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A Novel Dual Heuristic Programming Based Optimal Control of a
Series Compensator in the Electric Power Transmission System

Jung-Wook Park and Ronald G. Harley, Fellow, IEEE

School of Electrical and Computer Engineering
Georgia Institute of Technology
GA 30332-0250, US.A.

(e-mails: jungwookpark@ieee.org and ron.harley(@ece. gatech.edu)

Abstract — In this paper, the dual heuristic programming
(DHP) optimization algorithm is used for the design of a
nonlinear optimal neurocontroller that replaces the
propertional-integral (P1I) based conventional linear controller
(CONVC(C) in the internal control of a power electronic
converter based series compensator in the electric power
transmission system. The performance of the proposed DHP
based neurocontroller is compared with that of the CONVC
with respect to damping low frequency oscillations.
Simulation results using the PSCAD/EMTDC software
package are presented.

1. INTRODUCTION

In the last decade, flexible ac transmission system
(FACTSY) devices [1]-[4] have been progressively developed
for controlling power flow in a power transmission system,
improving the transient stability, damping power system
oscillations, and providing voltage stability by using high
power semiconductor technology based inverters connected to
the electric power grid.

Recently, the static synchronous series compensator
{8SSC).[5]-[7] among the FACTS device family has attracted
considerable attention for damping of low frequency power
oscillations 'in the lines by using controllable series voltage
compensation.

The internal control strategy for the inverter of a SSSC as
well as other FACTS devices has traditionally been based on
linear  proportional-integral ~ (PI)  regulators.  These
conventional PI linear controllers (CONVC) operate well at
one particular operating point where they have been designed.
In other words, their transient and dynamic performances are
degraded at any other operating point, or their gains have to
be re-tuned for the new operating points.

Artificial neural networks {ANNs) can offer an efficient
alternative to overcome the above limitation of the CONVC
for the internal control. However, only a few researchers [8],
[9] have reported on FACTS device contro! using ANNs in
the literature due to the difficulty of implementing an
effective and fast internal control of the inverter with the
ANNs.

The recently developed adaptive critic designs (ACDs)
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[10]-[16] based techniques avoid the possibility of instability
of the neurocontroller, and also yield an optimal responsc
[17)-[18).

This paper proposes a novel intelligent internal control
approach using the multilayer perceptron neural network
(MLPNN) as an optimal nonlinear neurocontroller.

The background of the dual heuristic programming (DHP)
algorithm, which has the best robust control capability among
the ACDs family, is presented. Based on the DHP algorithm,
a novel nonlinear optimal neurocontroller (called DHPNC) is
designed as an alternative for internal control of the SSSC,
thereby replacing the PI based regulators for the currents but
not for the dc link voltage. The performances of the DHPNC
and CONVC are compared with respect to the damping of
power oscillations by time-domain simulations in the
PSCAD/EMTDC software package.

Il. STATIC SYNCHRONOUS SERIES COMPENSATOR (SSSC)

The static synchronous series compensator (SSSC)
converter can control the reactive and/or active power on an
ac system by changing both phasor angle and magnitude of
the converter’s output voltage with a fast control action.
Especially, the exchange of active power, which is the
particular characteristic of the SSSC, is accomplished by
controlling the de voltage inside the SS8C [1].

A. Modeling of S55C

The single machine infinite bus (SMIB) system shown in
Fig. 1 is used to compare the damping control capabilities of
the proposed DHPNC and CONVC for the SSSC. The plant
consists of the synchronous generator (160 MVA, 15 kV (L-
L)), turbine-governor system, automatic voltage regulator
(AVR)-cxciter system, transmission line connected to an
infinite bus, and the SSSC connected in series with
transmission line. The parameters of the synchronous
generators and transmission line are given in [19].

The EXACI A (IEEE alternator supplied rectifier excitation
systems) and H_TURI/GOV1 (IEEE type hydro turbine-
governor) models in PSCAD/EMTDC software package [20]
are used as the AVR/exciter system and turbine/govemnor,
respectively.
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Fig. . Plant: 160 MVA, 13 kV (L-L) SMIB test system

For the mathematical model of the 8S8SC, the associated
equation can be represented with the lumped series
transmission line reactance x! (transmission line x, plus
leakage reactance of scries-connected transformer) and

transmission series resistance r, (the inverter is regarded
simply to have no conduction losses) in per unit as follows,

o T r 1
_i‘f_’s_ 0 0 | ~—(v +v,-v)
i:;u xe isu E
:‘:; =l 0 2 o i 2, M
N x'! > e
L LIH_
o o X% f’i(mvw—v,c)
| ERERr ]

where @ 15 the synchronous speed of the power system, v is
the sending-end voltage (terminal voltage in practice), i, is the
curreni‘in transmission line, v, is the receiving-end voliage in
the infinite bus, and v. is the injected series compensation
voltage.

