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Abstract - In this paper, the dual heuristic programming 
(DHP) optimization algorithm is used for the design of a 
nonlinear optimal neurocontroller that replaces the 
proportional-integral (PI) based conventional linear controller 
(CONVC) in the internal control of a power electronic 
converter based series compensator in the electric power 
transmission system. The performance of the proposed DHP 
based neurocontroller is compared with that of the CONVC 
with respect to damping low frequency oscillations. 
Simulation results using the PSCAD/EMTDC software 
package are presented. 

1. INTRODUCTION 
In the last decade, flexible ac transmission system 

(FACTS) devices [ I]-[4] have been progressively developed 
for controlling power flow in a power transmission system, 
improving the transient stability, damping power system 
oscillations, and providing voltage stability by using high 
power semiconductor technology based inverters connected to 
the electric power grid. 

Recently, the static synchronous series compensator 
(SSSC).[5]-[7] among the FACTS device family has attracted 
considerable attention for damping of low frequency power 
oscillations -in the lines by using controllable series voltage 
compensation. 

The internal control strategy for the inverter of a SSSC as 
well as other FACTS devices has traditionally been based on 
linear proportional-integral (PI) regulators. These 
conventional PI linear controllers (CONVC) operate well at 
one particular operating point where they have been designed. 
In other words, their transient and dynamic performances are 
degraded at any other operating point, or their gains have to 
be re-tuned for the new operating points. 

Artificial neural networks (ANNs) can offer an efficient 
alternative to overcome the above limitation of the CONVC 
for the internal control. However, only a few researchers 181, 
[9] have reported on FACTS device control using ANNs in 
the literature due to the difficulty of implementing an 
effective and fast intemal control of the inverter with the 
ANNs. 

The recently developed adaptive critic designs (ACDs) 

[ 10]-[16] bascd techniques avoid the possibility of instability 
of the neurocontroller, and also yield an optimal response 
[ 17]-[ is] .  

This paper proposes a novel intelligent internal control 
approach using the multilayer perccptron neural network 
(MLPNN) as an optimal nonlinear neurocontroller. 

The background of the dual heuristic programming (DHP) 
algorithm, which has the best robust control capability among 
the ACDs family, is presented. Based on the DHP algorithm, 
a novel nonlinear optimal neurocontroller (called DHPNC) is 
designed as an alternative for intemal control of the SSSC, 
thereby replacing the PI based regulators for the currents but 
not for the dc link voltage. The performances of the DHPNC 
and CONVC are compared with respect to the damping of 
power oscillations by time-domain simulations in the 
PSCADiEMTDC software package. 

11. STATIC SYNCHRONOUS SERIES CO~MPENSATOR (SSSC) 

The static synchronous series compensator (SSSC) 
converter can control the reactive and/or active power on an 
ac system by changing both phasor angle and magnitude of 
the converter's output voltage with a fast control action. 
Especially, the exchange of active power, which is the 
particular characteristic of the SSSC, is accomplished by 
controlling the dc voltage inside the SSSC [I]. 

A .  Modeling of SSSC 
The single machine infinite bus (SMIB) system shown in 

Fig. 1 is used to compare the damping control capabilities of 
the proposed DHPNC and CONVC for the SSSC. The plant 
consists of the synchronous generator (160 MVA, 15 kV (L- 
L)), turbine-governor system, automatic voltage regulator 
(AVR)-cxciter system, transmission line connected to an 
infinite bus, and the SSSC connected in series with 
transmission line. The parameters of the synchronous 
generators and transmission line are given in 1191. 

The EXACIA (IEEE alternator supplied rectifier excitation 
systems) and H T U R l G O V l  (IEEE type hydro turbine- 
governor) models in PSCADlEMTDC software package [20] 
are used as the AVWexciter system and turbinelgovemor, 
respectively. 
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Fig. I .  Plant: 160 MVA, 15 kV (L-L) SMlB test system 

For the mathematical model of the SSSC, the associated 
equation can he represented with the lumped series 
transmission line reactance x :  (transmission line x. plus 

leakage reactance of series-connected transformer) and 
transmission series resistance r, (the inverter is regarded 
simply to have no conduction losses) in per unit as follows. 

r r 

where UJ, is the synchronous speed of the power system, v , ~  is 
the sending-end voltage (terminal voltage in practice), i, is the 
current:in transmission line, v, is the receiving-end voltage in 
the infinite bus, and vc is the injected series compensation 
voltage. 

