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An Object-Based Evolutionary Algorithm: The Nesting Solution 

Kanchitpol Ratanapan and Cihan H. Dagli 
Smart Engineering Systems Lab. 

Engineering Management Department 
University of Missouri-Rolla 

ABSTRACT 

The nesting problems have received considerable attention 
and have been addressed by a variety of algorithms. 
Recently, evolutionary algorithms have been adopted for 
solutions. Most of these algorithms, however, require a 
search in one-dimensional space; thus a transformation of 
the problem to a single dimension, as in the sequencing 
problems, is needed Unfortunately, this restricts the search 
space. In this stu& an object-based evolutionary algorithm 
for the nesting problems is proposed. The methodology is 
created in a true two-dimensional space, allowing object- 
based mechanisms and object-based evolutionary operators 
to perform efectiveb on the space without restricting search 
alternatives. Implementation of the algorithm is conducted 
using grid representation where no overlapping is allowed. 
Layout simulatiodanimation over generations shows the 
continual improvement by this method Experimental results 
ofpacking dens@ on rectangular and irregular versions of 
the nesting problem are up to 94.41% and 82.34%, 
respectively. For industrial-size data, five hundred and 
forty-three pieces are tested. The final packing density is 
74.89%. 

1. INTRODUCTION 

The cutting and packing problems are of both academic and 
practical interest. Most industries have been dealing with 
these problems using a variety of techniques for decades. 
Hundreds of articles related to the problems have been 
published since the 1960s. A vast number of approximate 
solutions to the problems have been proposed in the 
literature, due to their NP-complete characteristics [ 1,2]. 

Nesting problems pose some of the most difficult issues on 
two-dimensional cutting and packing problems because they 
involve nesting of either regular or irregular pieces on 
regions. The main objective of the nesting problem is 
similar to other cutting and packing problems in that scrap 
needs to be minimized. For example, if a set of specific 
sizes of rectangular pieces is needed to be cut from a 

continuous sheet with a coiistant width, the patterns of these 
pieces will be nested in such a way that the length of the 
sheet is minimized. 

The nesting problem is known by different names for 
different industries, e.g., a marker problem for the textile 
industry, a part-nesting problem for the shipbuilding 
industry, and a floor plarlning problem in the VLSI chip- 
building industry. However, the word "layout problem" is 
generally understood in most industries. Recent research 
reports that two million dollars could be saved per year for 
a textile manufacturing if the average improvement in 
efficiency of a layout problem is increased by only 0.1% [2]. 
Comprehensive reviews of the problems can be found in 
[3,4,51. 

Recently, many researchers approach these problems by 
reducing the complexity of the problems from two to one 
dimensional space problem, making it similar to a 
sequencing problem. They then solve the latter problem 
instead. No report is found that indicates the solutions 
obtained from the one-dimensional space are as good as the 
one received directly from two-dimensional space. The 
possible loss of the search space may occur due to this 
dimension reduction. To eliminate this, there is a need for 
a search method that could obtain the solution directly from 
the two-dimensional space is of interested. 

2. OBJECT-BASED EVOLUTIONARY 
ALGORITHMS 

In the previous researches, a new methodology called an 
object-based evolutionary algorithm (OBEA) is proposed 
[6]. The method utilizes the benefits of evolutionary 
algorithms [7,&], graphical data manipulation [9], and 
simulatiodanimation [ 1011. The outline of the method has 
minor changes from the evolutionary algorithm given in 
Back 171. However, an adlditional hill-climbing operation is 
added to enable the movements of pieces. Following is the 
general outline of OBEA. 
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- t = o ;  
Initialization P(O) = {;do) ,...,a,@)} E I V  ; 
Evaluation P(0) : {@(;&I)) ,..., @(a,,@))} ; 
While (t(P(t) + true) do 

Hill-climbing P(t) = h@#'(t)) ; 
Recombination P"(t) = r0 p ' ( t ) )  ; 
Mutation P"(t) = m@JP"(t)) ; 
Evaluation P"'(t) : { O(;;'l~t)), . . . ,O (~* ( t ) ) }  ; 
Selection P(t+l) = sO,(P"'(t) U Q) ; 

t = t+ l  ; 
Od ; 