Using the synchronously rotating reference frame based
transformation [2], in which the d-axis is always coincident
with the instantaneous voltage vector v and the g-axis leads
the. d-axis by 90°, the three-phase circuit equation in (1) can

be transformed to the following d-q axis vector
representation.
’ r @

. -+ @ . (v [+V.;—Vy)
dll|_| x ’d+x;]’| T @
di|i ro, i i @,

- r _:(vr:q ~vrq}
x, X
Neglecting the series inverter harmonics, the ac side

injected voltage v, in Fig.1 can be expressed with relation to
the capacitor voltage V. on the de link as follows.

(3)

where a is the phase voltage difference between the voltages
v, and v, (the v, teads the v,), and m is the modulation index of
the series inverter. The dynamics of the dc capacitor voltage
is given by

Vo =m¥  cos(uw), v =mb sin(a)

e

av

1.2,
dt CV,

e

_l_V(Jr:iér = __l__(v‘:d!d + thlq)

C Vdc C Vdc (4)
= %[m {cos( a)i, +sin{ a)i, }]

B. Conventional Control Strategy

The main goal of the SSSC is to inject the series voltage in
gquadrature with the line current and to maintain the de voltage
V4. For this purpose, the P-() {real and reactive power)
automatic power flow control mode [1] in Fig. 2 is used.

—

Synchmously
ratating refarenca
transformation

GTC gate contral
of series VS!

Real ang reactive
cumrent computation

Fig. 2.
control of the S§8C

P-Q automatic power flow control diagram for the internal

In Fig. 2, an instantineous three-phase set of line voltages,
V4, Vi, and v, is used to calculate the transformation angle, ¢
provided by the vector phase-locked loop for synchronous
operation of the series voltage source inverter {VSI) shown in
Fig.l. As shown in (2), the three-phase set of measured line
currents at the ac terminal of the SSSC is decomposed into its
realidirect component, iy and reactive/quadrature component,

. These actual signals (i; and i) and the reference d-g
current signals (i, and i ')are compared, respectively.

The error signal A#, for the reactive power exchange is
passed through the PI regulator PL-i,. The signal Ai, for the
real power exchange and maintenance of a constant ¥, is
passed through the PI-i,. The Ai, consists of the Al and error
signal AV, which has been passed through the PV, The
V4 is the desired value for V.

Finally, the estimated signals (¥, and ;) in Fig. 2 are

used to compute the angle @ and modulation index m to drive
the gate turn-off {GTO) thyristor of the inverter.

11i. DHP BASED NEUROCONTROLLER DESIGN

Adaptive critic designs (ACDs) proposed by Werbos [11]
are new optimization techniques to handle the nonlinear
optimal control problem using artificial neural networks.
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Fig. 3. Critic network adaptation in DHP: This diagram shows the implementation of (8). The same critic network is shown for two consecutive
times, r and ¢+1. The discount factor yis chosen to be 0.5. Backpropagation paths are shown by dotted and dash-dot lines. The output of the critic
network j, .y is backpropagated through the model network from its outputs to its inputs, yiclding the first term of (7) and 8J(r+1)A(). The
latter is backpropagated through the action network from its outputs to its inputs forming the second term of (7). Backpropagation of the vector
AU(YAA(r} through the action network results in a vector with components computed as the last term of (8). The summation of ali these signals

produces the error vector e{r) used fer training the critic network.

The adaptive critic methed finds the optimal control in the
infinite horizon problem to minimize/maximize the user-
defined heuristic cost-to-go function J for a system, by
successively adapting two ANNSs, namely the action network
(which dispenses the control signals) and the critic network
(which learns to approximate the cost-to-go function J). This
process is called the approximate dynamic programming
(ADP) for the value iteration J. The adaptation process starts
with a non-optimal, arbitrarily chosen, control by the action
network; the critic network then guides the action network
towards the optimal solution at each successive adaptation.
During the adaptations, neither of the networks needs any
‘information’ of an optimal trajectory, only the desired cost
needs to be known [12). A more detailed explanation of
ACDs technique is given in [10]-[16].