Using the synchronously rotating reference frame based 
transformation [2], in which the d-axis is always coincident 
with the instantaneous voltage vector v and !he q-axis leads 
the d-axis by 903 the three-phase circuit equation in (1) can 
be transformed to the following d-q axis vector 
representation. 

Neglecting the series inverter harmonics, the ac side 
injected voltage v, in Fig.1 can be expressed with relation to 
the capacitor voltage Ydc on the dc link as follows. 

vcd = mV, cos( a), v q  = mV,sin(u) (3)  

where a is the phase voltage difference between the voltages 
vc and v, (the vc leads the us), and m is the modulation indcx of 
the series inverter. The dynamics of the dc capacitor voltage 
is given by 

B. Conventional Control Strategy 
The main goal of the SSSC is to inject the series voltage in 

quadrature with the line current and to maintain the dc voltage 
Vdc. For this purpose, the P-Q (real and reactive power) 
automatic power flow control mode [ I ]  in Fig. 2 is used. 

Fig. 1. 
control of the SSSC 

P-Q automatic power flow control diagram for the inlernal 

In Fig. 2, an instantaneous three-phase set of line voltages, 
v,, vb, and vc is used to calculate the transformation angle, 0 
provided by the vector phase-locked loop for synchronous 
operation of the series voltage source inverter (VSI) shown in 
Fig.1. As shown in (2), the three-phase set of measured line 
currents at the ac terminal of the SSSC is decomposed into its 
realidirect component, id, and reactiveiquadrature component, 
i,. These actual signals (id and i,) and the reference d-q 
current signals (id and iq> are compared, respectively. 

The error signal Ai, for the reactive power exchange is 
passed through the PI regulator PI-i,. The signal Aip for the 
real power exchange and maintenance of a constant V,, is 
passed through the PI-i,. The Aip consists of the Aid and error 
signal AV,, which has been passed through the P1-Vdc. The 
Vdr* is the desired value for Vdc. 

Finally, the estimated signals ( Pcy and Ped) in Fig. 2 are 

used to compute the angle a and modulation index m to drive 
the gate turn-off (GTO) thyristor ofthe inverter. 

111. DHP BASED NEUROCONTROLLER DESIGN 

Adaptive critic designs (ACDs) proposed by Werbos [ I  I ]  
are new optimization techniques to handle thc nonlinoar 
optimal control problem using artificial neural networks. 
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Fig. 3. Critic network adaptation in DHP: This diagram shows the implementation a t  (8). The same critic network is shown for two consecutive 
times. 1 and 1 7 1 .  The discount factor l i s  chosen to be 0.5. Backpropagation paths are shown by dotted and dash-dot lines. The output of the critic 
network ict  + I )  is backpropagated through the model network from its outputs to its inputs, yielding the first term of (7) and JJ(r+l)/aA(r). The 
latter is backpropagated through the action network from its outputs to its inputs farming the second term of (7). Backpropagation of the vector 
dU(l) /JA(r)  through the action network results in a vector with components computed as the last term of (8). The summation of all these signals 
produces the error vector e, ( r )  used for training the critic network. 

The adaptive critic method finds the optimal control in the 
infinite horizon problem to minimizelmaximize the user- 
defined heuristic cost-to-go function J for a system, by 
successively adapting two ANNs, namely the action network 
(which dispenses the control signals) and the critic network 
(which leams to approximate the cost-to-go function J). This 
process is called the approximafe dynamic programming 
(ADP) for the value iteration J .  The adaptation process starts 
with a non-optimal, arbitrarily chosen, control by the action 
network; the critic network then guides the action network 
towards the optimal solution at each successive adaptation. 
During the adaptations, neither of the networks needs any 
'information' of an optimal trajectoly, only the desired cost 
needs to he known [12]. A more detailed explanation of 
ACDs technique i s  given in [ 10]-[16]. 

