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Abstract 
 

During the last decades a lot of work has been 
devoted to develop algorithms that can provide near-
optimal solutions for the Capacitated Vehicle Routing 
Problem (CVRP). Most of these algorithms are 
designed to minimize an objective function, subject to a 
set of constraints, which typically represents 
aprioristic costs. This approach provides adequate 
theoretical solutions, but they do not always fit real-
life needs since there are some important costs and 
some routing constraints or desirable properties that 
cannot be easily modeled. In this paper, we present a 
new approach which combines the use of Monte Carlo 
Simulation and Parallel and Grid Computing 
techniques to provide a set of alternative solutions to 
the CVRP. This allows the decision-maker to consider 
multiple solution characteristics other than just 
aprioristic costs. Therefore, our methodology offers 
more flexibility during the routing selection process, 
which may help to improve the quality of service 
offered to clients. 
 
1. Introduction 
 

In the Capacitated Vehicle Routing Problem 
(CVRP), a fleet of vehicles supplies customers using 
resources available from a depot or central node. Each 
vehicle has the same capacity (homogeneous fleet) and 
each customer has a certain demand that must be 
satisfied. Additionally, there is a cost matrix that 
measures the costs associated with moving a vehicle 
from one node to another. These costs usually 
represent distances, traveling times, number of vehicles 
employed or a combination of these factors. 
Traditionally, the goal here is to find an optimal 
solution, i.e., a set of vehicle routes that minimize the 
total costs of satisfying each customer demand while 
not violating a set of constraints regarding the vehicle 

maximum capacity and the maximum number of 
available vehicles, among others. 

Different approaches to the CVRP have been 
explored during the last decades [1], [2]. These 
approaches range from the use of pure optimization 
methods, such as linear programming, for solving 
small-size problems with relatively simple constraints 
to the use of heuristics and metaheuristics that provide 
near-optimal solutions for medium and large-size 
problems with more complex constraints. As 
mentioned before, most of these methods focus on 
minimizing an aprioristic cost function subject to a set 
of well-defined constraints. However, real-life 
problems tend to be complex enough so that not all 
possible costs, e.g., environmental costs, work risks, 
etc., constraints and desirable solution properties, e.g., 
time or geographical restrictions, balanced work load 
among routes, solution attractiveness, etc., can be 
considered a priori during the mathematical modeling 
phase [3]. For that reason, there is a need for more 
flexible methods that provide a large set of alternative 
near-optimal solutions with different properties, so that 
decision-makers can choose among different 
alternative solutions according to their concrete 
necessities and preferences. Accordingly, the main 
purpose of this paper is to present an hybrid approach 
to the CVRP, based on the combined use of Monte 
Carlo Simulation (MCS) and Parallel and Grid 
Computing (PGC) techniques, which is designed to 
fulfill this lack of solution alternatives. The algorithm 
that sustains this approach is called SR-2. 

The rest of the paper is structured as follows: 
Section 2 gives a more formal description of the 
CVRP; Section 3 reviews some relevant CVRP 
literature; Section 4 discusses the use of MCS in 
CVRP; Section 5 introduces the main ideas behind our 
approach; Section 6 presents the SR-2 algorithm in 
detail; Section 7 explains how this algorithm has been 
implemented by using an object-oriented approach; 
Section 8 discusses some experimental results; finally, 
Section 9 highlights the originality and advantages of 
our approach over the existing ones. 
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2. The Capacitated Vehicle Routing 
Problem 
 

We assume a set Ω  of 1+n  nodes, each of them 
representing a vehicle destination (depot node) or a 
delivery point (demanding node) [4]. The nodes are 
numbered from 0  to n , node 0  being the depot and 
the remaining n  nodes the delivery points. A demand 

0>iq  of some commodity has been assigned to each 
non-depot node i  (1 i n≤ ≤ ). On the other hand, 

{ }( , ) / ,  ;  E i j i j i j= ∈ Ω <  represents the set of the 
( 1) / 2n n⋅ +  existing links connecting the 1n +  nodes. 