The dual heuristic programming (DHP) technique (among
the ACDs family) has the strong control capability in that the
critic network of the DHP approximates the derivatives of the
function J with respect to the states of the plant to be
controlled. The DHP algorithm described in this paper uses
three different multilayer (three layer) perceptron neural
networks {(MLPNNs), namely one for each of the critic,
model, and action networks,

The weight vector V of the MLPNN is adiusted/trained
using the gradient descent based backpropagation algorithm.
By trial and error, fourteen neurons are used in the hidden
layer of the MLPNN for the model network, and ten neurons
for each of the critic and action networks.

A. Critic Network

As mentioned before, the DHPNC is designed to replace
the PI regulators PI-i, and PI-i, in Fig.2. The input reference
vector Y, into the SSSC and output vector Y from the $SSC
are;

© Y1), input reference vector to the SS8C = [1,, ®, is (O,

Vdc (t)J
° AY(f), output vector from the SSSC={Ai (1), Ai, (1) ]

The configuration for the critic network adaptation in the
DHP 15 shown in Fig. 3. The inputs and outputs of the action
and model networks used in the critic network adaptation are
shown in Figs. 4 and 5.

The critic network estimates the derivatives of function J
with respect to the vector of observables of the plant
(identified by the model network), which is the
AV =T Ai’;([)} A;’P (£)] (input vector of the critic network), and

it learns to minimize the following error measure over time:
lzcl=- 2 ©)

BI[AY (1)]
DAY (1)

el (e (1)

AIAY(+1)]
OAY (1)

JUIAY (1) (6)
BAY (1)

ec(r):

After exploiting all relevant pathways of backpropagation
as shown in Fig. 3, where the paths of derivatives and
adaptation of the critic network are depicted by dotted and

2978



dash-dot lines, the error signal ed{(f) is used for training to
update the weights of the critic network.
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Fig. 4. luput-output mapping of the model network at ¢ used in the critic
network adaptation in Fig, 3.
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Fig, 3. Input-cutput mapping of the action network at 7 used in the critic
nctwork adaptation in Fig. 3.

The /" component of the second term in (6) can be
expressed by the output of critic network at time r+1,

A e+ 1) = I[AY (1 +1)]/BAY, (1 + 1) as follows.

JIAY (14 1)]

a5y Z A+

Y (1 +1)

8AY (1) 7N

noE s | JAY (1+1) 8A (D)
PIPNIGSY GA (1) JAY (1)

k=1 i=1

where » and m are the numbers of outputs of the model and
the action networks, respectively. By using (7), each
component of the vector ec{s) from {6) is determined by

_ SI[AY (D] 3I[AY 1+ 1Y

e, (1) -
BAY (1) OAY (1) (8)
_BUJAY (1)) ‘f BUAY ()] 9A, (1)
BAY (1) T BA, (1) @AY (N

Using (8), the expression for the weights® update for the
critic network is as follows.

Bec{1)
IV (1)

AV (1) = —ncei(t) &

where 7- is a positive learning rate and V. contains the
weights of the DHP critic network.
B. Action Network

The adaptation of the action network in Fig, 3 is illustrated
in Fig. 6, which propagates i(! +1) back through the model

network to the action network. The goal of this adaptation is
expressed in (10), and the weights of the action network are
updated by (11). As described before, the output vector of the

action network is A(N=[7, (), (1]

BULAY ()] | BI[AY (1+1)]
JA (1} dA (1)

-0 v (0

BULAY ()]
FA(!)

ai[aY(+ )] BA() (1)

AV, (1) =1l A1) av (1)

where 7, is a positive learning rate and V, contains the
weights of the DHP action network.

] AU}
i E MO :

AL)
A0 @._ ,

=[5, @000

K E 3l +1)
R a0 a

+ it +1)

| e A

Ar+h SAY+1)
Model AV( +1)— ) . J

Network | 700 . Critic

) AV Network
TOL |— A¥(r—I

Fig. 6. Action network adaptation in DHP: The discount factor y is chosen
1o be 0.5. Backpropagation paths are shown by dotted lines. The output of
the critic network Auen & tme (t+1) is backpropagated through the model

network from its outputs to its inputs {output of the aciton netwerk), and the
regulting vector multiplied by the discount factor (y = 0.5) and added to
SLALYAA(L). Then, an incremental adaptation of the action network is camried
out by (10} and (11}

The discount factor y of 0.5 and the user-defined utility
function U(#) [10] in (12) are used in (8) and (10) during
adaptation of the critic and action networks.