This guideline can be simplified as follows. The algorithm 
starts with setting a generation number, t = 0. Then, an 
initial population, P(O), is created by a set of individuals, 
a, for p individuals considered as the zero generation. Each 
individual is evaluated by an evaluation function, @, to find 
its fitness value. After this step, the next generation will be 
created iteratively by performing some operations until the 
termination criteria, z, are met. This next generation is 
produced by performing a hill-climbing operator, he,, a 
recombination operator, YO,, and a mutation operator, me,, 
on the current population. The new individuals of new size 
h are then calculated. Finally, a selection process, SO,, will 
select and move some individuals of size p to create a new 
population for the next generation, where t = t + 1. More 
information to this guideline can be found in [7]. 

- 

All other mechanisms--namely, individual representations, 
initialization process, evolutionary operators, fitness 
evaluation function, and termination criteria-are developed 
and implemented in a totally different way than the 
conventional evolutionary algorithms. 

A. Individual Representation 
Though the search mechanisms in the evolutionary algorithm 
could search for a set of points in an n-dimensional solution 
space, it cannot search for a set of areas or pieces. A 
solution of some problems, such as nesting problems, needs 
more than a set of points in the two-dimensional space. It 
requires a set of locations that correspond to the pieces on 
the regions. Those pieces should neither overlap each other 
nor extend out of the regions. Obviously, it is much too 
complicated to represent the nesting problem using the 
representation of the evolutionary algorithm due to the 
variable sizes of vertices representing those pieces. 
Therefore, each piece needs to be treated as a solid object. 
Also, the regions themselves must be bounded by solid 
edges, and each piece must be placed within a region. The 
collection of locations of these pieces is a solution of the 
problem, or the layout. 

B. Initialization Process 
Information used in the initialization might include the shape 
of the regions, the shape of the pieces, the number of those 
pieces that need to be placed, etc. The process uses this 
information within the first step to create the bounded 
regions. Then, each piece is placed within the regions in 
random order and location. However, it is possible that 
some piece may not be placed because the selected location 
is not vacant. Therefore, several attempts are allowed in 
finding an empty place for the piece. Also, some operators 
described in the following subsections, such as rotation, can 
be called to create more flexibility in placing the piece. All 
pieces may be reinitialized if there exists at least one piece 
that cannot be placed after exhausted attempts. The regions 
that contained all required pieces are called an initial 
solution or initial layout. More than one layout can be 
created during initialization. The whole set of these initial 
solutions is called an initial population, or the zeroth 
generation of layouts. 

C. Fitness Evaluation Function 
The fitness value can be calculated directly from the regions 
depending on the objectives of the problem. If the objective 
of the problem is to minimize the nesting area used by all 
pieces on a rectangular steel sheet, the fitness value might be 
the maximum position, or the rightmost position of all pieces 
on the sheet. 

D. Termination Criteria 
Usually, the algorithm is terminated by specifying a 
maximum number of generations. Some additional 
termination criteria may be added, such as maximum number 
of generations for which the best value remains the same, 
maximum computing time allowed in some real time 
applications, or a preset acceptable value is reached. In 
some situations, the average fitness of each generation can 
be used instead. Other termination criteria can be introduced 
upon requirement or objective of the particular problems. 

E. Object-Based Evolutionary Operators 
For an algorithm to be called the evolutionary algorithm, 
some evolutionary operators, also known as genetic 
operators, need to be presented. The ideas behind the 
operators are to change the location or orientation of some 
pieces so that a different layout is created. Some operators 
will make a significant change while some will make only a 
slight change. Three groups of operators can be categorized 
based on their actions and the results after being performed 
on the layouts. All basic elements of each operation are 
obtained from the two-dimensional transformations of 
graphical data manipulation. These three groups of 
operators namely hill-climbing, mutation, and 
recombination, are described below: 
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Hill-climbing Operators: In the two-dimensional 
space, the layout modification can be made by moving a 
single pattem. If the change done improves the fitness value 
of the layout, or at least remains the same, this situation is 
called hill-climbing. The evolutionary operators categorized 
as hill-climbing operators are "translation," "rotation," 
"rectangular-rotation," "touch-point," "piece-sliding" and 
"relocation. It 