Each of these links has an associated aprioristic cost 
0ijc > , which represents the cost of sending a vehicle 

from node i  to node j . These ijc  are assumed to be 

symmetric ( jiij cc = , nji ≤≤ ,0 ), and they are 
frequently expressed in terms of the Euclidean distance 
between the two nodes, ijd . The delivery process is to 
be carried out by a fleet of NV  vehicles ( 1≥NV ) 
with equal capacity, { }

1
max ii n

C q
≤ ≤

>> . Some additional 

constraints associated to the CVRP are the following: 
(i) each non-depot node is supplied by a single 

vehicle 
(ii) all vehicles begin and end their routes at the 

depot (node 0 ) 
(iii) a vehicle cannot stop twice at the same non-

depot node 
(iv) no vehicle can be loaded exceeding its 

maximum capacity 
As stated in the introduction, traditionally the main 
goal of this problem is the construction of a feasible 
solution (set of feasible routes, one for each non-idle 
vehicle), which minimizes the sum of the total costs 
involved in the delivery process. 

 
3. Literature review for the CVRP 
 

Probably the most cited approach to the CVRP is 
the Clarke and Wright’s Savings algorithm (CWS) [5], 
which presents several variations. Gaskell published a 
paper contrasting the difficulties to optimize some 
cases of CVRP by using the CWS algorithm [6]. The 
Gillett and Miller’s sweep algorithm [7] is other well-
known constructive method to obtain CVRP solutions 
in an easy way. After that, Mole and Jameson [8] 
generalized the definition of the savings function, 
introducing two parameters for controlling the savings 
behavior. Similarly, Holmes and Parker [9] developed 
a procedure based upon the CWS algorithm, using the 
same savings function but introducing a solution 

perturbation scheme in order to avoid poor quality 
routes. Beasley [10] adapted the CWS method to the 
optimization of inter-customer travel times. 
Correspondingly, Dror and Trudeau [11] developed a 
version of the CWS method for the Stochastic VRP. 
Some years later, Paessens [12] depicted the main 
characteristics of the CWS method and its performance 
in generic VRP.  

Buxey [13] described a simulation-based method. 
As far as we know, this author applied Monte Carlo 
Simulation in CVRP for the first time. Later, this 
method was improved with the introduction of an 
entropy function to control the random selection of 
nodes using the probability functions defined in the 
former equation. This new approach using the Entropy 
function was named as ALGACEA-1 algorithm [14]. 

Other algorithms that have also been proposed to 
solve the VRP are the GRASP procedures [15], [16]. 
Likewise, the use of metaheuristics in VRP became 
popular during the nineties. Two of the most important 
papers on the use of heuristics and metaheuristics in 
that moment were [17], which introduced the Tabu 
Route algorithm, and [4], which includes a thorough 
discussion of classical and modern heuristics. Some 
years later, Tarantilis and Kiranoudis [18] presented 
the Boneroute for routing and fleet management, and 
Toth and Vigo [19] the Granular Tabu Search as a new 
method to solve the CVRP. 

Other important references about metaheuristics that 
can be applied to CVRP are [20] and [21], who 
introduced some genetic algorithms in routing; [22], 
who make a good review of new routing algorithms; 
and [23], who developed a new evolutionary algorithm. 

Finally, [24] applied MCS to solve the Rural 
Postman Problem (RPP), and the CVRP [25].  
 
4. Our approach to the CVRP 
 

Our goal is to develop a methodology that provides 
the decision-maker with a set of alternative near-
optimal or “good” solutions for a given CVRP 
instance. We are not especially interested in obtaining 
the best solution from an aprioristic point of view –that 
is, the solution that minimizes the aprioristic costs as 
expressed in the objective function. As we have 
discussed before, in practical real situations there are 
important cost factors, constraints and desirable 
solution properties that usually can not be modeled or 
accounted for a priori. In order to generate this set of 
“good” solutions, we will make use of Monte Carlo 
Simulation to randomly select the next node in an open 
route according to an efficiency criterion.  

