
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Engineering Management and Systems
Engineering Faculty Research & Creative Works

Engineering Management and Systems
Engineering

01 Jan 1998

An Object-Based Evolutionary Algorithm: The Nesting Solution An Object-Based Evolutionary Algorithm: The Nesting Solution

Kanchitpol Ratanapan

Cihan H. Dagli
Missouri University of Science and Technology, dagli@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
K. Ratanapan and C. H. Dagli, "An Object-Based Evolutionary Algorithm: The Nesting Solution,"
Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998
(IEEE World Congress on Computational Intelligence), Institute of Electrical and Electronics Engineers
(IEEE), Jan 1998.
The definitive version is available at https://doi.org/10.1109/ICEC.1998.700093

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by
an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229165762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICEC.1998.700093
mailto:scholarsmine@mst.edu

An Object-Based Evolutionary Algorithm: The Nesting Solution

Kanchitpol Ratanapan and Cihan H. Dagli
Smart Engineering Systems Lab.

Engineering Management Department
University of Missouri-Rolla

ABSTRACT

The nesting problems have received considerable attention
and have been addressed by a variety of algorithms.
Recently, evolutionary algorithms have been adopted for
solutions. Most of these algorithms, however, require a
search in one-dimensional space; thus a transformation of
the problem to a single dimension, as in the sequencing
problems, is needed Unfortunately, this restricts the search
space. In this stu& an object-based evolutionary algorithm
for the nesting problems is proposed. The methodology is
created in a true two-dimensional space, allowing object-
based mechanisms and object-based evolutionary operators
to perform efectiveb on the space without restricting search
alternatives. Implementation of the algorithm is conducted
using grid representation where no overlapping is allowed.
Layout simulatiodanimation over generations shows the
continual improvement by this method Experimental results
ofpacking dens@ on rectangular and irregular versions of
the nesting problem are up to 94.41% and 82.34%,
respectively. For industrial-size data, five hundred and
forty-three pieces are tested. The final packing density is
74.89%.

1. INTRODUCTION

The cutting and packing problems are of both academic and
practical interest. Most industries have been dealing with
these problems using a variety of techniques for decades.
Hundreds of articles related to the problems have been
published since the 1960s. A vast number of approximate
solutions to the problems have been proposed in the
literature, due to their NP-complete characteristics [1,2].

Nesting problems pose some of the most difficult issues on
two-dimensional cutting and packing problems because they
involve nesting of either regular or irregular pieces on
regions. The main objective of the nesting problem is
similar to other cutting and packing problems in that scrap
needs to be minimized. For example, if a set of specific
sizes of rectangular pieces is needed to be cut from a

continuous sheet with a coiistant width, the patterns of these
pieces will be nested in such a way that the length of the
sheet is minimized.

The nesting problem is known by different names for
different industries, e.g., a marker problem for the textile
industry, a part-nesting problem for the shipbuilding
industry, and a floor plarlning problem in the VLSI chip-
building industry. However, the word "layout problem" is
generally understood in most industries. Recent research
reports that two million dollars could be saved per year for
a textile manufacturing if the average improvement in
efficiency of a layout problem is increased by only 0.1% [2].
Comprehensive reviews of the problems can be found in
[3,4,51.

Recently, many researchers approach these problems by
reducing the complexity of the problems from two to one
dimensional space problem, making it similar to a
sequencing problem. They then solve the latter problem
instead. No report is found that indicates the solutions
obtained from the one-dimensional space are as good as the
one received directly from two-dimensional space. The
possible loss of the search space may occur due to this
dimension reduction. To eliminate this, there is a need for
a search method that could obtain the solution directly from
the two-dimensional space is of interested.

2. OBJECT-BASED EVOLUTIONARY
ALGORITHMS

In the previous researches, a new methodology called an
object-based evolutionary algorithm (OBEA) is proposed
[6]. The method utilizes the benefits of evolutionary
algorithms [7,&], graphical data manipulation [9], and
simulatiodanimation [1011. The outline of the method has
minor changes from the evolutionary algorithm given in
Back 171. However, an adlditional hill-climbing operation is
added to enable the movements of pieces. Following is the
general outline of OBEA.