a. Translation Operator. This operator is performed 
on a piece in a region by moving the piece one unit at a time 
toward preset gravitational forces. The center of the force 
can come fkom a single source or multiple sources on the 
two-dimensional plane. When these forces are applied, it 
makes all pieces move toward them at the same time. The 
mathematical representation of the operator obtained fiom 
the graphical data manipulation is called a unit translation. 
This unit is represented as a gravitational force with a 
direction. The unit translation equation can be represented 
as a matrix vector product as follows: 

1 0 0  

where x and y is a position of the lower-left comer of a 
rectangle; x' and y' is a new position of the rectangle; and T, 
and T, = -1,O, or 1 [9]. For example, if the lower-left corner 
of the two-dimensional plane is the center of the force, all 
pieces will be moved toward that comer, one unit for each 
piece in one generation. T, and T,,, here, are equal to -1. 
However, some operations will not be performed if the next 
move creates overlapping. After the translation operator is 
performed for many generations, all pieces will be moved 
and packed at the lower-left corner of the region. 

b. Rotation Operator. This operator can rotate an 
object to any particular degree. For example, in the hexagon 
piece packing problem, a specific degree of rotation, sixty 
degrees, may be needed. However, in the general case of the 
nesting problem where the pieces have alternative shapes, 
rotation in all degree must be allowed. Using the following 
matrix representation adopted from graphical data 
manipulation, an object which is the representation of the 
piece on the working space can easily be rotated to any 
degree of orientation. 

c. Rectanpular-R.otation Operator. For nesting 
problems that deal with rectangular pieces, a ninety-degree 
rotation operator may be required. Each of the four corners 
can be used as a rotation reference point. However, the word 
"rotation" may not be fully appropriate because this operator 
is created &om two-step operators. The frst step is to rotate 
a rectangle in an imaginary space using its lower-left corner 
as a reference point for ninety degrees. The second step is 
to move the piece back to tlhe position of the reference point. 
For example, the selected pivot point is the lower-right 
comer of a piece. The rotation operator will rotate the piece 
for minus 90 degrees, andl then move the new lower-right 
comer back to the previous lower-right comer. This 
operator is also very useful in irregular nesting problems. In 
mathematic terms, this rectangular rotation is a composite 
transformation of a rotation, and a translation operator which 
can be written in the term of matrix multiplication as follows. 

r ir 1 

d. Relocation ope-. It operates on a piece in a 
region by relocating the piece to a vacant position within the 
maximum value or the right most position of all pieces. The 
pieces should not overlap to each other, or extend beyond 
the boundary of the region, or over the maximum value line. 

e. Touch-Point Operator. This operator contains 
two translation and one rotation operators. It is performed 
when any part of a piece touches another piece or the 
boundary of the region. This piece will be rotated about a 
selected touch point for a small degree. A matrix 
representation of the operator can be shown as follows. 

[x' y' 11 = [x y 11 -sine cdse 0 

These three matrix components are used for calculating a 
new location and a new orientation of the object. The three 
steps corresponding the matrix components are described as 
follows. First, the object is translated fkom the original 
position for (-T'.,-Ty) so that the touch point position is 
moved to a referent point, or lower left comer of a 
rectangular enclosure of the piece. Then, the object is 
rotated about that reference point. Finally, the object is 
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translated for (T.TY) so that the touch point position returns 
to its original location. 

f. Piece-Sliding Operator. The operation of this 
operator is similar to that of the rectangular rotational 
operator in that the object changes it coordinate and 
orientation simultaneously. The translating distance and a 
degree of rotation of the object are set to a small value so 
that the object will be moved in the sliding motion. The 
following is a matrix representation of this operator. 