To be more specific, in the CVRP context, for the 
current active node i  in an open route we consider the 
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random variable iX = “node that follows node i  in the 
current active route”. Notice that iX  can take any 
value ix  in { }iΩ −  as far as this value corresponds to 
the depot or to a node that has not been served yet, that 
is, { } { }* 0 / 0i jx j q∈ Ω = ∪ ∈ Ω > . Also, for each pair 
of distinct nodes, i  and j , we define the concept of 
“efficiency value associated to moving from i  to j ”, 

ije , as the quotient between the demand that will be 
satisfied with this moving, jq , and the cost of the 
shipment, ijc  ( 0ijc >  since i j≠ ), that is:  

, ,  i j i j∀ ∈ Ω ≠  j
ij

ij

q
e

c
=    (1) 

Now, we will use this concept of efficiency to assign a 
discrete probability distribution to the random 
variable iX . There are several possibilities to perform 
this distribution assignment. One interesting option 
could be to use a methodology similar to the one 
employed in [25]. In such case, thought, we would use 
our concept of efficiency instead of the simpler 
concept of “distance between two nodes” used by these 
authors. That is, we could define the following 
probability function for iX : 

*j∀ ∈ Ω  ( )
*

ij
i

ik
k

e
P X j

e

α

α

∈Ω

= =
∑

 (2) 

where 0α ≥  is a weighting parameter that can be used 
to change (fine-tuning) the discrete probability 
function. Notice that for 0 1α≤ <  all nodes have 
almost the same probabilities of being selected 
regardless their efficiency levels, while for 1α =  the 
probability assigned to each node is directly 
proportional to its efficiency level. Also, notice that for 

1α >  the probability of being selected decreases 
exponentially as we move from higher to lower 
efficiency levels.  
 Even when this assignment method is quite 
interesting and should be explored in a future work, it 
also seemed to us that the optimal selection of α  is not 
a trivial task, due to the wide range of possible values 
for ,the fine-tuning (or “learning”) process could be 
highly complex and time-consuming, which could 
represent a severe restriction in many practical 
situations. For that reason, we decided to use another 
option to construct the probability function, one 
inspired by the exponential smoothing method used in 
time series analysis [26]. Given a value β  (smoothing 
constant), 0 1β< < , it follows that: 

( )
0

1 1k

k
β β

+∞

=

⋅ − =∑   (3) 

This way, assuming that the current open route is 
located at node i  ( 0 i n≤ ≤ ) and that 

{ }1 2* , ,..., lj j jΩ = , with 1 l n≤ ≤  and 

1 2
...

lij ij ije e e≥ ≥ ≥ , is the set of potential nodes that can 
be visited next, we construct the following probability 
function for iX : 

{ }1, 2,...,s l∀ ∈ , ( ) ( ) 11 s
i sP X j

l
εβ β −= = ⋅ − +      (4) 

where 

( ) ( )
1

0

1 1 1
l

r r

r l r

ε β β β β
+∞ −

= =

= ⋅ − = − ⋅ −∑ ∑  (5) 

In other words, we are sorting out all remaining nodes 
in *Ω  according to their efficiency values and then to 
assign a probability of (approximately) β  to the node 
with the highest efficiency level, the rest of the sorted 
nodes receiving their corresponding probabilities 
according to an (approximately) exponential 
diminishing pattern (Fig. 1). 
 