Uy =[Ai )+ A, (1 -1+ Ai = D (12)
+ [Aip(r)+ Ai (t-1)+ A1~ 2)]3

C. Model Nenvork

Fig. 7 illustrates how the modecl network (identifier) is
trained to identify the dynamics of the plant in Fig. 1. The
nonlinear autoregressive moving average with exagenous
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inputs (NARMAX) model is used as the structure for the on-
kine identification. The components of vectors Y, (5, AY(s),
A(f), and AV (r)are already noted in section 4 above (see Figs.
4 and 5). The residual vector, e,{f) given in (13) is used for
updating the model network’s weights V), in (14) during
training by the backpropagation algorithm,

€, ()= AY()-AY () =[AL ()~ qu (), i, (- AL (13)

ge, (1) (14)

AV, (1) = av ()
M

~“Hut M(t)

where 7, is a positive learning rate and V, is the weights of
the DHP model network,

.. AY (1)
ARORINGRROR A _ ,
T plant [=lditai
A1)
. N +
G050 =
oL | | v
: e )
TOL '
d

AY (1)
= [A1, )81, ()]

Model
Network
{identifier) >~

Xt

¥ ¥

-~

<

bV [t
\\M()

Fig. 7. NARMAX model for on-line training of the model network

The training procedures of the critic, action, and model
networks used in the DHP algorithm are explained in [10]
and [15]. Note that the model network is trained before the
training of the action and critic networks, and the DHPNC
with the fixed (converged) weights for the critic and action
networks is used to control the plant for real-time operation,
In other words, they have been successfully trained to their
optimization purposes {value iteration for the critic network
and policy iteration for the action network [18]).

IV. SIMULATION RESULTS

To evaluate the damping performance of the proposed
neurocontroller for the control of the SSSC, [00 ms and 120
ms three phase short circuits are applied to the infinite bus at
t=1 s. The generator operates with a rotor angle of 53.6°
(P=1.0 pu, O~ 0.59 pu) in a steady-state operating point. The
results are shown in Figs. 8 to 12, where “Uncompensated”
and “CONVC” denote the response of generator controlled
without SSSC and with the PI based SSSC, respectively.

From Fig. 8, it can be observed that the transmission line
current i, leads the compensating injection voltage v, by
almost 90° (considering the »,) in steady-state such that the
SSSC controlled by both the CONVC and DHPNC can

establish the same effect as the series capacitive
compensation resulting in increasing the line current (i) and
transmitted power (F). From the Figs. 9 to 10, the DHPNC
damping control is more effective compared to the CONVC.
Also, it is clear from Figs. 11 and 12 that the generator
controlled without the SSSC pgoes unstable and loses
synchronism when the fault duration is 120 ms. In contrast,
the DHPNC and CONVC restore the generator to a stable
mode, and the DHPNC damping control is more effective
compared to the CONVC, which means that the DHPNC
allows the generator to be operated closer to its stability {imit
during steady state by providing sufficient margins of safety.

[k¥]

Q . 1
.35 1 105 lsl 0.95 1 1.05 [s]

| kAl and V
[=t

L]

-5
5.9 5.85 & (sl

CONYC (tw5%3stads) DHPNC (t=5935to & s}

Fig. 8. A 100 ms three phase short circuit test: line current i, [kA] and
injected voltage v, (kV]

10

o0 l,..—Um:omp!nul-d

0 1 2 3 4 5 6
Time (5]

Fig. 9. A 100 ms three phase short circuit test: 5[°)

Tims (5]

Fig. 10. A 100 ms three phase short circuit test: ¥, (pu]
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Similar results are obtained for different system
distuibances such as a single line-to-ground fault at the
generator terminal and multiple short circuits in different
points, where are infinite bus and machine terminal.

Y. CONCLUSIONS

This paper has proposed a novel dual heuristic
programming (DHP) based design of a nonlinear optimal
neurocontroller (DHPNC) for the internal control of a static
synchronous series compensator (SS8C) used in a
transmission line of an ¢lectric power grid. The multilayer
perceptron neural network (MLPNN) is used as function
approximator for the critic, action, and model networks to
implement the DHP algorithm.

The PSCAD/EMTDC simumlation results show that the
DHPNC has a better performance than the PI based
conventional controller (CONVC) with respect to damping
low frequency power oscillations.

The use of fixed parameters in the DHPNC for real-time
control not only have an important significance in terms of
reducing the number of computations in dealing with the
infinite optimal controi problem by using the artificial neural
networks, but also proves robustness to the adaptive critic
designs (ACDs) based controllers.
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