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Absrrael-This paper introduces a novel technique for 
Dynamic Particle Swarm Optimization (DPSO) using adaptive 
critic designs. The adaptation between global and local search 
in an optimization algorithm is critical for optimization 
problems especially in B dynamically changing environment or 
process over time. The inertia weight in particle swarm 
optimization @'SO) is dynamically adjusted in this paper in 
order to provide a nonlinear search capability for the PSO 
algorithm. Results on benchmark functions io the literature 
are provided. 

I. INTRODUCTION 

ODERN heuristic algorithms are increasingly seen as 

decade and have attracted a lot of attention for researchers to 
mathematically model the search process. The advantage of 
the heuristic algorithms is that they do not require the 
objective function to he differentiable or be continuous. The 
particle swarm optimization (PSO) algorithm is an 
evolutionary computation technique developed by Kennedy 
andEberhart [l,  21. 

The PSO method is one of the most powerful methods for 
solving unconstrained and constrained global optimization 
problems. Little is, however known about how the PSO 
method works or fmds a globally optimal solution of an 
optimization problem. The performance of PSO is known to 
do well in the early iterations of the search process, but has 
problems in reaching a near optimal solution in several 
benchmark functions compared to other techniques. 

To overcome this problem, many researchers have 
employed methods to adapt PSO parameters [3-81. Some 
these approaches are based on deterministic rules, like 
decreasing or increasing the inertia weight according to the 
number of iterations. Some have used fuzzy rules to provide 
some feedback information for weight change. The fuzzy 
rules are developed based on experience. 

The search process of PSO is non-linear and very 
complicated; it is hard, if not impossible to mathematically 
model the search process to carry out dynamic adjustment of 

M potential tools for nonlinear optimization in the last 

its parameters such as the inertia weight and the acceleration 
constants. It is critical for the search process to be nonlinear 
i.e. move from a global to a local search and vice-versa, in 
other words move from explorations to exploitations and 
vice-versa respectively, especially if the environment is 
dynamic. This requires nonlinear dynamic adaptations of 
PSO parameters to be possible from iteration to iteration. 

This paper proposes the use of combined concepts of 
approximate dynamic programming and reinforcement 
learning called adaptive critic designs (ACDs) for the 
nonlinear dynamic adaptation of the inertia weight in the 
particle swarm optimization algorithm. Section I1 of this 
paper describes the PSO algorithm, Section 111 gives a brief 
background on adaptive critics and the type of ACD used in 
this paper, Section IV describes the proposed dynamic PSO 
and Section V presents some initial results obtained with the 
dynamic PSO algorithm on Roseuhrock, Rastrigrin and 
Griewank benchmark functions. 

11. PARTICE S W M  OPTIMEATION 

Particle swarm optimization is an evolutionary 
computation technique (a search method based on a natural 
system) developed by Kennedy and Eberhart [l, 21. PSO, 
like a generic algorithm (GA), is a population based 
optimization tool. However, unlike GA, PSO has no 
evolution operators such as crossover and mutation! and 
moreover, PSO has lesser parameters. PSO is an 
evolutionary algorithm that does not implement survival of 
the fittest, and unlike other evolutionary algorithms where 
an evolutionary operator is manipulated, the velocity is 
dynamically adjusted. 

The system initially has a population of random solutions. 
Each potential solution, called a particle, is given a random 
velocity and is flown through the problem space. The 
particles have memory and each particle keeps track of its 
previous best position (called the pbest) and its 
corresponding fitness. There exist a number ofpbest for the 
respective particles in the swarm and the particle with 
greatest fitness is called the global best (gbest) of the swarm. 
The basic concept of the PSO technique lies in accelerating 
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each particle towards its pbest and the gbest location, with 
some random weighting at each time step and this is 
illustrated in Fig. 1, where P(k) is the current position of a 
particle, P(k+l) is its modified position, V(kj is its initial 
velocity, V(ki1)) is its modified velocity, V,,, is the 
velocity considering its pbest location and V,,, is the 
velocity considering its gbest location. 

Fig. 1 Movement of a PSO particle 

The main steps in the particle swarm optimization process 
are described as follows: 
(ij. Initialize a population of particles with random 

positions and velocities in d dimensions of the 
problem space and fly them. 
Evaluate the fitness of each particle in the swarm. 
For every iteration compare each particle's fitness 
with its previous hest fitness @best) obtained. If the 
current value is better than pbest, then set pbest equal 
to the current value and thepbest location equal to the 
current location in the d-dimensional space. 

(iv). Compare pbest of particles with each other and 
update the swarm global best location with the 
greatest fitness (gbest). 
Change the velocity and position of the particle 
according to (1) and (2) respectively. V(k+l) and 
P(ki1) represent the velocity and position of the ?' 
particle with d dimensions, respectively, randl and 
rand2 are two uniform random functions, and U', is 
the inertia weight, which is chosen beforehand. 

