
· Φ(k), (14)

whereX1/2 is the square root of matrixX = X1/2·
(
X1/2

)h
;

Φ(k) is an (MNL) × 1 vector, whose elements are un-
correlated Rayleigh flat fading, and E

[
Φ(k1) · Φh(k2)

]
=

J0 [2πfd(k1 − k2)Ts] · IMNL×MNL
.

Proof: This theorem can be proved by using two identi-
ties of matrices [16]: [A⊗B] [C ⊗D] = [AC] ⊗ [BD] and
[A⊗B]h = Ah ⊗Bh. Details are omitted.
It is emphasized here that the generation of the channel

coefficients is done through the Kroneker product of the
square roots of three small matrices rather than the square
root of a very large matrix Ch(0) of size (MNL)×(MNL).
This significantly reduces the computational complexity,
and certainly leads to much better numerical computation
accuracy.
The generation of multiple uncorrelated Rayleigh flat

fading waveforms is a classic topic with new challenges
for the number (MNL) of multiple faders being large.
It has been commonly postulated in the literature [6],
[11] that can be done by Jakes’ original simulation model
[17], which is computational efficient compared with noise-
filtering models [8]. Unfortunately, there are two problems
in the original Jakes’ simulation model. First, Jakes’ model
is a deterministic model, it has difficulty to directly gener-
ate three or more uncorrelated Rayleigh flat fading wave-
forms. Second, and more importantly, Pop and Beaulieu
[18] showed recently that Jakes’ model is even not station-
ary in the wide sense. They further proposed in [18] an
improved Jakes’ model to remove the WSS problem. How-
ever, the improved Jakes’ model along with the original
Jakes’ model have significant deficiency in their statistical
properties as pointed out by Xiao, Zheng and Beaulieu in
[19], and this statistic deficiency was removed by a general-
ized Rayleigh fading model developed in [20]. Furthermore,
Zheng and Xiao [21] developed new and efficient simulation
models for the generation of multiple uncorrelated Rayleigh
flat faders, which have exactly the same statistics as what
is required by Theorem 2, therefore, we adopt these models
of [21] to generate the (MNL) × 1 vector Φ(k).

IV. Simulation Experiments

Several simulation experiments are carried out in this
section to evaluate the performance of the discrete-time
MIMO model from different criteria.

A. Spatial-Temporal Statistics
Consider a MIMO system consisting of 2 antennas at the

base station as the transmitter and 2 antennas at the mo-
bile station as the receiver, then the correlation coefficient
matrices Ψ

T x
and Ψ

Rx
can be calculated by the formulas

derived in [2] under certain spatial parameters. For exam-
ple, if the BS and MS antennas are spaced by 15λ and λ,
respectively, where λ is the wavelength, the angle of arrival
is 90

0
and the angular spread is 10

0
, then we get the two

matrices as follows:

ΨT x =
[
1.0000 −0.1964

−0.1964 1.0000

]
, ΨRx =

[
1.0000 0.2203
0.2203 1.0000

]
. (15)

If the delay power profile is exponentially decaying [8]
and given by G(τ) = A · exp(τ/µs) for 0 ≤ τ ≤ 5µs,
and G(τ) = 0 otherwise; the transmit filter is a linearized
Gaussian filter with time-bandwidth product 0.3 [22], the
receive filter is a square root raised cosine (SRC) filter with
a roll-off factor 0.3, the sampling period Ts is 3.69µs, then
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the elements c(l1, l2) of the matrix C
SISO

obtained by (10)
is shown in Table 1.

Table 1. The matrix C
SISO

for the exponential delay
power profile

c(l1, l2) l2 = −1 l2 = 0 l2 = 1 l2 = 2
l1 = −1 0.0091 0.0426 0.0178 -0.0016
l1 = 0 0.0426 0.3664 0.3407 0.0367
l1 = 1 0.0178 0.3407 0.5583 0.1414
l1 = 2 -0.0016 0.0367 0.1414 0.0602

The correlation statistics of the generated time-varying
random channel coefficients are compared with the theo-
retical values as described by eqn (9) and Theorem 1, and
only one of the results are shown in Figure 3. We have also
compared the correlation statistics of all other channel co-
efficients to their theoretical ones, finding good agreement
in all cases. Therefore, the statistic accuracy of the the
discrete-time MIMO channel model is confirmed.
Before leaving this subsection, we have two remarks.

