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Abstract—This paper proposes an evolutionary algorithm
based approach for evolving architecture alternatives using
quality attributes as design drivers. A novel fuzzy architecture
assessment approach is presented to quantitatively evaluate the
set of possible solutions based on linguistic assessments of
architecture quality attributes elicited from the stakeholders.
The proposed approach makes a valuable contribution to the
systems architecting knowledge base by presenting a measurable
and quantifiable approach to architecture design and evaluation.

I. INTRODUCTION

Early in the design life-cycle,the systems architect generates

concept alternatives, evaluates them, and selects the best one

for further refinement. The design trade space of a complex

system is vast, and overlooking potential architecture alterna-

tives can have an adverse impact on the final outcome. The use

of computationally intelligent techniques such as Evolutionary

Algorithms (EA), Genetic Algorithms (GA) in particular, is

proposed for searching the design trade space for candidate ar-

chitectures. The evolutionary nature of the architecture search

process lends itself to computationally intelligent approaches

especially evolutionary algorithms. However, the early design

phases are also marked by high levels of ambiguity about the

final form and function of the desired artifact. Thus, there

exists the need for a methodology to automatically generate,

evolve and evaluate architecture alternatives using vague and

incomplete information.

To make a decision about the success or failure of a

candidate architecture, it needs to be evaluated over a set of

criteria that can accurately assess the system’s ability to deliver

its intended functionality and be acceptable to stakeholders

and decision-makers. Measures of Effectiveness (MOE), such

as affordability, flexibility, security, reliability etc. MOEs are

also referred to as Architectural Quality Attributes (AQA)

in the software domain and are used by stakeholders to

qualify the value delivered by a system [1,2]. These are a

set of characteristics that the architecture of a system may

have. The interactions between the desired function of the

system and its quality attributes determine the effectiveness

of a system in delivering the target functionality. Traditional

architecting approaches propose the development of system

functional architectures which are then adapted to satisfy

system quality requirements. It has long been accepted by

the software community [2,3,4] that quality attributes of a

system are systemic properties that are manifested by the

chosen system architecture. Accommodating them into the

system architecture as an after-thought is neither easy nor

very effective. Reference [5] has discussed the importance and

applicability of this point of view to systems engineering. This

paper proposes an approach for evolving and assessing concept

alternatives by leveraging architectural quality attributes as

design drivers. Quality attributes of a system may complement

or conflict with each other. An architect can leverage these

quality attributes to perform design trade-offs based on the

impact of the design decision on an associated AQA. Each

architectural decision will result in the achievement of a set

of AQAs to a particular level. Based on the overall impact of

a set of design decisions on the AQAs, concept alternatives

can be developed. A novel fuzzy architecture assessment

approach has been developed to quantitatively evaluate the

set of possible solutions based on a set of AQAs specified

by the stakeholders. By combining the fuzzy architecture

assessment approach with an EA, architecture alternatives can

be generated and evaluated automatically.

II. ARCHITECTURAL QUALITY ATTRIBUTES AS DESIGN

DRIVERS

Architectural quality attributes have been defined as a set

of key behavioral attributes unique to a system [1,3,4,6]. For

this research, AQAs are defined as proposed by [1]-“ ... are

standards against which the capability of a solution to meet

the needs of a problem may be judged”. They are the criteria

by which the stakeholder judges the success of a system and

thus, they need to be specified by the stakeholders[6]. Quality

attributes directly or indirectly enable the system to deliver

its intended function to the satisfaction of the stakeholders.

Previous work has established the utility of using quality

requirements as design drivers [1,2,3,4,5,6,7]. Attribute Driven
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Design [2] uses a set of predetermined architectural patterns

known as attribute primitives to achieve quality attributes dur-

ing software design. Related work by [7,8] has applied quality

attribute scenarios derived from business objectives to develop

architectural tactics that correspond to each quality attribute.

Quality attribute workshops(QAW) have been suggested as a

means to elicit AQAs from the stakeholders [9]. QAWs elicit

quality attribute requirements and their mapping to overall

system objectives. A case for the use of quality attributes

in systems architecting as a mechanism for making objective

decisions about architectural trade-offs and for predicting how

well candidate architectures will meet customer expectations

was made by [5]. Reference [10] demonstrated the use of

decision science and value focused thinking to aggregate

AQAs in order to develop an assessment for a candidate

conceptual architecture. We propose the use of fuzzy set theory

as means for aggregating AQAs to develop a quantitative

assessment of an architectural alternative.

