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�
Abstract—IEEE Std 421.5, revised by the IEEE excitation

system subcommittee introduced a new type of power system
stabilizer model, the multiband power system stabilizers (IEEE
PSS4B). Although it requires two input signals, like the widely
used IEEE PSS2B, the underlying principle of the new IEEE
PSS4B makes it sharply different. This paper presents a
method based on Bacterial Foraging Algorithm (BFA) to
simultaneously tune these modern power system stabilizers
(PSSs) in multimachine power system. Simulation results of
multi-machine power system validate the efficiency of this
approach. The proposed method is effective for the tuning of
multi-controllers in large power systems.

Index Terms—Bacterial Foraging Algorithm (BFA), IEEE
PSS2B, IEEE PSS4B, IEEE Std 421.5, inert-area oscillations,
power system stability, power system stabilizer (PSS).

I. INTRODUCTION

AMPING of power system oscillations between
interconnected areas is very important for the system

secure operation. Power system stabilizer (PSS) is the most
widely used device for resolving oscillatory stability
problems. Today most of the existing PSSs in the system are
power acceleration analog devices based on conventional
design procedures. But with the introduction of
microprocessor based power system stabilizers[3], now the
utilities are showing interest in digital based PSS represented
as PSS2B in IEEE std 421.5[1].This modern PSS can easily
be tuned just like conventional delta-omega PSS, while
mitigating two major operational problems which had
restricted the application of the old PSS technology utilizing
electrical power or terminal frequency, namely the excess
VAR modulation during mechanical power reference
changes for the first and adverse torsional interactions for
the second [4]. A novel PSS structure based on multiple
working frequency bands was proposed in [5] and later
included in the revised IEEE std 421.5[1] as PSS4B. Three
separate bands, respectively dedicated to the low-,
intermediate- and high- frequency modes of oscillations, are
used in this delta-omega (speed input) PSS. The low band is
typically associated with the power system global mode, the
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intermediate with the inter-area modes, and the high with the
local modes.

Researchers have been putting a lot of efforts in the
design of optimal PSSs to satisfy different system
requirements. Several PSS design techniques are reported in
literature, a few are listed in [6]-[14]. Kundur et al [8] have
presented a comprehensive approach for conventional tuning
of PSS parameters and its effect on the dynamic performance
of the power system. The stabilizers designed to damp one
particular mode of oscillation can produce adverse effects in
the other modes. Thus, the multimodal nature of oscillations
and the mutual interaction among generating units should be
considered in PSS designs. Local optimization techniques
like gradient descent method [11] failed to provide the
optimum PSS parameters. Heuristic techniques such as
Genetic Algorithms (GAs) [12], tabu search algorithm [13]
and simulated annealing [14] have been applied earlier to
PSS design. Studies have revealed that GA has a degraded
performance if the function to be optimized is epistatic
(where parameters to be optimized are much correlated)
[15]. Also, the mutation and crossover may be time
consuming processes and they may cause the new generation
to lose advantages obtained in the last generation.

A new evolutionary computation technique, called
Bacterial Foraging Algorithm (BFA) [16] has been proposed
in this paper as a solution to the above mentioned problems
and drawbacks. In this scheme, the foraging (methods for
locating, handling, and ingesting food) behavior of E. coli
bacteria present in our intestines is mimicked. They undergo
different stages such as chemotaxis, swarming, reproduction,
and elimination and dispersal. In the chemotaxis stage, it can
have tumble followed by a tumble or a tumble followed by a
run. On the other hand, in swarming, each E. coli bacterium
will signal other via attractants to swarm together.
Furthermore, in reproduction the least healthy bacteria die
and the other healthiest bacteria each split into two bacteria,
which are placed in the same location. Besides, in
elimination and dispersal, any one bacterium is eliminated
from the total set just by dispersing it to a random location
on the optimization domain.

In this paper, a bacterial foraging optimization scheme is
used for simultaniouly tuning the modern power system
stabilizers, PSS2B and PSS4B. The objective function
formulated for the optimization takes the time domain
information from the MATLAB/SIMULINK models [20].
Two area multimachine power system [17] is considered in
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this work. Simulation results show the effectiveness of the
suggested PSS tuning technique.