0-7803-4869-9/98 $10.0001998 IEEE 58 1

- t = o ;
Initialization P(O) = {;do) ,...,a,@)} E I V ;
Evaluation P(0) : {@(;&I)) ,..., @(a,,@))} ;
While (t(P(t) + true) do

Hill-climbing P(t) = h@#'(t)) ;
Recombination P"(t) = r0 p ' (t)) ;
Mutation P"(t) = m@JP"(t)) ;
Evaluation P"'(t) : { O(;;'l~t)), . . . ,O (~* (t)) } ;
Selection P(t+l) = sO,(P"'(t) U Q) ;

t = t+ l ;
Od ;

This guideline can be simplified as follows. The algorithm
starts with setting a generation number, t = 0. Then, an
initial population, P(O), is created by a set of individuals,
a, for p individuals considered as the zero generation. Each
individual is evaluated by an evaluation function, @, to find
its fitness value. After this step, the next generation will be
created iteratively by performing some operations until the
termination criteria, z, are met. This next generation is
produced by performing a hill-climbing operator, he,, a
recombination operator, YO,, and a mutation operator, me,,
on the current population. The new individuals of new size
h are then calculated. Finally, a selection process, SO,, will
select and move some individuals of size p to create a new
population for the next generation, where t = t + 1. More
information to this guideline can be found in [7].

-

All other mechanisms--namely, individual representations,
initialization process, evolutionary operators, fitness
evaluation function, and termination criteria-are developed
and implemented in a totally different way than the
conventional evolutionary algorithms.

A. Individual Representation
Though the search mechanisms in the evolutionary algorithm
could search for a set of points in an n-dimensional solution
space, it cannot search for a set of areas or pieces. A
solution of some problems, such as nesting problems, needs
more than a set of points in the two-dimensional space. It
requires a set of locations that correspond to the pieces on
the regions. Those pieces should neither overlap each other
nor extend out of the regions. Obviously, it is much too
complicated to represent the nesting problem using the
representation of the evolutionary algorithm due to the
variable sizes of vertices representing those pieces.
Therefore, each piece needs to be treated as a solid object.
Also, the regions themselves must be bounded by solid
edges, and each piece must be placed within a region. The
collection of locations of these pieces is a solution of the
problem, or the layout.

B. Initialization Process
Information used in the initialization might include the shape
of the regions, the shape of the pieces, the number of those
pieces that need to be placed, etc. The process uses this
information within the first step to create the bounded
regions. Then, each piece is placed within the regions in
random order and location. However, it is possible that
some piece may not be placed because the selected location
is not vacant. Therefore, several attempts are allowed in
finding an empty place for the piece. Also, some operators
described in the following subsections, such as rotation, can
be called to create more flexibility in placing the piece. All
pieces may be reinitialized if there exists at least one piece
that cannot be placed after exhausted attempts. The regions
that contained all required pieces are called an initial
solution or initial layout. More than one layout can be
created during initialization. The whole set of these initial
solutions is called an initial population, or the zeroth
generation of layouts.

C. Fitness Evaluation Function
The fitness value can be calculated directly from the regions
depending on the objectives of the problem. If the objective
of the problem is to minimize the nesting area used by all
pieces on a rectangular steel sheet, the fitness value might be
the maximum position, or the rightmost position of all pieces
on the sheet.

D. Termination Criteria
Usually, the algorithm is terminated by specifying a
maximum number of generations. Some additional
termination criteria may be added, such as maximum number
of generations for which the best value remains the same,
maximum computing time allowed in some real time
applications, or a preset acceptable value is reached. In
some situations, the average fitness of each generation can
be used instead. Other termination criteria can be introduced
upon requirement or objective of the particular problems.

E. Object-Based Evolutionary Operators
For an algorithm to be called the evolutionary algorithm,
some evolutionary operators, also known as genetic
operators, need to be presented. The ideas behind the
operators are to change the location or orientation of some
pieces so that a different layout is created. Some operators
will make a significant change while some will make only a
slight change. Three groups of operators can be categorized
based on their actions and the results after being performed
on the layouts. All basic elements of each operation are
obtained from the two-dimensional transformations of
graphical data manipulation. These three groups of
operators namely hill-climbing, mutation, and
recombination, are described below:

582

Hill-climbing Operators: In the two-dimensional
space, the layout modification can be made by moving a
single pattem. If the change done improves the fitness value
of the layout, or at least remains the same, this situation is
called hill-climbing. The evolutionary operators categorized
as hill-climbing operators are "translation," "rotation,"
"rectangular-rotation," "touch-point," "piece-sliding" and
"relocation. It

a. Translation Operator. This operator is performed
on a piece in a region by moving the piece one unit at a time
toward preset gravitational forces. The center of the force
can come fkom a single source or multiple sources on the
two-dimensional plane. When these forces are applied, it
makes all pieces move toward them at the same time. The
mathematical representation of the operator obtained fiom
the graphical data manipulation is called a unit translation.
This unit is represented as a gravitational force with a
direction. The unit translation equation can be represented
as a matrix vector product as follows:

1 0 0

where x and y is a position of the lower-left comer of a
rectangle; x' and y' is a new position of the rectangle; and T,
and T, = -1,O, or 1 [9]. For example, if the lower-left corner
of the two-dimensional plane is the center of the force, all
pieces will be moved toward that comer, one unit for each
piece in one generation. T, and T,,, here, are equal to -1.
However, some operations will not be performed if the next
move creates overlapping. After the translation operator is
performed for many generations, all pieces will be moved
and packed at the lower-left corner of the region.

b. Rotation Operator. This operator can rotate an
object to any particular degree. For example, in the hexagon
piece packing problem, a specific degree of rotation, sixty
degrees, may be needed. However, in the general case of the
nesting problem where the pieces have alternative shapes,
rotation in all degree must be allowed. Using the following
matrix representation adopted from graphical data
manipulation, an object which is the representation of the
piece on the working space can easily be rotated to any
degree of orientation.

c. Rectanpular-R.otation Operator. For nesting
problems that deal with rectangular pieces, a ninety-degree
rotation operator may be required. Each of the four corners
can be used as a rotation reference point. However, the word
"rotation" may not be fully appropriate because this operator
is created &om two-step operators. The frst step is to rotate
a rectangle in an imaginary space using its lower-left corner
as a reference point for ninety degrees. The second step is
to move the piece back to tlhe position of the reference point.
For example, the selected pivot point is the lower-right
comer of a piece. The rotation operator will rotate the piece
for minus 90 degrees, andl then move the new lower-right
comer back to the previous lower-right comer. This
operator is also very useful in irregular nesting problems. In
mathematic terms, this rectangular rotation is a composite
transformation of a rotation, and a translation operator which
can be written in the term of matrix multiplication as follows.

r ir 1

d. Relocation ope-. It operates on a piece in a
region by relocating the piece to a vacant position within the
maximum value or the right most position of all pieces. The
pieces should not overlap to each other, or extend beyond
the boundary of the region, or over the maximum value line.

e. Touch-Point Operator. This operator contains
two translation and one rotation operators. It is performed
when any part of a piece touches another piece or the
boundary of the region. This piece will be rotated about a
selected touch point for a small degree. A matrix
representation of the operator can be shown as follows.

[x' y' 11 = [x y 11 -sine cdse 0

These three matrix components are used for calculating a
new location and a new orientation of the object. The three
steps corresponding the matrix components are described as
follows. First, the object is translated fkom the original
position for (-T'.,-Ty) so that the touch point position is
moved to a referent point, or lower left comer of a
rectangular enclosure of the piece. Then, the object is
rotated about that reference point. Finally, the object is

5 83

translated for (T.TY) so that the touch point position returns
to its original location.

f. Piece-Sliding Operator. The operation of this
operator is similar to that of the rectangular rotational
operator in that the object changes it coordinate and
orientation simultaneously. The translating distance and a
degree of rotation of the object are set to a small value so
that the object will be moved in the sliding motion. The
following is a matrix representation of this operator.

COS e
-sin0

0

Mutation Operators: An operator that creates an
offspring layout in which its fitness value can worsen is so-
called a mutation. The mutation operator may create an
offspring that either looks alike, or looks a lot different fi-om
the original layout. Several operators considered mutations
are presented as follows:

a. Relocate-Away Ouerator. The idea of this
operator is io relocate a piece to another position out of the
maximum value line so that the rest of the pieces will have
some room to be reorganized. In a densely packed situation,
if the operation performs piece relocation within the
maximum value line, the target area might not be vacant.
One possible alternative to create a new offspring is to
relocate the piece in the opposite direction of the
gravitational force where a vacant space is guaranteed. For
example, if the force is pulled to the lower-left comer of the
plane, the piece should be relocated to the upper-right comer
of the region.

b. Point-Mutation Operator. Relocate-away
operator might eventually help in creating a better solution,
and relocating a piece within the maximum value line may
create a different look of the layout. Nevertheless, some
pieces may already occupy that area. If some pieces exist in
the new location, the overlapping technique must be
performed so that the space is available for relocation.
Every piece which begins in an overlapping position needs
to be moved to the nearest position where no overlapping
occurs. Each piece will be moved in the opposite direction
of the gravitational force, or in the other words, moved
toward the right end of the region.

c. Area-Mutation Operator. Similar to point
mutation operator, all pieces which start fi-om an overlapping
position need to be moved. The difference here is that a

whole specific area needs to be determined. The specific
area can be any shape or any size. All pieces overlapped in
the mutation area will be packed together and relocated to a
new location. However, overlapping on the new location is
also possible. The same overlapping technique used in the
point mutation will be performed to create a non-overlapping
layout.