A. Aggregation of AQAs Using Fuzzy Set Theory

The ambiguity in the architecting process can be captured

very effectively by using fuzzy representations and rules that

can be represented in the form of Fuzzy Associative Memories

(FAM). These FAMs can successfully capture both the domain

knowledge of the system and the value judgments of the

customers.

To ensure operational feasibility of the resulting system con-

figuration, key attributes need to be engineered into the system

right from the start. Many of these system attributes are ill-

defined and difficult to quantify, especially in the early stages

of the architecting process. These attributes exhibit non-linear

cross-functional relationships that are difficult to determine

and model. To develop an acceptable system, the architect

must consider the trade-offs between the desired MOEs. The

expectations and preferences of the stakeholders are usually

stated linguistically. These linguistic preference structures may

be incomplete, ambiguous and subjective. Fuzzy logic is a

super-set of classical logic that allows computation with words

and imprecise relationships between linguistic variables. For

this reason, it is proposed that fuzzy logic forms a natural

bridge between the objectivity of mathematical rigor and the

naturally ambiguous quantities being considered. It does not

need accurate quantitative inputs and allows design engineers

to describe the system’s expected performance in linguistic

terms which can be manipulated with fuzzy set theory. A brief

introduction to fuzzy logic and fuzzy rules follows.

1) Classical vs. Fuzzy Set Theory: Fuzzy logic extends

classical logic to all values in the interval [0,1]. A fuzzy set is

a class of objects in which there is no sharp boundary between

those objects that belong to the class and those that do not.

In a fuzzy set, an object may have a grade of membership

intermediate between full membership, represented by 1, and

non-membership, represented by 0. The principle difference

between classical and fuzzy set theory is the idea of partial

membership. In fuzzy set theory, an element can assume

degrees of membership between 0 and 1. Fuzzy sets allow an
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Fig. 1. Fuzzy number representation

element of a set to have “a lot” of membership in a set X1 and

“a little” membership in a set X2. This characteristic makes

fuzzy sets ideal for representing poorly defined and ambiguous

system attributes. A full treatment on the mechanics and theory

of fuzzy sets and fuzzy logic are beyond the scope of this paper

but are well established in published literature [11]. However,

some fundamental concepts of fuzzy set theory used in this

paper are briefly discussed next.

2) Fuzzy Numbers and Fuzzy Arithmetic: Fuzzy sets de-

fined on the set of real numbers can be viewed as fuzzy

numbers or intervals under certain conditions [11]. Triangular

and trapezoidal membership functions are the most commonly

used forms of fuzzy numbers. Trapezoidal numbers are repre-

sented by a quadruple of the form X = φ(a, b, c, d). A trian-

gular fuzzy number is a special case of the trapezoidal fuzzy

number when b = c. Thus the triangular fuzzy number reduces

to a triple,X = φ(a, b, d). Fig. 1 shows a membership function

of a trapezoidal fuzzy number A = φ(−20,−10, 0, 10) and a

triangular fuzzy number B = φ(−10, 0, 10).
Let X1 = φ(a1, b1, c1, d1) and X2 = φ(a2, b2, c2, d2) Basic

arithmetic operations on fuzzy intervals,

A + B = φ(a1 + a2, b1 + b2, c1 + c2, d1 + d2)

A − B = φ(a1 − a2, b1 − b2, c1 − c2, d1 − d2)

3) Fuzzy Inference System: A fuzzy inference system can

be used to encode expert knowledge in the form of a rule base

for evaluating a given set of inputs. These inference systems

can provide a convenient and reliable way of handling

uncertain and imprecise value judgments. A fuzzy rule base

is a collection of fuzzy propositions, which are statements

that takes a fuzzy truth value. A fuzzy proposition includes

logical connectives like AND, OR, NOT and Implication.

