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A Biologically Inspired Connectionist Architecture for 
Directing .Attention to Salient Visual Field Objects 

David Enke 
Smart Engineering Systems Lab 
University of Missouri - Rolla 
236 Engineering Management 

Rolla, MO 65409-0370 
denke @ urnr.edu 

ABSTRACT 

In an attempt to incorporate basic visual attention abilities 
into existing artificial vision systems, a neuiral model of the 
bidirectional interactions within and between the brain 
regions believed to be involved in human visual attention has 
been developed. This model currently gives an artificial 
vision system the ability to attend to "salient," or "pop-out" 
features and objects within the vision system's field of view. 
After a review of the physiology of human visual attention, a 
network model of the aforementioned neural interactions will 
be presented, followed by a demonstration of its performance. 

1. INTRODUCTION 

A difficulty with modem artificial vision systems regards 
their inability to properly attend to specific objects within the 
visual field. Often extensive image processing is required to 
extract necessary or relevant data. On the other hand, humans 
can perform many visual attention tasks with relatively little 
effort, especially when the objects, being attended to are 
noticeably different from the surrounding information within 
the visual field. Therefore, it may be useful to examine the 
biological components that produce natural. human vision, 
and then use this knowledge to model the areas believed to be 
involved in the processes associated with visual attention. 

As illustrated in Figure 1, numerous bidirectional 
connections exist between the known areas of the human 
visual system. In addition to these connections, the receptive 
fields, or regions of input for the neurons are also known to 
increase in sue as the information processing continues along 
the V1 - IT pathway [l] ,  with the individual features 
becoming more complex [2]. With regard to area V4, this 
heightened analysis is believed to result from this area being 
able to process both high and low frequency inputs, as well 
as its ability to respond to various characteristics of the visual 
image, such as color, shape, and motion. For example, 
although cells within area V1 will respond to a single feature, 
the convergence of their outputs onto individual cells within 
area V4 will allow these later cells to become responsive to 
either multiple features, or extensions of a single feature. In 
a similar manner, a neuron in a later area isuch as IT will 
respond to even more complete objects located almost 

anywhere within the visual field, although unlike the 
responses within area V1 and area V4, the larger receptive 
field cells within area IT do not initially respond well to 
attended to stimuli [3]. In fact, area IT cells appear to only 
remain active for a short period of time after the presentation 
and matching of a stimulus, but quickly become suppressed 
when the same stimulus is re-attended to, indicating that they 
are mainly activated by a newly attended to stimulus, in 

Area IT 
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PN 
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sc 
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Figure 1 : Bidirectional Connections Between Various 
Visual Areas 

addition to being involved in recognition. If attention is not 
directed to any one particular region of the visual field, the IT 
cells will quickly become inactive. Nonetheless, when 
attention is initially focused on a particular stimulus, a 
competition appears to occur between area IT neurons 
producing a single active neuron [4]. 
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Although it is not directly known what initiates or determines 
the outcome of any competitive interactions, some have 
speculated that both bottom-up and top-down signals may 
determine what pathways become active [5 ] ,  with cognitive 
factors influencing the top-down control of attention within 
the higher regions of the cortex [6]. But even with the 
involvement of bidirectional interactions within the 
attentional system, the spatially filtered bottom-up input 
provided by the retina will typically be crowded with 
competing stimuli, initially resulting in numerous area V4 
cells becoming excited by the information contained within 
the visual field [7]. As such, some type of filtering of 
unattended stimuli is necessary to facilitate the competitive 
processes that appear to be occurring within area IT. To 
perform this filtering, some have speculated that an attention 
system, having the characteristic of being both anatomically 
separate, yet not the function of a single region, would be 
necessary [7]. In other words, this region would be isolated 
enough to carry out specific processing, while still interacting 
with the various layers of the visual cortex. One region that 
is properly positioned, and speculated to be important for 
performing some necessary attentional processes, is the 
pulvinar nucleus [8], [9]. 