Recombination Operators: This operator will be
performed on two or more layouts by changing information
to each other to create. The example of the operators are
point-crossover and area-crossover.

a. Point-Crossover Operator. There are many ways
to create a point crossover. For example, two layouts are
chosen to be crossovered. A position on the first layout is
selected, and a piece on that position is determined. Assume
that the chosen piece is the piece labeled no. 7. At the same
time, another piece on the same position on the second
layout is also determined. Assume that the chosen piece on
the other layout is the piece labeled no. 3. Next, the piece
fi-om each layout will switch to another layout creating a
duplicated piece on each layout. The fxst layout now has
two pieces of no. 3 but lost piece no. 7 while the second
layout has two pieces of no. 7 but no piece no. 3. Since, the
redundant pieces are not allowed in this step, the replacing
technique may be used by replacing the piece no. 7 on the
original of piece no. 3 so that the duplicating piece does not
exist on the first layout. A similar process is to be performed
on the second layout. Also, although an overlapping area is
likely to exist, the overlapping solving technique used in
point mutation will be called and be performed on the task as
a part of this operator.

b. Area-Crossover Operator. The crossover is
developed by combining the idea of area mutation and point
crossover to create more possible recombinations of layouts.
The area selected for performing the crossover can also be
any size and shape. All pieces covered by the crossover area
will be switched to another layout. Like the point crossover,
it is possible to have more than two layouts involved in the
area crossover. All redundant pieces are eliminated after the
operation, all missing pieces are replaced, and the
overlapping problem are resolved.

3. IMPLEMENTATION

Data representation used in OBEA is grid system. The main
advantage of the method is the flexibility in implementing
the system, Le., a slower computer can use a lower
resolution, and a faster computer can use a higher resolution.

584

4. EXPERIMENTAL RESULTS

In the previous research, two toy problems were used to
show the potential in finding solutions using the
methodology for some nesting problems [6]. Those results
alone may not show the advantages over other
methodologies. Some comparisons may be needed to
present the usefulness of the OBEA.

A. Rectangular Nesting Problems
Data used for this comparison is obtained from [1 11. The
average of packing density of his testing results is 93.46%.
Thirty-seven pieces from eight different patterns are tested
(see Table 1). All pieces are allocated on a continuous sheet
with a constant width of 30 units where a fixed population
size of 9 1 is used and five hundred generations are run.

Table 1 The regular piece set used for comparison.

Pattern no. Width (x)

12
8
9
4
9
6
10
15

10
11
13
5
10
8
12
7

Piece no.

1- 3
4- 7
8-13

14-17
18-20
2 1-26
27-35
36-37

In this work, most object-based evolutionary operators are
applied. Ten trials are run. The best result, obtained form
four out of ten times, is 94.41% while the worst result, two
out of ten times, is 92.83%. The average of the packing
density is 93.77%. The population used in this experiment
are 30 and the termination generation is 200. Two different
examples of the best results are shown in Figure 1 and 2.

Figure 1 An example of the best result after ten trials

I

Figure 2 Another example of the best result

B. Irregular Nesting Problems
In this implementation, the irregular nesting problems are
tested. The data of this test set is also obtained from [12].
The experimental results are obtained by generating 30

individuals using 30 irregular pieces on a continuous sheet
with a width of 60 units. After generating for one thousand
generations, the best result is around 82.34 % and the
average is around 78.89% of packing density using lowest
resolution, R=l. Figure 3 illustrates the best result of the
population.

. I

Figure 3 The Best result i:s obtained after the first 1000
generations (R=11).