COS e 
-sin0 

0 

Mutation Operators: An operator that creates an 
offspring layout in which its fitness value can worsen is so- 
called a mutation. The mutation operator may create an 
offspring that either looks alike, or looks a lot different fi-om 
the original layout. Several operators considered mutations 
are presented as follows: 

a. Relocate-Away Ouerator. The idea of this 
operator is io relocate a piece to another position out of the 
maximum value line so that the rest of the pieces will have 
some room to be reorganized. In a densely packed situation, 
if the operation performs piece relocation within the 
maximum value line, the target area might not be vacant. 
One possible alternative to create a new offspring is to 
relocate the piece in the opposite direction of the 
gravitational force where a vacant space is guaranteed. For 
example, if the force is pulled to the lower-left comer of the 
plane, the piece should be relocated to the upper-right comer 
of the region. 

b. Point-Mutation Operator. Relocate-away 
operator might eventually help in creating a better solution, 
and relocating a piece within the maximum value line may 
create a different look of the layout. Nevertheless, some 
pieces may already occupy that area. If some pieces exist in 
the new location, the overlapping technique must be 
performed so that the space is available for relocation. 
Every piece which begins in an overlapping position needs 
to be moved to the nearest position where no overlapping 
occurs. Each piece will be moved in the opposite direction 
of the gravitational force, or in the other words, moved 
toward the right end of the region. 

c. Area-Mutation Operator. Similar to point 
mutation operator, all pieces which start fi-om an overlapping 
position need to be moved. The difference here is that a 

whole specific area needs to be determined. The specific 
area can be any shape or any size. All pieces overlapped in 
the mutation area will be packed together and relocated to a 
new location. However, overlapping on the new location is 
also possible. The same overlapping technique used in the 
point mutation will be performed to create a non-overlapping 
layout. 

Recombination Operators: This operator will be 
performed on two or more layouts by changing information 
to each other to create. The example of the operators are 
point-crossover and area-crossover. 

a. Point-Crossover Operator. There are many ways 
to create a point crossover. For example, two layouts are 
chosen to be crossovered. A position on the first layout is 
selected, and a piece on that position is determined. Assume 
that the chosen piece is the piece labeled no. 7. At the same 
time, another piece on the same position on the second 
layout is also determined. Assume that the chosen piece on 
the other layout is the piece labeled no. 3. Next, the piece 
fi-om each layout will switch to another layout creating a 
duplicated piece on each layout. The fxst layout now has 
two pieces of no. 3 but lost piece no. 7 while the second 
layout has two pieces of no. 7 but no piece no. 3. Since, the 
redundant pieces are not allowed in this step, the replacing 
technique may be used by replacing the piece no. 7 on the 
original of piece no. 3 so that the duplicating piece does not 
exist on the first layout. A similar process is to be performed 
on the second layout. Also, although an overlapping area is 
likely to exist, the overlapping solving technique used in 
point mutation will be called and be performed on the task as 
a part of this operator. 

b. Area-Crossover Operator. The crossover is 
developed by combining the idea of area mutation and point 
crossover to create more possible recombinations of layouts. 
The area selected for performing the crossover can also be 
any size and shape. All pieces covered by the crossover area 
will be switched to another layout. Like the point crossover, 
it is possible to have more than two layouts involved in the 
area crossover. All redundant pieces are eliminated after the 
operation, all missing pieces are replaced, and the 
overlapping problem are resolved. 

3. IMPLEMENTATION 

Data representation used in OBEA is grid system. The main 
advantage of the method is the flexibility in implementing 
the system, Le., a slower computer can use a lower 
resolution, and a faster computer can use a higher resolution. 
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4. EXPERIMENTAL RESULTS 

In the previous research, two toy problems were used to 
show the potential in finding solutions using the 
methodology for some nesting problems [6]. Those results 
alone may not show the advantages over other 
methodologies. Some comparisons may be needed to 
present the usefulness of the OBEA. 

A. Rectangular Nesting Problems 
Data used for this comparison is obtained from [ 1 11. The 
average of packing density of his testing results is 93.46%. 
Thirty-seven pieces from eight different patterns are tested 
(see Table 1). All pieces are allocated on a continuous sheet 
with a constant width of 30 units where a fixed population 
size of 9 1 is used and five hundred generations are run. 