 
 

Fig. 1: Construction of the probability function for Xi 
 

Since the smoothing factor β  is restricted to the 
interval ( )0,1 , we expect that this parameter will be 
easier to fine-tune in most practical situations. 
Nevertheless, a lot of computations might be required 
to explore the solution space using efficiency-based 
random search, as described above, with different 
values of β . This is where Parallel and Grid 
Computing techniques (PGC) come into play [27], 
[28]. For instance, several tasks could be launched in 
parallel, each of them performing iterative random 
searches with different values of the smoothing factor 
(e.g., five parallel tasks with the k -th task 
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using 0.4 0.1k kβ = + , 1 5k≤ ≤ ). After some thousand 
iterations, these tasks could interchange messages to 
compare the respective solutions that are being 
obtained at each task and, consequently, choose the 
more convenient β -value for future iterations. PGC 
techniques also allow introducing some interesting 
“risky/conservative” strategies for the routing 
selection. In effect, notice that high values of β  are 
conservative in the sense that, each time a new node 
has to be added to an open route, they promote the 
selection of those nodes with associated high-
efficiency values. On the contrary, low values of β  do 
not promote the selection of nodes with associated 
high-efficiency values on the very short-run, but they 
give priority to the search of alternative routes that, on 
the long run, might result in equivalent or even better 
solutions. Again, PGC techniques can be used to test 
different “risky-to-conservative” strategies such as: (a) 
start solutions with a low β -value (e.g. 0.4β = ) and 
progressively increase that value at each new route; or 
(b) start each route in a solution with a low β -value 
and progressively increase that value as new nodes are 
added to that route. At the end, the logic behind this 
strategy is that initial steps in a route or in a solution 
could be less conservative in order to explore more 
alternative routes or solutions and, as the route or 
solution evolves, these steps become more 
conservative in order to keep high efficiency levels. 
Notice that this approach contributes to avoid the local 
minimum problem. 
 
5. The SR-2 algorithm 
 

As it has been described before, our approach 
makes use of an iterative process to generate a huge 
number of random solutions based on the efficiency 
criterion. Each of these solutions is a set of roundtrip 
routes that, altogether, satisfy all nodes demand by 
visiting and serving them. The actual SR-2 algorithm, 
which defines how these random solutions are 
constructed in each iteration h  ( 1,2,...,h m= , being 
m  a user-defined parameter), is detailed next. 

1. Initialize a new solution, [ ]CS h , at current 
iteration h . 

2. Make Θ  the set of all served nodes (other than 
the depot) by [ ]CS h . Initially, set Θ = ∅ . 

3. Reset the counter u  of routes in [ ]CS h . 
4. While { }0Θ ≠ Ω ∼  (i.e., while there are still 

nodes with unsatisfied demand) do the following. 

4.1. Initialize a new route, [ ][ ]CR h u , inside 
[ ]CS h . This route will be served by a new 

vehicle. Set the vehicle current capacity, 
VC , equal to its initial capacity, 0C >> . 

4.2. Add the depot to [ ][ ]CR h u  and set the depot 
as the current node, CN , in [ ][ ]CR h u . 

4.3. While there is still any node, j , with 
unsatisfied demand, jq , such as 
0 jq VC< < , do the following. 
4.3.1. According to the efficiency criterion 

and to equations (4) and (5), 
construct the probability function for 
all non-served nodes. 

4.3.2. Using Monte Carlo Simulation, 
determine the next node in 

[ ][ ]CR h u , NN  (Fig. 2). 
4.3.3. Update Θ  by adding NN  to it (in 

other words, set { }NNΘ ← Θ ∪ ). 
4.3.4. Add the link between CN  and NN  

to route [ ][ ]CR h u . 
4.3.5. Set NN  as the current node: 

CN NN← . 
4.4. Close the route [ ][ ]CR h u  by adding a link 

between CN  and { }0 . 
4.5. Increase the counter u  of routes in [ ]CS h . 