Note that this packing density is calculated by counting
number of squared units used by all pieces, 3885, then
divided by the rightmost position of the rightmost piece,
78.64, and multiplied by the height of the sheet,60, which it
is equal to 82.34. As seen, if the size of squared unit or grid
is large, the gaps among the pieces are also large. The
quality of the solution is depending on the size of the grid.
This can be improved using a smaller size of the grid, higher
resolution, so that only the :smaller gaps can occur. However,
the smaller grid size is selected to use on the second
evolution, or after the best result &om the first evolution is
received. The data used in the above example is very small
compared to the real data used in industry. However, to test
the industrial data size, the higher resolution, e.g. R=lO, is
not possible to use due to the limits of computer storage and
a very long period of computing time, up to two weeks per
trial. In this study, five-hundred and forty-three pieces are
run. Three layouts are used as the population. The result
after running for five thousand generations using the first
order resolution (R=l) is 80.78%. The result after the
second evolution of two thousand generations using the
second order resolution (IZ=2) is 77.25%. The final result
after the third evolution of one thousand generations using

585

the fifth order resolution (R=5) is 74.89% (see Figure 4).
This re-representation using higher resolution representation
is used to start from the second evolution. Although much
better quality of the final result is obtained, the time spent for
this step is very long compared with the time that used
during the frst evolution. Further decrease the size of the
grid will result in shortening only a small nesting length
while the time spent for generating the final solution is
increases dramatically.

5. CONCLUDING REMARKS

The object-based evolutionary algorithm is successfully
applied to solve both the rectangular and irregular nesting
problems. The idea of multi-dimensional representation for
EA is introduced. The advantage of this approach is the
ability to exploit the whole solution space. Animation
during the experiments can enlighten the ways to discover
new operators, answer a number of questions, and present
this methodology perfectly with the least explanation.
Population idea and the interaction between individuals are
added to empower the algorithm on overall performance.
All solutions from the algorithm yield no overlapping
patterns. The experimental results on the rectangular and
irregular nesting problem are around 93.7% and 78.9%
respectively.

For the future work, some new evolutionary operators may
be introduced to customize some specific problems. Some
pre-processor and post-processor may also be used to reduce
unnecessary computation. Improve versions of shape-filling
algorithms for the internal representation may be needed.
An algorithm for calculating the area of an irregular piece
may be required. Intensive experimentation with different
problems may be tested. Robust parameters for the general
nesting problem may be done by using different methods
such as design of experiments, taguchi method, or neural
networks. Parallel implementation for the OBEA on parallel
computer may be helped in reducing the total computation
time.

6. REFERENCES

[l] M. R. Garey and D. S. Johnson, Computer and
Intractability: a Guild to the Theory of NP-Complete, W.H.
Freeman, 1979.
[2] Zhenyu Li and Victor Milenkovic,"Compaction and
Separation Algorithms for Non-convex Polygons and their
Applications", European Journal of Operation Research, V.

[3] Kathryn A. Dowsland and William B. Dowsland,
"Solution Approaches to Irregular Nesting Problems",
European Journal of Operation Research, Vol. 84, 1995,

84, 1995, p. 539-561

pp. 506-521.

[4] H. Dycknoff and U. Finke, Cutting and Packing in
Production and Distribution: A typology and Bibliography,
Physica-Verlag: Heidelberg, Germany, 1992.
[5] C. H. Cheng, B. R. Feiring and T. C. E. Cheng, "The
Cutting Stock Problem--A survey," IJPE, Vol. 36, No. 3

[6] Kanchitpol Ratanapan and Cihan H. Dagli, "An Object-
Based Evolutionary Algorithm for Solving Rectangular
Piece Nesting Problems," Proceedings of 1997 IEEE
International Conference on Systems, Man and Cybernetics,

[7] David B. Fogel, Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence, IEEE Press,
NewYork, 1995.
[X I Thomas Back, Evolutionary Algorithms in Theory and
Practice, Oxford University Press: New York, 1996.
[9] Donald Hearn and M. Pauline Baker, Computer
Graphics, Prentice-Hall International Editions, 1986.
[101 A. M. Law and W. D. Kelton, Simulation Modeling and
AnaZysis, McGraw-Hill Inc., 199 1.
[1 13 Pipatpong Poshayanonda, Genetic Neuro-Nestor, Ph.D.
Dissertation, Engineering Management Department,
University of Missouri-Rolla, 1994.
[12] Kanchitpol Ratanapan and Cihan H. Dagli, "An Object-
Based Evolutionary Algorithm for Solving Irregular Nesting
Problems," to be appeared in ANNIE'97, 1997.

1994,291-305.

Vol. 2, Oct. 1997, pp. 989-994.

1.11 1 ,
Figure 4 The result of the industry size nesting problem
at the fifth order resolution.

586

	An Object-Based Evolutionary Algorithm: The Nesting Solution
	Recommended Citation

	An object-based evolutionary algorithm: the nesting solution