V(kf1 )  = 1v, * V(k) + C I  * randl 0 * (Pae&) ?(A)) + 

(3). 
(iii). 

(v). 

c~ * rand20 * (Gb&j -P(k)j (1) 

P(k+l) = P@j + V(kj (2) 

(vi). Repeat steps (ii) to (vj until convergence is reached 
based on some desired single or multiple criteria. 

The parameters used in PSO are described as follows: ivz  

called the inertia weight controls the exploration and 
exploitation of the search space because it dynamically 
adjnsts velocity. Local minima are avoided by small local 
neighborhoods, but faster convergence is obtained by a 
larger global neighborhood, and in general a global 
neighborhood is preferred. Synchronous updates are more 

costly than the asynchronous updates. Vmax is the maximum 
allowable velocity for the particles (i.e. in the case where the 
velocity of the particle exceeds Vmax, then it is limited to 
Vmax). Thus, resolution and fitness of search depends on 
Vmax. I f  Vmax is too high, then particles will move beyond a 
good solution, and if Vmax is too low, particles will he 
trapped in local minima. The constants c,  and ci in ( 1 )  and 
(Z), termed as cognition and social components, 
respectively, are the acceleration constants which changes 
the velocity of a particle towardspbest andgbest (generally, 
somewhere between pbest and gbest). The velocities of the 
particles determine the tension in the swarm. A swarm of 
particles can be used locally or globally in a search space. In 
the local version of the PSO, gbest is replaced with [best and 
the entire process is the same. 

In. ADAPTIVE CTUTIC DESIGNS 

A. Background 
Adaptive critic designs (ACDs) are neural network 

designs capable of optimization over time under conditions 
of noise and uncertainty. A family of ACDs was proposed 
by Werbos [9] as new optimization techniques combining 
concepts of reinforcement leaming and approximate 
dynamic programming. 

The adaptive critic method determines optimal control 
laws for a system by successively adapting two neural 
networks, namely, an action neural network (which 
dispenses the control signals) and a critic network (which 
leams the desired performance index for some function 
associated with the performance index). n e s e  two neural 
networks approximate the Hamilton-Jacobi-Bellan 
equation associated with optimal control theory. The 
adaptation process starts with a non-optimal, arbitrarily 
chosen control by the action network; the critic network then 
guides the action network toward the optimal solution at 
each successive adaptation. During the adaptations, neither 
of the networks needs any "information" of an optimal 
trajectory, only the desired cost needs to be known. 
Furthermore, this method determines optimal control policy 
for the entire range of initial conditions and needs no 
extemal training. 

The design ladder of ACDs includes three basic 
implementations: Heuristic Dynamic Programming (HDP), 
Dual Heuristic Programming (DHP) and Globalized Dual 
Heuristic Programming (GDHP), in the order of increasing 
power and complexity. The interrelationships between 
members of the ACD family have been generalized and 
explained in [IO-121. The HDP method is applied in this 
paper without the use of a process model and therefore 
referred to the action-dependent HDP (ADHDP) [12]. In 
[l I], a neural network model of the power system controlled 
was obtained and details are found in [13]. 

B. ADHDP Criric Nehvork 
Action Dependent Heuristic Dynamic Programming has a 

Critic neural network that estimates the fnnction J 
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(cost-to-go) in the Bellman equation of dynamic 
programming, expressed as follows: 

J(x (k ) )  = T r ’ U ( x ( k ) )  (3) 
I - 0  

where yis a discount factor for fmite horizon problems (0 < 
y< I ) ,  U ( j  is the utility function or the local cost and x(k) is 
an input vector to the Critic. 

Fig. 2 shows the ADHDP Critic adaptatiodtraining. The 
inputs to the Critic are outputs from the Action neural 
network. Two Critic neural networks are shown in Fig. 2 
having the same inputs and outputs but at different time 
instants. Their outputs are J(k+I) and Jfi j .  

I Tarpct 

AWc = -a{J(Ax(k) ) -  yJ(Ax(k + 1))- U(Ax(k) ) }x  

a(J(Ax(k))-rJ(Axx(k+I))-a(Ax(k)) t  (8) 
awc  

where 7 is a positive learning rate and W, are the weights of 
the Critic neural network. The Critic network’s output 
J[Ax(k+lj]is necessary in order to provide the trainmg 
signal yJ[Ax(k+Ij]+ U(Ax(kjj, which is the desiredtarget 
value for J[Ax(k)]. 

