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Neural Network Classification Architectures 
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Engineering Management Department 
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Rlolla, MO 65409-03 70 

Tel.: (573) 341-4374, Fax: (573) 341-6567 

Abstract: 
In recent years, many attempts have been made to predict the behavior of 
bonds, currencies, stocks, or stock markets. In this paper, the 
StandardlkPoors 500 Index is modeled using different neural network 
classification architectures. Most previous experiments used multilayer 
perceptrons for stock market forecasting. In this paper, a multilayer 
perceptron architecture and ZL probabilistic neural network are used to predict 
the incline, decline, or steadiness of the index. The results of trading with the 
advice given by the network is then compared with the maximum possible 
performance and the perfolrmance of the index. Results show that both 
networks can be trained to perform better than the index, with the 
probabilistic neural network performing slightly better than the multi layer 
perceptron. 

I. Introduction 

In recent years many attempts have been made to predict the behavior of bonds, 
currencies, stocks, stock markets, or other economic markets [l]. These attempts were 
encouraged by various evidence that economic markets do not behave randomly, but rather 
perform in a chaotic manner [ 3 ] .  A portfolio, arranged in the same ratio as the components 
of a stock market's index, providles the same performance as the index. It is therefore 
sufficient to model an index in order to describe the behavior of a market. 

Several models can be used to predict the next day's value, the upcoming change, or 
just to give a binary rise-fall output. In this paper the latter approach is favored. The main 
focus is directed to maximizing the ]performance of the portfolio rather than maximizing the 
percentage of correct decisions. A single lost chance may hurt more than several negligible 
missed opportunities. 
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11. Data 

The input data for both networks consists of market data collected between February 
1994 and September 1995. Thus far, best results are obtained by using recent S&P Index 
values as well as a currency index, which is composed of the exchange rates of the three 
currencies Japanese Yen, British Pound and German Mark. Only the closing values are used. 
For the prediction of the next day’s change, today’s value, the change with respect to the five 
previous days, and the change from two weeks previous are investigated as possible inputs 
to the network. All inputs are normalized. Due to the nature of Stock markets, most changes 
are only of very small amplitude ccmpared to the maximum changes. In order to receive a 
more equal distribution over the input space, a sigmoidal normalization hnction is used. 

The full data set consists of more than 400 patterns. These patterns were divided into 
four equally sized goups. Three of these were used for training and the remaining is used for 
testing of the network. 

111. Classification Model and Original Model 

The networks are designed to give advice about whether to buy or to sell stocks. They 
can give three different outputs: “buy”, “sell”, and “keep current status”. The last output is 
trained in case of minor changes in the value of the index (i.e. +/- 0.2%) to avoid unnecessary 
trading. These changes are too small to be considered in the process of decision making. 

The performance measure of the network is a portfolio starting at a value of 100 and 
changing the same percentage as the index every time a “buy” advice is given. This portfolio 
is compared to the maximum possible performance and the performance of the index. 

One of the two architectures used in this comparison is a multilayer perceptron which 
is trained with the backpropagation algorithm [4]. Experiments were conducted with one and 
two hidden layers. All layers have a sigmoid activation hnction, which in the case of the 
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Figure 1 : Mean Squared Error During Learning 
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input layer more evenly distributes the input values. The output layer consists of three nodes, 
each one corresponding to one of the possible decisions. This layer performs like a winner- 
take-all layer, i.e. the node with the highest activation is chosen as the advice of the network. 

The mean squared error (MSE) of a three-layer perceptron (one hidden layer), as 
shown in Figure 1, seems to stay at a very high level. It can, though, be reduced fbrther using 
more training passes. Values of less than 0.085 for the MSE and more than 75% correct 
classifications on the training set are reached after 20000 iterations. Unfortunately, this 
doesn’t help at all, because the network starts “memorizing” the trained values and looses the 
ability to generalize based on unknown data. This phenomenon of overfitting is one of the 
major problems when dealing with this noisy data. The goal must be to stop training when 
the performance of the testing set, which is closely related to the percentage of correct 
decisions, reaches its maximum. 

In Figure 2 the performance of the testing set (i.e. the final value of the portfolio) is 
shown with the percentage of correct decisions in the training set. While the first peak in the 
performance graph after 500-600 iterations is probably due to chance, there is a visible high 
between 1500 and 2500 training passes and a steady decline afterwards. This suggests that 
a very good generalizing ability is reached in an early stage of learning. Many experiments 
were made determining the best number of hidden neurons. Here again the impact on the 
generalizing ability was of great importance. Small numbers of nodes in the hidden layer (four 
or six) keep the network from learning anything. The complexity of patterns cannot be 
represented. Using more than 12 hidden neurons also results in overfitting: the network 
memorizes the patterns and cannot deal with unknown inputs. 

Results of the performance of the net compared to the index and the maximum 
possible performance are shown in Figure 3. At this state, 1900 training passes were 
performed. The net manages to keep track With an inclining market and gains advantage over 
the index in an declining period. Most of the large losses are detected by giving a “sell” 
advice. 
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By introducing a second hidden layer in the perceptron architecture, the learning 
process, understood as minimizing the MSE, is speed up tremendously. This does not lead 
to a generally better performance, though. In this example, a network with 16 hidden neurons 
in the first, and eight hidden neurons in the second hidden layer was used. As shown in 
Figure 4, two areas of good performance are visible, one between 2000 and 2500 training 
passes, the other around 5400. Using more hidden neurons shifts the two peaks to earlier 
stages of learning. Figure 5 shows the performance of a four-layer perceptron after 5400 
training passes. 