The dual heuristic programming (DHP) technique (among 
the ACDs family) has the strong control capability in that the 
critic network of the DHP approximates the derivatives of the 
function J with respect to the states of the plant to be 
controlled. The DHP algorithm described in this paper uses 
three different 'multilayer (three layer) perceptron neural 
networks (MLPNNs), namely one for each of the critic, 
model, and action networks. 

The weight vector V of the MLPNN is adjusteditrained 
using the gradient descent based backpropagation algorithm. 
By trial and error, fourteen neurons are used in the hidden 
layer of the MLPNN for the model network, and ten neurons 
for each of the critic and action networks. 

A .  Critic Network 
As mentioned before, the DHPNC is designed to replace 

the PI regulators PI-& and PI-$ in Fig.2. The input reference 
vector V,into the SSSC and output vector Y from the SSSC 
are: 

a Y&), input reference vector to the SSSC = [ip'(t), ik(t), 

0 AY(f), output vector from the SssC= [ Aiq(f) ,  A i , ( f )  1. 

The configuration for the critic network adaptation in the 
DHP is shown in Fig. 3. The inputs and outputs of the action 
and model networks used in the critic network adaptation are 
shown in Figs. 4 and 5. 

The critic network estimates the derivatives of timction J 
with respect to the vector of observables of the plant 
(identified by the model network), which is the 
A + ( ~ ) = [ A ;  ( t ) , ~ ; ~ ( t ) ]  (input vector of the critic network), and 
it leams to minimize the following error measure over time: 

VdC7t)1. 

(5) 

a J [ A P ( t ) ]  a j [ A Y ( t + l ) l  - J U [ A Y ( f ) l  (6)  -' a A Y ( f )  aAY (f) e, (0 = a A +  (,) 

After exploiting all relevant pathways of backpropagation 
as shown in Fig. 3, where the paths of derivatives and 
adaptation of the critic network are depicted by dotted and 
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dash-dot lines, the error signal edt) is used for training to 
update the weights of the critic network. AV.( / )  = - v c e : ( t ) -  ae,( t )  (9) 

av,  io  

Fig. 4. Input-output mapping or the model network at t used in the critic 
setwork adaptation in Fig. 3. 

Fig. 5 .  Input-output mapping of thc action network at t used in the critic 
znctwork adaptation in  Fig. 3. 

The j'h component of tlic second term in (6) can be 
cxprcsscd by the output of critic network at time r + l ,  
i , ( i  + I) = a . i [ A t ( ~  + 111 / a ~ Y , ( r  + I )  as follows. 

where qc is a positive learning rate and Vc contains the 
weights of the DHP critic network. 

B. Action Network 
The adaptation of the action network in Fig. 3 i s  illustrated 

in Fig. 6, which propagates ,f(~ + 1) back through the model 
network to the action network. The goal of this adaptation is 
expressed in (lo), and the weights of the action network are 
updated by (1 I). As described before, the output vector of the 
action network is A ( r ) = [ ~ ~ ~ ( ~ ) , ~ ~ ~ ( ? ) ] .  

where qA is a positive learning rate and V, contains the 
weights of the DHP action network. 

Fig. 6. Action network adaptation in D H P  The discount faclor y is chosen 
10 be 0.5. Backpropagation paths are shoun by dotted lines. The output of 
the c d i c  network i ( ,  + at time ( r t l )  is backpropagated through the model 
network from its outputs to its inputs (ourput of the action network), and the 
resulting vector multiplied by the discounr factor ( y  = 0.5) and added to 
JU(l)/~A(t). Then. an incremenlal adaptation of the action network is carried 
autby(lO)and(ll) 

wherc n and ~n are the numbers of outputs of thc model and 
thc action networks, respectively. BY using (71, each 
component of the vector ec{r) from (6) is determined hy 

The discount factor y of 0.5 and the user-defined utility 
function u(t) [IO] in (12) are used in (8) and (10) during 
adaptation of the critic and action networks. 