II. MODERN PSS MODELS

The standard IEEE models of modern PSS are shown in
Fig. 1. Both the stabilizers have the same external inputs
(speed and electrical power). However, while PSS2B
incorporates a single speed transducer, the PSS4B is
equipped with two. The PSS4B measures the rotor speed
deviation in two different ways. �wL-I feeds the low and
intermediate bands, while �wH is dedicated to the high-
frequency band. The equivalent models of these two speed
transducers are shown in Fig. 2.
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Fig.1. The standard IEEE PSS models. (a) PSS4B (b) PSS2B
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Fig. 2. Speed Transducers. (a) PSS4B (b) PSS2B

In PSS2Bs speed transducer (shown in Fig. 2), for each
input there are two washouts can be represented (TW1 to TW4)
along with a transducer or integrator time constants (T6, T7).
The indices M and N allow a “ramp tracking” or simpler
filter characteristic to be represented. Typical values of M=5,
N=1 or M=2, N=4 are in use by several utilities [1], [2].

III. BACTERIAL FORAGING OPTIMIZATION TECHNIQUE

Natural selection tends to eliminate animals with poor
foraging strategies and favor the propagation of genes of
those animals that have successful foraging strategies since
they are more likely to enjoy reproductive success. After
many generations, poor foraging strategies are either
eliminated or shaped into good ones. The E. coli bacteria
that are present in our intestines also undergo a foraging
strategy. The control system of these bacteria that dictates
how foraging should proceed can be subdivided into four
sections namely Chemotaxis, Swarming, Reproduction and
Elimination and Dispersal.

A) Chemotaxis: This process is achieved through
swimming and tumbling via Flagella. Depending upon the
rotation of Flagella in each bacterium, it decides whether it
should move in a predefined direction (swimming) or
altogether in different directions (tumbling), in the entire
lifetime. To represent a tumble, a unit length random
direction, say )( j� , is generated; this will be used to define

the direction of movement after a tumble.
In particular

)()(),,(),,1( jiClkjlkj ii ��� ��� (1)

where ),,( lkji� represents the ith bacterium at jth

chemotactic, kth reproductive and lth elimination and
dispersal step. )(iC is the size of the step taken in the

random direction specified by the tumble (run length unit).

B) Swarming: During the process of reaching towards the
best food location it is always desired that the bacterium
which has searched the optimum path should try to provide
an attraction signal to other bacteria so that they swarm
together to reach the desired location. In this process, the
bacteria congregate into groups and hence move as
concentric patterns of groups with high bacterial density.
The mathematical representation for swarming can be
represented by
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where )),,(,( lkjPJcc � is the cost function value to be added

to the actual cost function to be minimized to present a time
varying cost function. 'S' is the total number of bacteria and
'p' the number of parameters to be optimized which are
present in each bacterium. repelentrepelentattractattract hd �� ,,,

are different coefficients that are to be chosen properly.

C) Reproduction: The least healthy bacteria die and the
other healthiest bacteria each split into two bacteria, which
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are placed in the same location. This makes the population of
bacteria constant.

D) Elimination and Dispersal: It is possible that in the local
environment the live of a population of bacteria changes
either gradually (e.g., via consumption of nutrients) or
suddenly due to some other influence. Events can occur such
that all the bacteria in a region are killed or a group is
dispersed into a new part of the environment. They have the
effect of possibly destroying the chemotactic progress, but
they also have the effect of assisting in chemotaxis, since
dispersal may place bacteria near good food sources. From a
broad perspective, elimination and dispersal are parts of the
population-level long-distance motile behavior.

This paper mainly concentrates on use of this new
technique to optimize the PSS parameters. Detailed
mathematical derivations, theoretical aspect and application
to other areas of this new concept are presented in [16], [22],
[23] and [24].

IV. FORMULATION OF OBJECTIVE FUNCTION

In this paper the Bacterial Foraging scheme has been used
for the optimization of PSS parameters. Just like any other
optimization problem, a cost or an objective function needs
to be formulated for the optimal PSS design. The objective
in the optimal PSS design is to maximize damping; in other
words minimize the overshoots and settling time in system
oscillations.

The Integral of Time Squared Error (ITSE) is considered
as the cost function to be minimized by the bio-inspired
algorithm. Integral of Squared Error (ISE) accounts mainly
for error at the beginning of the response and to a lesser
degree for the steady state duration. ITSE is a better criterion
which keeps account of errors at the beginning but also
emphasizes the steady state [21]. The objective function is
given by (3).

1 0

. ( . )G

s i mt tN P

n t

J A t J d t

�

� �
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1

( ( ) )
N

G

i

iJ tw
�
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where NP is the number of disturbances considered in the
design process, A is a weighting factor, t is the simulation
time in seconds, N is the number of generators in the system

and ( )i tw� is the speed deviation of the ith generator

obtained from time domain simulation. Therefore, the design
problem can be formulated as the following optimization
problem.

Minimize

J (5)
Subject to

min maxz z z� � (6)

where z is a vector, which consists of the parameters of the
PSS.