An inherent difficulty of the presented classification approach using multi-layer 
perceptrons is the little differentiation of the data. Three classes might not be enough in order 
to emphasize on the important decisions, i.e. predicting especially the large changes of the 
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Figure 3: Performance of Testing Set after 1900 Training Passes 
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index correctly. By using more classes, separate learning rates for each class or a more 
frequent training of patterns with large changes could be added to the algorithm. 
Nevertheless, such a change in architecture would result in an enormous increase in 
complexity, since the number of neurons in the output layer has to be changed and the 
network must be trained to perform an even more precise classification. This is one reason, 
why a probabilistic network might be a better approach to this problem. 

IV. Proposed Model: The Probabilistic Neural Network 

Several authors, including [6] and [2], have received good results by using 
Probabilistic Neural Networks (PNN) for stock market forecasting. Probabilistic Neural 
Networks, as proposed by Specht [ 5 ] ,  perform a statistical classification task. For each 
category, a probability density hnction, which depends on the training patterns, is calculated. 
In this project, a Gaussian hnction is used as the Parzan Weighting hnction, such that the 
Probability function, evaluated for an input X, can be written as 

wherep is the number of dimensions of the input pattern X, and m is the number of 
training samples of category A .  Each category i is then associated with an expected loss I,, 
if the wrong category was chosen. The class 6'' finally to be chosen is determined using: 

The loss value allows an emphasis on decisions in extreme cases. For the stock index 
forecasting problem, not three but eleven classes are used. This enables the representation 
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of different degrees of change. The loss values vary between 0.8 for the central and 2.0 for 
the extreme categories, which makes it more likely for the rarely occurring, extreme classes 
to be chosen. Besides the loss values, the only parameter to choose is the spread constant o . 

Figure 6 shows the same testing set as in Figure 5, this time using a PNN with 
a=0.25. It is noticeable that the network detects almost all major losses of the index. In the 
first half of the testing period, where the market trend is going up, the network can hardly 
outperform the index. In the second half, the network still gains value while the index 
decreases by more than 5%. This forecasting behavior, which rather accepts lost 
opportunities than it risks high losses, is partially explained in the conclusions. 

The optimal value for the spread constant, which was set manually in the above case, 
should be determined automatically by the program. For this task, a solution, mentioned in 
many papers such as [2], is implemented. The training patterns are divided into two groups, 
a training set and an evaluation set. While the network is trained using the training set, the 
evaluation set constantly determines the generalization ability of the present network. It can 
be assumed, that a network, fine-tuned to the classification of the not-learned evaluation set, 
will also do a reasonably good job classi@ing the unknown testing set. 

The quality of generalization is measured by the percentage of correctly made 
decisions, where more important decisions are: weighted high in a way that five small errors 
have the same negative effect on the performance as one major false prediction. 

V. Concluding Remarks 

For the given data set, in which the index rose from 100 to 100.86 and the maximum 
possible result is 125.66, the multilayer lperceptron could perform to 106.10 with one hidden 
layer and slightly better to 107.21 by using two hidden layers, while the probabilistic neural 
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Figure 6: Performance of the PNN with spread value 0.25 
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network accomplished a final portfolio value of 108.30. The slightly better performance of 
the PNN was also found in some of the other test sets, which are not shown in the figures. 
Unfortunately, the automated optimization procedure for finding a well performing spread 
constant cannot guarantee to find the spread value for peak performance of the testing set. 
In fact, experiments show that an automated selection of (T leads to results which are up to 
4% worse than the optimal values, depending on the data set chosen for the experiment. The 
very best spread value can only be determined aRer applying it to the testing set which is not 
available to the optimization procedure. 

All tested architectures show a better performance relative to the index, when the 
index is decreasing. This is an inherent characteristic of the given problem structure: in a 
declining market, the portfolio can only perform better than or equal to the index. To beat 
the index during an inclining market, not only the increasing steps have to be predicted 
correctly, to keep track with the index, but also small declines must be detected to gain 
advantage over the index. The latter is obviously much more demanding. 

At this time it would be too early to generally favour the stock market forcasting 
ability of a probabilistic neural network over a multilayer perceptron, but there are several 
advantages of the PNN approach. The multilayer perceptron in the present implementation 
does not pay special attention to the importance of possible high magnitudes of change in the 
stock market index. Three classes may not be sufficient to model this problem. Furthermore, 
due to their exclusivity [7 ] ,  the PNN seems to be suited better to perform the classification 
task over a highly separated input space. 

Most important, a multilayer perceptron usually works in an static environment with 
separate training and testing phases. The stock market, on the other hand, is a fast changing 
environment, that calls for an adaptive approach for forecasting the change. At this point, no 
adaptivity is built into the above presented architectures, but due to its one-step learning, this 
characteristic can be easily implemented in a PNN. 

Nevertheless, other neural network architectures such as radial basis functions should 
be investigated for their classification and forecasting performance. 
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