C. ADHDP Action Network 
The objective of the Action neural network in Fig. 3, is to 

minimize J(Ax(kjj in the immediate future, thereby 
optimizing the overall cost expressed as a sum of all U(& 
(kj) over the horizon of the problem. This is achieved by 
iraining the Action neural network with an error signal 
N 3 A .  The gradient of the cost function J,  with respect to 
the outputs A,  of the Action neural network, is obtained by 
backpropagating N/dl(i.e. the constant I )  through the Critic 
neural network to the Action neural network. This gives 
NC2A and for all the outputs of the Action neural 
network, and all the Action neural network’s weights W,, 
respectively. The weights’ update in the Action neural 
network using backpropagation algorithm is given as 
follows: 

(9) 
Fig. 2 HDP Critic neural network adaptatiodtraining 1 

114 II = 5 c E,’@) 
The Critic network tries to minimize the following error 
measure over time 

(10) W ( k )  where E, =- 
W k )  

(4) 
1 

114 II = 2c 
Weight change in the Action network AWA1 can be \h7itten 
as: where 

where dr(kj is the changes in xpj,  a vector of observables of 
the plant (or the states, if available). The utility function U is 
dependent on the system controlled or the problem in hand. 
The necessaq condition for (4) to be minimal is given in (6) .  

(6)  

Equation (1 1) can be further written as: 

(12) 
JE ( k )  AWA = - a E , ( k ) A  

JW” 

U ( k )  J J J ( k )  
aA(k) aW, aA(k) 

AW, =-a-- [ - 1 (13) 
( l a  

2 aw, --(E,?(k))= Eel- = O  

The weights’ update for the Critic network using the 
backpropagation algorithm is given as follows: where a is a positive learning rate. 

AW, =-q E,(k)- aE ( k )  (7) With (8) and (1 3), the training of the Critic and the Action 
awc networks can be carried out. The training procedure with 
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more details for the Critic and the Action networks are given 
in [IO, 111. 

I U 

- W k )  { 
L---------.------.-.--------------~ 

Fig. 3 ADHDP Action Critic neural network 
adaptationltraining 

IV. DYNAMlCPSO 
The dynamic change in PSO algorithm is caused in the 

inertia weight iv, with the goal to minimize or maximize the 
objective function. To carry out the dynamic change in the 
inertia weight, the inputs to the Critic and Action neural 
network in Figs. 2 and 3 are the inertia weight at the time 
step k and the ghest fitness at the time step k of the PSO 
algorithm. The outputs of the Critic network is the Jfunction 
of Bellman's equation in dynamic programming. The output 
of the Action network is the inertia weight for time step 
@ + I ) ,  The Critic network is trained with constant and 
varying inertia weights. The objective of the Action neural 
network is to minimize the output of the Critic network by 
vzying the inertia weight to improve the gbest fitness. The 
Critic and Action network training are interleaved in order to 
obtain convergence on both networks. The utility function 
plays a major role in variation of the inertia weight to 
achieve the hest fitness desired. The proposed velocity 
equation is given in (14) where iv,(k) is the output of the 
Action network. 

V(k+l) = ivr (k) * V(k) + cI * randl 0 * jP&k) -P(k)) i 

C2 * rand20 * ( G b d k )  -p@)) (14) 

V. RESULTS 

The proposed approach is experimented on the standard 
benchmark functions studied in [3, 6, 71 which are all 
minimizatioti problems. These functions and their 
parameters are given below. Table I lists the initialization 
ranges of the three functions. The first benchmark function 
is the Rosenbrock function given by (15). 

The last function is the generalized Griewank function 
described by (17). 

1 " " X  

4000 ,=, & f , ( x )  =-Ex,' - n c o s ( i )  + I  (17) 

TABLE I: ASYMMETRIC INITIALIZATION RANGES 

(15, 30)" 

For the minimization problems above, the desired gbest 
fitness is zero, therefore the following utility function U(&) is 
chosen. 

U ( k ) = 2 x g b e s t _ f i h e s s  (18) 

Table 11 below gives preliminary results obtained for the 
PSO algorithm for the above benchmark problems on a 
IO-dimensional problem (n) .  The number particles in the 
PSO algorithm are 20, the acceleration wnstants c, and c2 in 
the PSO equations are 2 and the maximum of generations 
allowed are 1000. The results shown are over I O  trials. The 
preliminav results have shown improvements from those 
reported in literature. 

TABLE 11: BEST VALUES OBTAINED BY THE PSO 

41.62 

0.09 

VI. CONCLUSIONS 
This paper has proposed a dynamic particle swarm 

optimization algorithm based on adaptive critic designs. 
Preliminluy results are promising that a nonlinear dynamic 
search process is achievable for improving PSO's 
performance using adaptive critics. The proposed method 
remains to he tried out on higher dimensions of above 
problems and statistical analysis on convergence needs to he 
canied out over a large of trials. 
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