The proposed approach employs BF algorithm to solve
this optimization problem and search for the optimal set of
PSS parameters.

V. BACTERIAL FORAGING ALGORITHM

The algorithm of the proposed scheme is as follows:

Step1-Initialization

i. Number of parameters (p) to be optimized.
ii. Number of bacteria (S) to be used for searching the total

region.
iii. Swimming length Ns after which tumbling of bacteria

will be undertaken in a chemotactic loop.
iv. Nc the number of iteration to be undertaken in a

chemotactic loop. (Nc > Ns).
v. Nre the maximum number of reproduction to be

undertaken.
vi. Ned the maximum number of elimination and dispersal

events to be imposed over the bacteria.
vii. Ped the probability with which the elimination and

dispersal will continue.
viii. The location of each bacterium P (1-p, 1-S, 1) which is

specified by random numbers on [-1, 1].
ix. The value of C (i) which is assumed to be constant in

our case for all the bacteria to simplify the design
strategy.

x. The values of repelentrepelentattractattract hd �� and,, .

In this simulation work we have considered S=6, p=24 for
PSS4B and 16 for PSS2B, Nc=4, Ns=4, Nre=100, Ned=2,
Ped=0.25, 01.0�attractd , 04.0�attract� ,

01.0�repelenth and .10��repelent

Step-2 Iterative algorithm for optimization

This section models the bacterial population chemotaxis,
swarming, reproduction, elimination and dispersal (initially,

j=k=l=0). For the algorithm updating i� automatically
results in updating of 'P'.
1) Elimination-dispersal loop: l=l+1
2) Reproduction loop: k=k+1
3) Chemotaxis loop: j=j+1

a) For i=1, 2,…, S, calculate cost function value for
each bacterium i as follows.
� Compute value of cost function J (i, j, k, l). Let

Jsw (i, j, k, l) = J (i, j, k, l) +

)),,(),,,(( lkjPlkjJ i
cc � (i.e., add on the cell-

to-cell attractant effect for swarming behavior).
� Let Jlast= Jsw (i, j, k, l) to save this value since we

may find a better cost via a run.
� End of For loop

b) For i=1,2,….S take the tumbling/swimming decision
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� Tumble: Generate a random vector

)( pi ��� with each element )(im� m=1,2,..p,

a random number on [-1, 1].
� Move: let

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

��

�
��� ��

Fixed step size in the direction of tumble for bacterium i
is considered.
� Compute J(i, j+1, k, l) and then let Jsw(i, j+1, k, l)=

J(i, j+1, k, l )+ )),,1(),,,1(( lkjPlkjJ i
cc ���

� Swim :
i) Let m=0; (counter for swim length)
ii) While m<Ns (have not climbed down too long)

� Let m=m+1
� If Jsw(i, j+1, k, l) < Jlast (if doing better), let

Jlast= Jsw(i, j+1, k, l) and let

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

��

�
��� ��

and use this ),,1( lkji �� to compute the

new J (i, j+1, k, l)
� Else, let m=Ns. This is the end of the while

statement.
c) Go to next bacterium (i+1) if Si � (i.e. go to b) to

process the next bacterium.
4) If j < Nc, go to step 3. In this case, continue chemotaxis

since the life of the bacteria is not over.
5) Reproduction

a) For the given k and l, and for each i=1, 2,..S, let

)},,,({min
}...1{

lkjiJJ sw
Nj

i
health

c�
� be the health of the

bacterium i (a measure of how many nutrients it got
over its life time and how successful it was at
avoiding noxious substance). Sort bacteria in order
of ascending cost Jhealth (higher cost means lower
health).

b) The Sr=S/2 bacteria with highest Jhealth values die and
other Sr bacteria with the best value split (and the
copies that are made are placed at the same location
as their parent)

6) If k < Nre go to 2, in this case, we have not reached the
number of specified reproduction steps, so we start the
next generation in the chemotactic loop.

7) Elimination-dispersal: For i=1, 2,..S, with probability
Ped, eliminate and disperse each bacterium (this keeps
the number of bacteria in the population constant) to a
random location on the optimization domain.

The flow chart of the above algorithm is shown in Fig. 3.

VI. SIMULATION RESULTS

The two area power system used in this study is simulated
in the MATLAB/SIMULINK environment which allows the
detailed representation of the power system dynamics. The
small two area power system (shown in Fig. 4) consists of
two fully symmetrically connected areas linked together by
two transmission lines. Each area is equipped with two
identical synchronous generators rated 20kV/900 MVA. All
generators are equipped with identical sped governors and
turbines, exciters and AVRs and PSSs. The loads in the two
areas are such that Area 1 is exporting about 413 MW to
Area 2. The system data can be found in [17].