Although little is known about the direct neural connections 
involved within the pulvinar, two distinct types of cells have 
been observed. One group consist of the inferior and lateral 
pulvinar cells, subsequently labeled as PI and PL. These cells 
are known to display receptive field characteristics [6], much 
like the orientation selective simple cells located in area V1. 
The other group of cells is located in the dorsomedial region 
of the pulvinar, and given the label Pdm. These particular 
cells are distinct in that they become enhanced only when a 
single item is being attended to within the visual field [ 101. 
Selection of a target for additional processing, even if not the 
result of a saccadic eye movement, can also produce an 
amplification of the cell responses to that particular region 
within Pdm [6]. As previously mentioned, although little is 
presently known about the neural connections within the 
pulvinar, it has been observed that some type of internal 
inhibitory interactions are involved in controlling the 
“spotlight of attention.” This hypothesis results from 
observations illustrating how the facilitation of inhibition will 
reduce the pulvinar’s ability to disengage attention, while a 
reduction in inhibition will increase the visual system’s 
ability to shift the current focus of attention [ l  11. 

Figure 2 illustrates one hypothesized scenario for the 
influence of the inhibitory characteristics observed within the 
pulvinar. Since bidirectional connections are known to exist 
from area V1 to the pulvinar [12], the direct connections the 
pulvinar receives from area V1 could possibly explain why 
some pulvinar cells, such as those within the PI and PL 
regions, have the characteristic of a receptive field responsive 
to orientation. As a result of this preference, it is likely that 
the cells within these regions are only receiving signals from 
area V1 cells displaying the same orientation response 
characteristic. In addition, due to the pulvinar’s physical size 

it is unlikely that a single PWL type pulvinar cell is receiving 
the same orientation response from every hypercolumn within 
area V1, although each cell is probably receiving numerous 
inputs from a defmed section within this area. Any necessary 
cooperative interactions between these cells could be carried 
out through long range connections, as further illustrated in 
Figure 2. In addition to the PWL inputs, it can be speculated 
that each Pdm cell is also receiving area V1 input, except 
now from only a single hypercolumn, resulting in a 
retinotopic mapping similar to area V1. Like the 
hypercolumns, the formation of a retinotopic mapping will 
maintain the spatial aspects of the image within the pulvinar. 
Having each Pdm cell receive multiple orientation inputs may 
also explain why these cells are not usually responsive to a 
single orientation. 
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Figure 2: Pulvinar Interactions 

Since the cell responses from a single hypercolumn are being 
sent directly to each Pdm pulvinar cell, it will be necessary to 
provide some type of signal to dictate how each area V1 
cortical column cell will affect the individual Pdm pulvinar 
cells. As displayed in Figure 2, this could be carried out by 
providing an inhibitory signal from the PWL cells, although 
the exact interaction on each Pdm cell, or its inputs, is not 
directly known. Even so, the influence of any inhibitory signal 
may be easier to explain. For instance, consider the situation 
were the entire visual field contains all 90 degree orientation 
lines, except for an isolated 135 degree line. Due to its 
presence within the visual field, each 90 degree line will 
work to enhance its correspondingly oriented PWL pulvinar 
cell, resulting in a strong response for this-cell. On the other 
hand, the isolated 135 degree line will provide very little 
input to its correspondingly oriented PUPL pulvinar cell. As 
a result of the inhibitory influence of the PUPL cells on the 
final response characteristic of each Pdm cell, the area V1 

1000 



hypercolumn projections from cells responding to a 90 
degree orientation will become inhibited, or at least have 
their signals attenuated before being passed on to the Pdm 
cells. Eventually, only the Pdm cells retinotopically located 
in reference to the 135 degree line will respond with an 
activation. This will give the appearance as though attention 
has concentrated around a single item within the visual field. 
In essence, the action of the network will be competitive, 
with each cell challenging for the right to draw attention to a 
specific region or feature within the visual field. Under the 
conditions when there is no top-dawn input, those features 
within the visual field that standout. or are the most “salient,” 
will win the competition. Furthermore, the effects of any 
bidirectional connections back to area V1 may offer an 
explanation for the increased neural responses observed for 
those cells activated by the attended to stimulus [13]. 