Fig. 7 illustrates how the modcl network (identifier) is 
trained to identify the dynamics of the plant in Fig. 1 .  The 
nonlinear autoregressive moving average with exogenous 

Using (S), the exprcssion for the weights' update for the 
critic network is as follows. 
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inputs (NARMAX) model is used as the structure for the on- 
Iine identification. The components of vectors Y,*,(I), AY(/), 
A(/), and A+(/) are already noted in section A above (see Figs. 
4 and 5 ) .  The residual vector, e d f )  given in (13) is used for 
updating the model network's weights V, in (14) during 
training by the backpropagation algorithm, 

e , ( / )  = A Y ( l ) - A q ( l )  = [ A i q ( [ ) -  A;q(l) ,  A I , ( [ )  - A;,,(/)] (13) 

x 
Fig. 7.  NARMAX model roar on-line training of the model network 

The training procedures of the critic, action, and model 
networks used in the DHP algorithm are explained in [lo] 
and [15]. Note that the model network is trained before the 
training of the action and critic networks, and the DHPNC 
with the fixed (converged) weights for the critic and action 
networks is used to control the plant for real-time operation. 
In other words, they have been successfully trained to their 
optimization purposes (value iteration for the critic network 
and policy iteration for the action network [ 181). 

IV. SIMULATION RESULTS 
To evaluate the damping performance of the proposed 

neurocontroller for the control of the SSSC, 100 ms and I20 
ms three phase short circuits are applied to the infinite bus at 
t=l s .  The generator operates with a rotor angle of 53.6" 
(P,=l.O pu, Q,= 0.59 pu) in a steady-state operating point. The 
results are shown in Figs. 8 to 12, where "Uncompensated" 
and "CONVC" denote the response of generator controlled 
without SSSC and with the PI based SSSC, respectively. 

From Fig. 8, it can be observed that the transmission line 
current is leads the compensating injection voltage U, by 
almost 90" (considering the re) in steady-state such that the 
SSSC controlled by both the CONVC and DHPNC can 

establish the same effect as the series capacitive 
compensation resulting in increasing the line current (i.,) and 
transmitted power (P). From the Figs. 9 to I O ,  the DHPNC 
damping control is more effective compared to the CONVC. 
Also, it is clear from Figs. 11 and 12, that the generator 
controlled without the SSSC goes unstable and loses 
synchronism when the fault duration is 120 ms. In contrast, 
the DHPNC and CONVC restore the generator to a stable 
mode, and the DHPNC damping control is more effective 
compared to the CONVC, which means that the DHPNC 
allows the gencrator to be operated closer to its stability limit 
during steady state by providing sufficient margins of safety. 

CONYC , t . L S . b 6 4  D"PNC , t . L I . b 6 ' l  

Fig. 8. A 100 m s  three phase short circuil test: line current i , [kA]  and 
injected voltage vra [kV] 

110 

100 

I 
2 I 5 

rrme IS,  

Fig. 9. A 100 ms three phase short circuit test: S [ " ]  

""romp."..,.* :I- ~ - - -  ~ - ._. . ..._ '. 
0.6 y i 

1 I S  2 2.5 1 3.5 I 4.5 5 
7" I,, 

Fig. I O .  A 100 ms three phase short circuit test: V, [pu] 
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130 

120 

110 

t o o  

'in 

Fig. 12. A 120 ms three phase short circuit test: V, [pu] 

Similar results are obtained for different system 
disturbances such as a single line-to-ground fault at the 
generator terminal and multiple short circuits in different 
points, where are infinite bus and machine terminal. 

C-U"....."..,.. 

- 
- 

..J - 

V. CONCLUSIONS 
This paper has proposed a novel dual heuristic 

programming (DHP) based design of a nonlinear optimal 
neurocontroller (DHPNC) for the internal control of a static 
synchronous series compensator (SSSC) used in a 
transmission line of an electric power grid. The multilayer 
perceptron neural network (MLPNN) is used as function 
approximator for the critic, action, and model networks to 
implement the DHP algorithm. 

The PSCADIEMTDC simulation results show that the 
DHPNC has a better performance than the PI based 
conventional controller (CONVC) with respect to damping 
low frequency power oscillations. 

The use of fixed parameters in the DHPNC for real-time 
control not only have an important significance in terms of 
reducing the number of computations in dealing with the 
infinite optimal control problem by using the artificial neural 
networks, but also proves robustness to the adaptive critic 
designs (ACDs) based controllers. 
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