First, Figure 3 indicates that the fading coefficients from
different subchannels with different delays can be statisti-
cally correlated. This is quite different from the commonly
used independence assumption in the literature [6], [24].
Second, the conventional continuous-time channel model
needs a very high oversampling rate [8] to approximately
simulate this continuous delay power profile G(τ), but this
scenario can be efficiently and accurately simulated by our
discrete-time channel model.
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0.1

0.2
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0.4

Normalized Time: f
d
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s
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Theoretical Result

Fig. 3. Comparison of the theoretical and simulated cross-
correlations of h1,1(k, 0) and h1,2(k, 1).

B. Bit Error Rate Comparison

The statistic equivalence of the discrete-time channel
model to the conventional continuous-time channel model
can be demonstrated by comparing their BER perfor-
mances. We choose EDGE system [12], [22] as an example
in this subsection. The delay power profile G(τ) used here
is the reduced 6-path Typical Urban (TU) profile provided

in [12]. The transmit and receive filters and the sampling
period Ts are the same as those given in last subsection.
Assuming perfect channel estimation at the receiver

for both discrete-time channel model and continuous-time
channel model, and employing MLSE for channel equal-
ization with truncated channel memory length 4, we have
obtained the uncoded (raw) BER vs Eb/N0 shown in Fig-
ure 4. Apparently, the BER performance of the discrete-
time channel model is almost identical to that of the
continuous-time channel model. This demonstrates that
the discrete-time channel model is statistically equiva-
lent to the continuous-time channel model. However, the
discrete-time model needs only about 2.6% computations of
the continuous-time model to generate the statistical fading
channel coefficients in this SISO example. The computa-
tional saving is even more significant for MIMO discrete-
time channels.
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Fig. 4. Comparison of BER performance with discrete-time model
and continuous-time model for EDGE mobile system under Typical
Urban delay power profile.

C. MIMO Channel Capacity

In this subsection, the MIMO channel capacity is evalu-
ated using our discrete-time channel model to indicate the
effects of spatial correlations, multipaths and number of
antennas on the channel capacity. The channel capacity
for a wideband MIMO channel can be computed from [25],
[27]. The complementary cumulative distribution function
(ccdf) of the random capacity C is used to evaluate the
performance of the MIMO channel.
The wideband CDMA system, UMTS, is used as an ex-

ample in this section. The delay power profile is chosen to
be Vehicular Channel A profile specified in [13]. For conve-
nient illustration purpose, the elements of the correlation
coefficient matrices Ψ

T x
and Ψ

Rx
are simply chosen to be

exponential correlation matrix [23] as follows

ρ(m,p)
Rx

= r|m−p|, ρ(n,q)
T x

= r|n−q|, |r| ≤ 1. (16)

The capacity ccdfs of MIMO channels under different
correlation coefficients, and different number of antennas
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are depicted in Figure 5. As can be seen, whenM = N , the
MIMO channel capacity is linearly growing with M when
r ≤ 0.5, and the growing rate depends on the value of r,
the smaller for the r, the larger for the growing rate. This
shows that the spatial correlation of the MIMO channel has
a strong impact on the channel capacity. This observation
for frequency selective channel is in a good agreement with
the results presented in [14] for Rayleigh flat fading.
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Fig. 5. The capacities of MIMO channels with different spatial cor-
relation coefficients and M = N . Dash dot lines stand for r = 1, dash
lines for r = 0.5, and solid lines for r = 0. Observation: The channel
capacity is linearly scaling with M when r ≤ 0.5, and the scaling rate
is depending on the value of r.

Finally, it is remarked that the MIMO channel capacity
with continuous-time models have also been evaluated by
extensive simulations, and the results are all nearly iden-
tical to those obtained with the discrete-time model. This
further verifies the statistic equivalence of the discrete-time
and continuous-time channel model. However, with the
discrete-time MIMO channel model, the outage capacity
for MIMO channel can be easier and more efficiently eval-
uated.

V. Conclusions

We have proposed a new discrete-time channel model for
MIMO systems over spatially and temporally correlated,
frequency selective Rayleigh fading channels. The new
model is computationally efficient to describe the input-
output of MIMO channels, because it does not need to
oversample the fractionally delayed multipath channel fad-
ing, the transmit filter and the receive filter, which, how-
ever, is necessary for continuous-time channel models. The
statistic accuracy of the discrete-time channel model is rig-
orously confirmed by extensive simulations.
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