Although this may sound somewhat unusual, this type of 
characteristic corresponds with studies which have 
determined that targets can be found easily within the visual 
field when they are defined by a unique color or orientation 
[ 141. It is almost as if the most salient item will “pop-out” 
and draw the viewer’s attention. In fact, otlher studies have 
found that the relative salience between a target and its visual 
distractors was more important than the absolute salience of 
either the target or distractor for directing and shifting 
attention [ 151. Likewise, under the scenario in Figure 2, only 
the condition of a discrepancy between feature occurrences 
is necessary, with degrees of difference between orientation 
having no impact. Finally, the pulvinar network corresponds 
with psychological theories stressing the importance of an 
early parallel search involving feature inhilbition strategies 
[161, [171. 

Of course, just because the pulvinar has attended to a salient 
item does not insure that the cortical areas (can process and 
recognize this item unless some type of gating is occurring. 
As previously mentioned, during focused attention a 
competition will occur between area IT neurons resulting in 
a single neuron remaining active, ultimately aiding the 
recognition of an object [4]. For the competition to be 
successful, it is beneficial for the object within the focus of 
attention to be the only item activating any area V4 neurons 
providing input to area IT. Since bidirectional connections 
exist between area V4 and the pulvinar, it can be speculated 
that the pulvinar cells, possibly those of the Pdm type, will 
make connections with retinotopicallly located area V4 cells. 
Therefore, it can be hypothesized that after attention has been 
focused to a single region within the pulvinar, projections 
made to the area V4 cells will have the effect of gating only 
the attended to information from area V1 to V4. This will 
result in a single object activating a g i d  off area V4 cells, 
allowing the competitive cellular interactions within area IT 
to quickly facilitate object identification. Furthennore, 
varying the span of the area V1 to V4 projections, or even the 
pulvinar gating itself, should allow for a slight amount of 
scale invariance to be tolerated between the various cortical 
areas. 

2. ATTENTION NETWORK MODELING 

The interactions described in the previous section, and 
partially illustrated in Figures 1 and 2, will now be placed 
into a connectionist network model that can be simulated. 
Initially, retina cell outputs will be provided as input to each 
of the area V1 cortical column cells located within a defined 
hypercolumn. The edge detected spatial frequency filtering of 
the image provided by the network of retina cells has been 
modeled elsewhere [18], [19]. In addition, the modeling of 
the bidirectional interactions between the LGN and the area 
V1 simple cells can also be found elsewhere [20], [21]. In 
essence, the area V1 network provides outputs that respond 
to various network feature orientations defined at each spatial 
location. Also, although area V4 receives the majority of its 
projections from area V2, this area, along with the feature 
and spectral processing it performs, will not be modeled. As 
such, area V4 will be assumed to get its input directly from 
area V1, 

As illustrated in Figure 2, each pulvinar Pdm cell will receive 
inputs from the orientation simple cells within a single 
hypercolumn. As mentioned, these orientation inputs will be 
influenced by the inhibitory projections from a like oriented 
PYPL pulvinar cell. Therefore, each Pdm cell interaction will 
be defined by the following equation, 

where netp(x,y,(t) represents the net activation of the Pdm cell 
at location (x,y) within the retinotopic pulvinar grid. The term 
S(x,y,k(t) represents the Ph orientation simple cell response 
within the area V1 hypercolumn at location (x,y). The term 
inh(x,y,k(t), defined below in equation (2), represents the 
output response of the inhibitory PWL pulvinar cell, also at 
location (xy) and with orientation k. The threshold parameter 
qd has also been included to provide each P W L  cell with a 
linear activation equal to the net activation of the cell, after 

surpassing a detined level. Within equation (2), S(x,y,k(t) once 
again represents the gh orientation simple cell response 
within the area V1 hypercolumn at location (x,y), while 6, 
represents a top-down signal directing the type of attention, 
as defined below. 

6 ,  = 1 for external input, otherwise 6 ,  = 0 (3) 

Although its origin is unknown, this top-down signal could 
be projecting from area IT or the parietal region. Although 
added for completeness, 6, will equal zero during the 
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subsequent simulations of the bottom-up, salience driven 
attention processing. During a top-down search and 
recognition mode (not modeled here), the inhibitory 
contribution would be eliminated from equation (1) by way 
of the condition in equation (3). Also included in equation 
(2) is a time varying parameter, pa(t), defined below in 
equation (4). 

p,(t) = p,(t-1) + 0.01 (4) 
p,(O) = 0 for all k 

Equation (4) is used to determine the weight, or strength of 
association that exist between each area VI  and PI/PL 
inhibitory neuron. While initially set to 0.01, the choice for a 
starting strength can be changed if it becomes necessary to 
speed up the competitive processing within an artificial 
vision system. Although an initially large and constant 
inhibitory weight will allow for a quicker recognition ability, 
a time varying weight is used since an initially large value 
may not be desirable if it results in necessary features being 
eliminated. This belief also corresponds with others who feel 
that inhibition cannot be too severe since the observer needs 
to be quickly made aware of objects and events within the 
visual field 261. 