A fuzzy rule is a proposition in the if-then format. It

contains one or more fuzzy propositions joined by a main

implication connective. Consider two fuzzy sets ‘Affordability’

and ‘Reliability’ whose values are stated in linguistic terms

{High, Medium, Low}. A typical fuzzy rule will take the form,

IF ((Affordability is Low) AND (Reliability is High))

THEN(Performance is Unacceptable)



where ‘Performance’ is an output variable

and‘Unacceptable’ is a membership function defined on

‘Performance’.

III. AUTOMATIC ARCHITECTURE GENERATION USING EA

The fuzzy architecture assessment approach discussed in the

previous section makes it feasible for a systems architect to

quantitatively evaluate a set of possible solutions and select the

most suitable design. The next obvious step is the generation

of suitable candidate architectures for consideration. In any

large scale system, the design trade space is inherently vast

making it difficult to explore all possible architecture variants.

Evolutionary algorithms have long been successfully used

as design space exploration techniques in many engineering

disciplines [12,13]. Even though EAs have found use in the

design optimization of complex systems most applications

are at the detailed design level where design peroformance

measures are explicitly known [14,15]. Reference [16] uses

EAs for automating design exploration at the component

level. A novel EA based trade space exploration strategy is

proposed for explicating all possible system architectures at

the conceptual level. Excellent discussions on the fundamental

theory of EAs can be found in [17].

The EA based trade space exploration strategy simulates the

biological process of natural selection to generate a set of po-

tential design concepts. The algorithm proceeds by generating

a population of candidate architectures, modifying the parent

population using predetermined genetic operators, evaluating

their ‘fitness’ and finally selecting a child population. This

process is continued iteratively until a near-optimal set of

solutions emerges. In a systems context, each individual in

a population may represent a possible functional, behavioral

or structural architecture. Child populations are created by

selecting features from a random set of parents to create

novel architectures that embody the best aspects of the parent

designs.

IV. CONCEPT GENERATION METHODOLOGY

The process of generating architectures at the conceptual

design level primarily consists of selecting design approaches

or strategies to achieve a system’s functional objectives. An

evolutionary process can help weed out suitable architecture

alternatives based on their impact on the AQAs and the cost

of implementing each alternative. Thus a selected concept will

consist of a set of approaches that when implemented will help

a system deliver its target functionality with the most optimal

balance of AQAs and cost.

Each possible approach is linked to a set of AQAs which

in turn determine the overall acceptability of a candidate

architecture. For example, robustness can be engineered into

a system by using architecting strategies that strengthen the

reliability of components and their interconnections. These

may include adding redundancy (Hardware and software) and

providing alternate paths within the structure. Building in

modularity may also have a positive impact on robustness,

however it may increase cost. It should be noted that at the

conceptual level these strategies simply indicate the nature of

the solution without dictating what that solution must be. The

system designers can then decide whether to use redundant

hardware, or other architectural decisions to increase the

system’s robustness.

The major steps involved in modeling the problem space for

the proposed approach are listed. In defining these we draw on

ideas from Keeney’s value function theory [18] and the ADD

[1] approach.

• Based on the need statement and requirements definitions,

identify the key externally delivered function or value of

the system to be architected.

• Using QAW described in [9], identify and finalize the

AQAs that the stakeholders will use to judge the accept-

ability of the system architecture. It is vital that the set

of AQAs be properly grounded in the system of interest,

failing which the subsequent attribute-strategy hierarchy

may not address the system in question.

• Once the externally delivered function and its qualifying

attributes have been identified, they should be organized

into a hierarchy of attributes and sub-attributes. At the

lowest tier, each sub-attribute must be achievable by the

implementation of a unique architectural strategy. Once

all the strategies necessary to achieve the identified sub-

attributes have been ascertained, these are placed at the

bottom of the attribute-strategy hierarchy.

• The next step is to generate expert evaluations of the

impact of adopting a strategy on the attributes on the

next higher level of the hierarchy. The experts present

their evaluations in linguistic terms while simultaneously

assigning a fuzzy cost value to the strategy itself.

The architecture exploration starts with an initial architec-

ture concept represented by a set of architectural strategies.

Evolutionary operators like crossover and mutation are then

applied to the initial set to search for concept variants. The

fitness or acceptability of each concept variant is determined

based on its impact on the AQAs. In order to automate the

search process, two key elements are required in addition to

the mechanics of natural selection: a goal function or fitness

assessment and a representation of the architecture.