5. Add the current solution [ ]CS h , including all of 
its routes, to the array of completed solutions. 

 
As can be seen, the SR-2 algorithm has many desirable 
characteristics. First of all, it is a simple method which 
requires little instantiation. With little effort, similar 
algorithms based on the same key basic idea could be 
easily developed for other routing problems and, in 
general, for other combinatorial optimization problems. 
Second, SR-2 returns not only one solution or set of 
routes for the CVRP problem, like most existing 
algorithms, but rather a large set of solutions. Such 
behavior is highly desirable, as it allows for multiple 
criteria decision making as the set of solutions can be 
ranked according to different objectives. Moreover, 
some of the most efficient heuristics and metaheuristics 
are not used in practice because of the difficulties they 
present when dealing with real-life problems and 
restrictions [29], [30]. On the contrary, simulation-
based heuristics, like the one presented here, tend to be 
more flexible and, therefore, they seem more 
appropriate to deal with real restrictions and dynamic 
work conditions. 
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Fig. 2: Selecting the next node with SR-2 
 
6. Software implementation 
 

We have used an object-oriented approach to 
implement the described methodology as a computer 
program. In order to do this, we have employed the 
Java programming language. The implementation 
process is not a trivial task, since there are some details 
which deserve special attention, in particular: (i) the 
use of a good random number generator, and (ii) the 
code levels of accuracy and effectiveness.  

Regarding the generation of random number and 
variates, we have employed the SSJ library [31]. In 
particular, we have used the subclass GenF2W32, 
which implements a generator with a period value 
equal to 2800-1. 

Furthermore, we needed a software implementation 
of the CWS heuristic in order to be able to test the 
efficiency of our approach against the CWS approach. 
Since we did not find any available implementation for 
the CWS algorithm, either on the Internet or in any 
book or journal, we have developed our own object-
oriented implementation of this algorithm. As a matter 
of fact, there are several variants of the CWS heuristic, 
so we decided to base our implementation on the one 
described in the following webpage from the 
Massachusetts Institute of Technology: 
<web.mit.edu/urban_or_book/www/book/chapt
er6/6.4.12.htm>. 
 
7. A preliminary test 
 

As a first CVRP instance to test our algorithm, we 
generated a random set of 20 nodes (nodes 1 to 20) 
uniformly distributed inside the square defined by the 
corner points (-100, -100), (-100, 100), (100, 100) and 

(100, -100). The depot (node 0, with no demand), was 
placed at the square center. The demand for each node 
was randomly generated (with an average demand of 
83 and a maximum individual demand of 144). Finally, 
a value of 345 was assigned as the vehicle total 
capacity. In this example, the traveling cost from one 
node to other was calculated as the Euclidean distance 
between the two nodes. 

On one hand, this instance was solved by using the 
CWS heuristic, which provided a solution with a total 
cost of 1,208. On the other hand, we solved this 
instance by employing our SR-2 algorithm: using a 
standard PC (Pentium 4 CPU, 2.8 GHz and 2 GB 
RAM), it took only some seconds to perform 50,000 
iterations (i.e., to generate 50,000 random solutions); 
after those iterations SR-2 provided nine alternative 
solutions with a lower cost than the one given by the 
CWS heuristic (costs for these nine solutions were in 
the range between 1,185 and 1,205). 

Therefore, it seems reasonable to conclude that in 
small-size scenarios, SR-2 can easily offer a set of 
alternative solutions that improve the solution provided 
by the CWS heuristic. 
 
8. Conclusions 
 

In this paper, we have presented a general 
methodology, based on the combined use of Monte 
Carlo Simulation and Parallel and Grid Computing, to 
solve the Capacitated Vehicle Routing Problem. This 
methodology makes use of the concept of efficiency to 
randomly generate a set of alternative solutions for a 
CVRP instance. Although more tests and benchmarks 
are needed before establishing definitive conclusions, 
the SR-2 algorithm has proven to be effective in some 
preliminary tests. One major advantage of simulation-
based algorithms is the fact that they provide not only a 
good solution to the decision maker, but a set of 
alternative good solutions that can be ranked according 
to different criteria. Another major advantage of our 
approach is the flexibility of simulation-based 
algorithms, which allows them to deal with realistic 
situations defined by complex restrictions and dynamic 
working conditions. The main disadvantage of using 
simulation-based algorithms is that they use to be 
computationally intensive. This is where Parallel and 
Grid Computing techniques can play an important role 
in order to make these algorithms more efficient. 
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