Fig. 4. Two-area multi-machine power system
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Start
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loop Counter,
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Fig. 3. Flow chart of Bacterial Foraging algorithm
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The optimization is carried by subjecting the power
system to different possible contingencies. In this work, a
small disturbance of temporary 200ms transmission line
outage (one of the tie lines), a large disturbance of three
phase short circuit of 200ms duration at the middle of the
lines and double cascaded fault are considered (Fig. 4).
SIMULINK model is called through sim command from
MATLAB [20]. The value of J is computed using (3) for the
given set of PSS parameters from the time domain
information and the bio-inspired algorithm is applied to
compute the new set of parameters.

A. PSS4B
Although the PSS4B differential filters parameters may be

used in various ways, a simple setting method [19] based on

three symmetrical band-pass filters respectively tuned at FL,

FI, and FH is most often used. Their time constants and
branch gains are derived from Equation (7), Equation (8),
Equation (9), and Equation (10) for the low band case. So

we need to tune only six parameters— FL, FI, FH, KL, KI,
KH.

2 7

1

2
L L

L

T T
F R!

� � (7)

1 2
/

L L
T T R� (8)

8 7
*

L L
T T R� (9)

2 2

1 2
( ) /( 2 1)

L L
K K R R R R� � � � � (10)

R is a constant here equal to 1.2. Remaining values are taken
from [19], [2].Similar Expressions are valid for the other two
bands also. A total of 24 parameters are tuned
simultaneously. The final values of optimized PSS4B
parameters are given in Appendix. The minimum value of
cost function (Jmin) against the no. of reproductions is plotted
in Fig. 5.
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Fig. 5. Variation of the objective function J

To test the robustness of the different optimized
parameters, the following two cases are considered.

Case 1: A three phase short circuit of 200ms duration is
applied at bus 8 in Fig. 4.
Case 2: A 100ms three phase short circuit at bus 8 is applied
followed by a 100ms line outage between buses 8 and 9
immediately (double cascaded fault) in Fig. 4.

To validate the proposed technique, the results are
compared with those obtained from [19]. Simulation results
are shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9.
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Fig. 6. Speed response of generator G1 for case1
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Fig. 7. Speed response of generator G3 for case1
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Fig. 8. Speed response of generator G1 for case2
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Fig. 9. Speed response of generator G3 for case2

From the results it is quite clear that proposed method of
tuning results in better response.

B. PSS2B
PSS2B has only six time constants and a gain. Three time

constants (T1, T3 and T10) and gain (KS1) are considered for
optimization and remaining values taken from [18] and are
held constant. Hence, a total of 16 parameters tuned
simultaneously. The final values of optimized PSS2B
parameters are given in Appendix. The minimum value of
cost function (Jmin) against the no. of reproductions is plotted
in Fig. 10.
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Fig .10. Variation of the objective function J

To test the robustness of the tuned PSS2B parameters
similar cases (as above) are considered. To validate the
proposed technique, the results are compared with those
obtained from [18] and the simulation results are shown in
Fig. 11, Fig. 12, Fig. 13 and Fig. 14.
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Fig. 11. Speed response of generator G1 for case1
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Fig. 12. Speed response of generator G3 for case1
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Fig. 13. Speed response of generator G1 for case2
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Fig. 14. Speed response of generator G3 for case2

From the results it is seen that proposed method of tuning
results in better response.

VII. CONCLUSION

In this study, bacterial foraging algorithm is proposed to
the robust PSS design problem. The proposed design
approach employs BFA to search for optimal settings of two
modern power system stabilizers. The effectiveness of the
suggested technique in enhancing stability of multimachine
power systems is verified through simulation results with
different disturbances.

VIII. APPENDIX

A. IEEE PSS4B
TABLE I

BFA OPTIMIZED PSS4B PARAMETERS

FL KL FI KI FH KH

G1 0.0069 24.88 0.126 34.15 15.08 162.0
G2 0.028 24.69 1.341 34.72 10.51 160.9
G3 0.102 24.65 0.593 34.55 9.543 149.7
G4 0.021 24.87 0.169 34.28 9.273 159.6

B. IEEE PSS2B
TABLE II

BFA OPTIMIZED PSS2B PARAMETERS

KS T1 T3 T10

G1 11.4066 0.3842 0.4025 0.3488
G2 15.1902 0.2625 0.2518 0.1600
G3 14.9634 0.3636 0.0385 0.1636
G4 17.1840 0.0745 0.3526 0.7649
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