A. Problem Representation

A key component of automated intelligent search is a

suitable representation of the system architecture. This repre-

sentation is in essence a model of the conceptual architecture

itself. The genotype representation is highly dependent upon

the system being modeled and the level of ambiguity in-

volved. The attribute-strategy hierarchy is used to generate the

genotypic representation for the EA. Each potential strategy

is represented by a digit in a binary string that represents

the chromosome. A ’0’ means selection and ’1’ represents

rejection of the strategy. Depending on the structure of the

hierarchy chromosomes may have more than one bit strings

to represent strategies are different hierarchical levels.
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B. Fuzzy Fitness Assessment

The ‘fitness’ of a solution depends on how well it satisfies

the designers’ requirements and constraints. Creating a robust

and repeatable fitness function is the most challenging aspect

of EA based design search. This problem is addressed by the

use of the fuzzy architecture assessment technique discussed.

The fuzzy fitness assessor can aggregate multiple objectives

into a single fitness measure allowing system architects to

rank potential solutions by level of ‘acceptability’. The inputs

to the fuzzy fitness function are the linguistic assessments of

the impact and cost of the architectural strategies. A sample

linguistic term sets representing these assessments is,

AttributeImpact = {HighNegative(HN),

ModerateNegative(MN),

Neutral(N), ModeratePositive(MP ),

HighPositive(HP )}

Cost = {Low, Moderate,High}

As shown in Fig. 2 and Fig. 3, the attribute impact assess-

ments are assigned positive or negative evaluations based on

the nature of their impact on the AQAs. Since cost cannot

be negative, the cost assessments are generated on a positive

scale. The granularity of these term sets can be chosen based

on the nature of the information available. Higher granularity

can be used when more precise information is available. These

Fig. 4. Attribute hierarchy for the ATM

assessments have to be aggregated into a single fuzzy number

in order to determine the overall impact for each of the AQAs.

This is done by adding all positive impact assessments and

subtracting all negative assessments for each individual AQA.

Let the impact of a set of strategies S1, S2, S − 3 on an

attribute A1 be S1 = ‘MN ′, S2 = ‘N ′, S3 = ‘HP ′. Then

the aggregate impact on the attribute A1 can be calculated

using fuzzy addition of trapezoidal numbers as follows,

A1 = φ(−30,−20,−10, 0) + φ(−10, 0, 0, 10)

+φ(20, 30, 40, 50)

= φ(−20, 10, 30, 60)

The aggregated impact values for the AQAs are then input into

a fuzzy inference system uses a fuzzy rule base to non-linearly

map the AQAs to generate an overall acceptability rating for

the candidate architecture. The rule base is designed based on

trade-offs between the AQAs as stated by the stakeholders.

The acceptability rating is used as a fitness measure to rank

architectural alternatives.

V. PROOF OF CONCEPT

The conceptual architecture of an Automated Teller Ma-

chine (ATM) is generated as a proof of concept. The externally

delivered function of the ATM was identified as ‘automatic

transaction execution’ The key Quality Attributes of the ATM

as specified by the stakeholders include security (Se), avail-

ability (A) and performance (P ). The attribute hierarchy of the

ATM is shown in Fig. 4. Each AQA has been decomposed into

sub-attributes that are directly representative of the strategies

used for achieving the specified AQA. Table I lists some of

the strategies for achieving the associated AQA.

A. Chromosome Representation

Each chromosome is a binary string with 24 digits, repre-

senting the 24 architectural strategies to choose from. A ‘1’



TABLE I
ARCHITECTURAL STRATEGIES FOR OPERATIONAL MODE AND

REPLENISHMENT

Sub-attribute Strategy

Operational Mode off-line, on-line

Replenishment Manual, Partially automated

TABLE II
FUZZY ASSESSMENTS FOR COST AND ATTRIBUTE IMPACT

Strategy Performance Security Availability Cost

S1 HP N N Low

S2 HP N MN Moderate

S3 HP N N Low

S4 HP N N Low

S5 HP N N Low

S5 MP N N Moderate

S6 HP N N High

S7 MP N MP Moderate

S8 HP MP HP High

S9 MP MP N Low

S10 HP HP MN High

S11 MP MP N Low

S12 N HP N Moderate

S13 N HP N Moderate

S14 N MP N Low

S15 N HP N High

S16 MN HP HP Low

S17 MP MP MP Moderate

S18 HP MP N High

S19 N MN HP Low

S20 N MP MN High

S21 MN MN HN Low

S22 HP MP HP High

S23 N MN MN High

S24 N MP MP Moderate

indicates selection and a ‘0’ indicates rejection of a strategy.