Table 1 The regular piece set used for comparison. 

Pattern no. Width (x) 

12 
8 
9 
4 
9 
6 
10 
15 

10 
11 
13 
5 
10 
8 
12 
7 

Piece no. 

1- 3 
4- 7 
8-13 

14-17 
18-20 
2 1-26 
27-35 
36-37 

In this work, most object-based evolutionary operators are 
applied. Ten trials are run. The best result, obtained form 
four out of ten times, is 94.41% while the worst result, two 
out of ten times, is 92.83%. The average of the packing 
density is 93.77%. The population used in this experiment 
are 30 and the termination generation is 200. Two different 
examples of the best results are shown in Figure 1 and 2. 

Figure 1 An example of the best result after ten trials 

I 

Figure 2 Another example of the best result 

B. Irregular Nesting Problems 
In this implementation, the irregular nesting problems are 
tested. The data of this test set is also obtained from [12]. 
The experimental results are obtained by generating 30 

individuals using 30 irregular pieces on a continuous sheet 
with a width of 60 units. After generating for one thousand 
generations, the best result is around 82.34 % and the 
average is around 78.89% of packing density using lowest 
resolution, R=l. Figure 3 illustrates the best result of the 
population. 

. I 

Figure 3 The Best result i:s obtained after the first 1000 
generations (R=11). 

Note that this packing density is calculated by counting 
number of squared units used by all pieces, 3885, then 
divided by the rightmost position of the rightmost piece, 
78.64, and multiplied by the height of the sheet,60, which it 
is equal to 82.34. As seen, if the size of squared unit or grid 
is large, the gaps among the pieces are also large. The 
quality of the solution is depending on the size of the grid. 
This can be improved using a smaller size of the grid, higher 
resolution, so that only the :smaller gaps can occur. However, 
the smaller grid size is selected to use on the second 
evolution, or after the best result &om the first evolution is 
received. The data used in the above example is very small 
compared to the real data used in industry. However, to test 
the industrial data size, the higher resolution, e.g. R=lO, is 
not possible to use due to the limits of computer storage and 
a very long period of computing time, up to two weeks per 
trial. In this study, five-hundred and forty-three pieces are 
run. Three layouts are used as the population. The result 
after running for five thousand generations using the first 
order resolution (R=l) is 80.78%. The result after the 
second evolution of two thousand generations using the 
second order resolution (IZ=2) is 77.25%. The final result 
after the third evolution of one thousand generations using 
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the fifth order resolution (R=5) is 74.89% (see Figure 4). 
This re-representation using higher resolution representation 
is used to start from the second evolution. Although much 
better quality of the final result is obtained, the time spent for 
this step is very long compared with the time that used 
during the frst  evolution. Further decrease the size of the 
grid will result in shortening only a small nesting length 
while the time spent for generating the final solution is 
increases dramatically. 

5. CONCLUDING REMARKS 

The object-based evolutionary algorithm is successfully 
applied to solve both the rectangular and irregular nesting 
problems. The idea of multi-dimensional representation for 
EA is introduced. The advantage of this approach is the 
ability to exploit the whole solution space. Animation 
during the experiments can enlighten the ways to discover 
new operators, answer a number of questions, and present 
this methodology perfectly with the least explanation. 
Population idea and the interaction between individuals are 
added to empower the algorithm on overall performance. 
All solutions from the algorithm yield no overlapping 
patterns. The experimental results on the rectangular and 
irregular nesting problem are around 93.7% and 78.9% 
respectively. 

For the future work, some new evolutionary operators may 
be introduced to customize some specific problems. Some 
pre-processor and post-processor may also be used to reduce 
unnecessary computation. Improve versions of shape-filling 
algorithms for the internal representation may be needed. 
An algorithm for calculating the area of an irregular piece 
may be required. Intensive experimentation with different 
problems may be tested. Robust parameters for the general 
nesting problem may be done by using different methods 
such as design of experiments, taguchi method, or neural 
networks. Parallel implementation for the OBEA on parallel 
computer may be helped in reducing the total computation 
time. 
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