Once calculated, the inhibitory PI/PL cell signals will affect 
the net activation of each Pdm pulvinar cell by influencing 
how the hypercolumn simple cells are received. Since the 
network‘s competitive nature will result in only the salient 
feature characteristics activating each Pdm neuron, the output 
response of each Pdm neuron can be defined by the following 
conditions, 

P( , , ) ( t )  = 1 i f  ne$@,,)(t) ’ ep (5) 

p,,(t) = 0 otherwise 

where 6, represents the threshold of each pulvinar Pdm cell, 
assumed to be acting with a pure step function, or action 
potential response. 

After comparison to the threshold, the Pdm neural signals 
will then be used to gate the signals projecting from area V1 
to V4. Equation (6) defines the net activation of each area 
V4 cell, net,,,,(t+l), at location (x,y) within the retinotopic 
grid. 

Within equation (6),  S,i,j,,(t) is again the area VI simple cell 
response to an orientation k at location (x,y). The parameter 
pv4 represents a bottom-up weight defining the connection 
strength between the area VI and V4 cells. The term g, 
represents the level of gating influence that extends from the 

Pdm pulvinar cells to the area V4 inputs. Although being 
driven to one for the present simulations, a detailed model for 
these projections could result in additional scale invariance 
beyond that already performed by the grid connections from 
area V1 to V4. 

Like the response characteristics of the Pdm pulvinar cells, 
the final response of each area V4 cell, V4(Jt), will also be 
defied by an internal threshold BV4, and an action potential 
step response, given below in equation (7). 

V4(x,y)(t) = 0 otherwise 

As alluded to earlier, the network of area IT cells will interact 
with an extemal memory source that will not be directly 
modeled. For this reason, the present modeling and 
calculation of the area IT cell responses will not be explained 
by competitive network equations interacting with an external 
memory region, but will be described through processing of 
the area V4 inputs with a previously defined memory 
network. With regard to the development of artificial vision 
systems, numerous networks exist for carrying out any 
necessarymemory requirements [22], [23], [24], [25], [26]. 

Finally, during the calculations of the area IT memory 
network, it will be necessary to determine a level of match 
between any previously stored memory and the area V4 
inputs. Therefore, equation (8) will be used to determine the 
grid of area V4 outputs, defined here by the V, matrix, that 
will be sent to the area IT memory network. Within the 
equation, nv4 is a span parameter that allows for adjustment 
of the neighborhood grid and resulting V, matrix. 

3. ATTENTION NETWORK RESPONSE 

During the following simulations the bottom-up attentional 
processing between areas VI,  V4, IT, and the pulvinar will 
be simulated by repeatedly iterating equations (1) through 
(8). During the testing of the network, numerous artificially 
constructed edge detected 40 x 40 pixel images of lines, 
boxes, and diamonds (45 degree rotated boxes) were used to 
demonstrate the network‘s ability to locate salient features 
within the visual field, one of which is reproduced here. The 
illustrated cell responses are displayed against a black 
background, with black representing no activation, white full 
activation, and shades of gray giving intermediate intensity 
values in between the minimum and maximum amounts. This 
configuration allows for the individual signals to be 
compared against each other, while also being slightly more 
intuitive. 
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For instance, the image illustrated in Figure 3(a) was 
provided as input to the network. As observed, this image 
contains all 90 degree vertical lines, except for a single 135 
degree line. Upon f i s t  seeing the image in Figure 3(a), the 
135 degree line is clearly the most salient feature, and 
appears to command attention, at least initially. To test if the 
salient feature could be attended to and recognized, the 
memory network was trained to identify either a 0 , 4 5 9 0 ,  or 
135 degree line properly centered within the receptive field 
of an area lT cell. Network parameters were set to x = 40, y 

providing the memory network with an incorrectly sized 
input, defined by equations (8) through (IO), will also 
normally result in a state of non-recognition. Fortunately, the 
neighborhood span of one, producing a 3 x 3 grid projection 
of signals between areas V1 and V4, should make the 

= 40, e, = 0.3,0, = 0.3, g, = 1, pv4 = 0.3, 8, = 0.3, nv4 = 3, 
and S, = 0. 