B. Fitness Evaluation

The attribute impact assessments and cost assessments for

the ATM are shown in Table II. These assessments were

elicited from the stakeholders and other experts in the do-

main. The membership function definitions for these linguistic

assessments were shown in Fig. 2 and Fig. 3. The rule base

for combining the AQA aggregated ratings into a combined

architecture assessment rating was used to capture the nonlin-

ear mapping from the AQA to the architecture rating in the

form of IF-THEN rules. These rules are also developed based

on inputs by domain experts and attribute rankings provided

by the stakeholders.

C. Genetic Algorithm Implementation

A genetic algorithm with a fuzzy fitness assessor was im-

plemented to quickly generate and evaluate alternate solutions

for the ATM problem. The algorithm begins by randomly

initializing a population of size N and calculating the fitness

TABLE III
FINAL CHROMOSOME

Chromosome 101111111111111110010010

with the fuzzy assessor. A binary tournament selection proce-

dure was employed to select the chromosome for crossover.

A tournament size of 2 was used. The selected chromosome

in the population was crossed over with a randomly selected

second chromosome. Crossover was performed with a fixed

probability. Crossover was double, as each crossover produced

two offspring. Mutation was performed with a low fixed

probability at a randomly selected location. Bit mutation

operation is incorporated in the algorithm to aid in forestalling

the problems of premature convergence associated with the

repeated use of crossover. The elitism operator was active for

the crossover and mutation. This means that the chromosome

with the highest fitness in a generation was not crossed-over

or mutated. The child population was ranked on the basis of

fitness and the best chromosomes were chosen to form part

of the next generation. If the termination criterion is satisfied,

the algorithm terminates.

VI. RESULTS

Bit-wise mutation and double crossover operations were

used. The algorithm was run for a 500 generations and a

mutation rate of 0.1 was used. The crossover rate was set

to 0.6. The genetic algorithm was implemented with an initial

population size of 20. The sensitivity of the fitness value to

changes in population size are shown in Fig. 5. It can be

seen that an increase in population size leads to a decrease

in the time taken to achieve the same level of fitness. The

highest fitness value achieved is approximately 90. This fitness

represents the most favorable set of strategies from the original

set of 24 strategies. Fig. 6 shows the sensitivity analysis

results for varying mutation rates while maintaining constant

cross over rates. As the mutation probability increases the

convergence speed increases. The final chromosome for the

architectural strategy set with the highest fitness value is shown

in Table III. The final concept selected is for an ATM that

includes strategies S1, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15, S16, S17, S20 and S23. The eliminated

strategies include partially automated replenishment, remote

maintenance, biometric authentication and voice based input to

the ATM. One of the observations is that each of the eliminated

strategies had a significantly negative impact on the cost. This

is expected since a higher weight-age was given to cost in the

rule base used for combining the quality attributes.

VII. CONCLUSION

A system architecture design methodology that evolves

architectures based on stakeholder quality expectations as

design drivers and an intelligent decision-making algorithm

is presented. A successful architecture manifests the earliest

design decisions and these decisions are the most important

in the life cycle of a system. To successfully meet customer
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expectations, we must address quality expectations early in

the life cycle. The ability of a system to meet these quality

expectations is dependent on its architecture. There exists a

need for techniques and tools that support the development of

candidate system architectures and perform trade-offs based

on a set of system attributes which can then be used to

evaluate the success of an architecture. The proposed approach

contributes to the systems architecting knowledge base by pre-

senting a measurable and quantifiable approach to architecture

design and evaluation. As future work the concept selection

methodology will be extended to automate all aspects of

architecture generation, from concept selection to component

selection.
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