When the image given in Figure 3(a) was provided as input 
to the attentional network, the 135 degree line was quickly 
attended to and recognized within two iterations, as 
illustrated in Figure 3. For example, during the initial 
presentation of the image, a competition occurred between 
the pulvinar cells such that only those Pdm cells that initially 
responded to the 135 degree line remained active. These Pdm 
cell activations are illustrated in Figure 3(e) for both the first 
and second iterations (since external top-down signals were 
not implemented, the pulvinar competition caused the same 
Pdm cells to remain inhibited during each iteration). Also 
illustrated in Figure 3 are the cell activations for the area V1 
and V4 cells for one and iwo iterations, with the iteration 
numbers shown in parentheses. Notice how each of the area 
V4 cells which has an object, or a portion of an object, within 
its receptive field is initially being activated by the area V1 
simple cells. These initial activations occur since the effects 
of the pulvinar gating are not realized until the second 
iteration. This also corresponds to studies mentioned earlier 
which have observed how the area V4 cells will initially 
become excited by all the information within the visual field 
[7]. Since area V4 is providing area IT with too much 
information, the competitive interactions within this region 
are unable to determine a winner, resulting in no area IT cell 
(not illustrated) signaling the recognition of an object or 
feature within the visual field. Fortunately, during the second 
iteration the gating effects of the pulvinar Pdm cells are 
finallyrealized, as illustrated in Figure 3(f), such that only the 
area V1 signals corresponding to the 135 degree line are 
being allowed to activate the area V4 cells. 

As mentioned earlier, one of the possible benefits of the 
increases in cortical receptive fields, as well as the pulvinar 
gating itself, would be the network’s ability to allow for a 
certain amount of scale invariance of the input image with 
regard to the memory stored inside the area IT weight matrix. 
Although a pulvinar gating span was not directly 
implemented in the present model, the span of the signals 
traveling between areas V1 and V4 should allow for a slight 
amount of scale invariance. For instance, the original weight 
matrix was defined to recognize a 7 x 7 image, the exact size 
of the previous images which fell within the receptive field of 
the area IT cells, With traditional networks, recognition is 
often compromised when a slightly smaller or larger object 
is provided as input to the memory network. Likewise, 

a.) Original Image d.) Simple Cella (2 )  

b.)  Simple Cells (1) e.) Pdm Cells (1, 2) 

e.) Area V4 Cells (1) f.) Area V4 Cells (2) 

Figure 3: Salient 135 Degree Line 

necessary corrections when a series of slightly smaller 5 x 5 
objects, or slightly larger 9 x 9 objects, are provided as input 
to the network, ultimately making it unnecessary to construct 
any new weight matrices. Although not illustrated in this 
paper, 5 x 5 and 9 x 9 objects were also subsequently 
identified by the network during testing. 

4. CONCLUDING REMARKS 

As illustrated in the previous section, modeling the 
competitive interactions within the pulvinar, along with the 
connections this structure makes with the other visual areas, 
has produced an attentional model that can detect salient 
features in a bottom-up manner. While not only producing 
characteristics observed in psychological studies, the benefit 
of such a model can be further realized when used to detect 
uncharacteristic defects during engineering and 
manufacturing applications, such as misaligned components, 
bent connector pins, and unknown salient defects that are 
uncharacteristic of items presently stored in memory. 

1003 



Furthermore, by isolating single features or objects within the 
visual field, translation invariance is incorporated into the 
model, in addition to a slight amount of scale invariance 
resulting from the receptive field projections between the 
input and the memory network. Finally, the addition of an 
area V2  model in the future will also increase the current 
capabilities of the present model to include spectral aspects, 
as well as offering a more detailed analysis of individual 
features and objects. 
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