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GENETIC STRUCTURE OF AMBLYOMMA CAJENNENSE (ACARI: IXODIDAE) 

POPULATIONS BASED ON MITOCHONDRIAL GENE SEQUENCES 

by 

ERICA JANELLE BURKMAN 

(Under the Direction of Dr. Lorenza Beati) 

ABSTRACT 

Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae) is a common tick species that 

has a large geographic distribution from the southern regions of the United States 

(Texas), to the Caribbean Islands, Central, and South America.  This tick is a vector of 

the agent of Brazilian spotted fever, an often fatal disease in South America.  Throughout 

its geographic range, populations of A. cajennense have shown differences in ecological 

adaptation while feeding on a variety of hosts ranging from livestock, birds, and humans.  

In order to examine the taxonomic status and phylogeographic evolution of this species, 

we analyzed mitochondrial 12S rDNA, control region (d-loop), and cytochrome oxidase 

II gene sequences of A. cajennense specimens collected in eight different localities. The 

results showed that our samples are grouped in five strongly supported monophyletic 

lineages, each corresponding to geographically or ecologically distinct populations.  The 

strong phylogenetic structure indicates that A. cajennense may actually be a species 

complex in need of thorough morphological reassessment. 
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CHAPTER 1 

INTRODUCTION 

Taxonomic information  

 Amblyomma cajennense (Fabricius, 1787), commonly known as the Cayenne tick, 

is a common tick species infesting livestock and a number of other vertebrates including 

humans and birds (Borges et al., 2002; Oliviera et al., 2003; Lopes et al., 1998; Rojas, 

Marini and Coutinho, 1999). This tick has a wide distribution, ranging from the southern 

regions of the United States to the Neotropics.  Because this tick is so widespread, 

taxonomists have been studying it since the late 18th Century and several names have 

been applied to it as shown below 

Synonymy list 
 Acarus cajennensis  Fabricius, 1787 
 Ixodes cajennensis  (Fabricius, 1794) 
 Ixodes crenatus  Say, 1821 
 Amblyomma tenellum  Koch, 1844 
 Amblyomma mixtum  Koch, 1844 
 Amblyomma sculptum  Berlese, 1888 
 Ixodes herrerae  Dugés, 1891 
 Amblyomma parviscutatum  Neumann, 1899 
 Amblyomma versicolor  Nuttall & Warburton, 1908 
 Amblyomma tapiri  Tonelli-Rondelli, 1937 
 Amblyomma finitimum  Tonelli-Rondelli, 1937 

 
The above synonymy list shows that this species has been extensively studied and 

indicates that its taxonomy over the centuries has been controversial.  Amblyomma 

cajennense was first described and named by Fabricius from a tick collected in Cayenne, 

the capital of French Guiana.  Later, morphologically similar species were established by 

Koch (1844). These were later synonymized with A. cajennense by Neumann (1899, 

1911) and Robinson (1926).  Tonelli-Rondelli (1939) still believed that Neumann and 
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Robinson overlooked important characteristics and pointed out morphological differences 

evident in geographically distinct populations of A. cajennense.  She recognized 6 valid 

independent species, which are: A. cajennense, A. tenellum (Mexico), A. mixtum 

(Mexico), A. sculptum, A. tapiri (French Guiana), and A. finitimum (French Guiana) 

(Tonelli-Rondelli, 1939).  Aragão and Fonseca (1953) synonymized all of Koch's and 

Tonelli-Rondelli's species with A. cajennense. Although there is now a general consensus 

in applying all these names to refer to A. cajennense, minor morphological and major 

ecological differences indicate that this widely distributed tick species may include 

genetically diverse populations (Guglielmone et al., 1992).  

Geographic distribution  

The distribution of A. cajennense ranges from the southern regions of the United 

States (Texas), to the Caribbean 

Islands, Central, and South America 

as shown in FIG. 1 (Estrada-Peña, 

et al., 2004). Thus far, A. 

cajennense has not been found 

either north of latitude 27°N or 

south of latitude 29ºS (Estrada-Peña 

et al., 2004). 

 The geographic range of A. 

cajennense has been found to be 

limited by temperature.  (Estrada-

Peña et al., 2004).  
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Low temperatures in mountainous areas such as the Mexican Sierra Madre and in the 

Andes have been shown to be an obstacle for the establishment of this arthropod 

(Estrada-Peña et al., 2004). Differences in ecological adaptation among A. cajennense 

populations have been noted (Estrada-Peña et al., 2004).  This tick is known to survive in 

regions with very different ecological conditions (FIG. 2), spanning from arid grasslands 

to tropical forests.  

Host Associations   

The geographic distribution of a tick species is usually determined by host 

distribution and dispersal.  Amblyomma cajennense is a three-host tick with equines as 

the principal host (Borges et al., 2002; Oliveira et al., 2003) that maintains the population 

in domestic environments (Labruna et al., 2002).  However, this arthropod, and its 

immature stages in particular, have been found on a wide range of hosts including wild 

and domestic ungulates, birds (Rojas et al., 1999) and humans (Lopes et al., 1998), 

showing a relatively low level of host specificity. Carried by domestic animals 

(transported by humans) or by birds, A. cajennense may have dispersed across long 

distances and over land barriers, such as the Andes Mountains, large rivers (Amazon), 

and oceans (Caribbean), and other inhospitable habitats (Estrada-Peña et al., 2004). 

Economic impact  

This arthropod is an important vector for pathogenic organisms such as Rickettsia 

rickettsii the bacterium that causes Rocky Mountain Spotted Fever, which is called 

Brazilian spotted fever in Brazil, (Aragão, 1936; Dias and Martins, 1939; Sangioni et al., 

2005) and possibly Venezuelan equine encephalomyelitis virus (Linthicum et al., 1991).  

This tick species has also been implicated in the transmission of the unknown causative 
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agent of human Lyme disease in Brazil although the occurrence of this disease in South 

America is still controversial (Castagnolli et al., 2003).  These diseases are important to 

both humans and livestock (Lopes et al., 1998). 

Moreover, infestations of cattle by these ticks can lead to decreased weight, 

reduced milk production, malnutrition and starvation (Teglas et al., 2005).  When the 

ticks bite, they leave small perforations in the hide in which flies such as the screwworm 

(Cochliomyia hominurorac) or secondary screwworm (C. macellaria) may subsequently 

lay their eggs causing further damage to the hides.  The hides of these cattle are a major 

source of income in poor rural areas and such infestations hurt the local economics and 

lead to further deterioration of living conditions for humans (Teglas et al., 2005).  For the 

development of preventative measures, it is crucial to ensure that the taxonomy of these 

ticks is fully understood. 

Ticks and population genetics studies 

There are several molecular tools used currently in the study of intraspecific tick 

phylogenetics. Among the most frequently used methods are phylogenetic analysis of 

nuclear genes with a high mutation rate, such as the internal transcribed ribosomal spacer 

(ITS2) (Rich et al., 1997; Zahler et al., 1995; Zahler and Goethe, 1997) or of the 

mitochondrial genome, typically looking at the 12S rDNA, 16SrDNA or the Cytochrome 

oxidase I gene (Barker and Murrell, 2004).  However, recent studies using other genes in 

the mitochondria have shown much potential for the study of phylogeny of ticks (Barker 

and Murrell, 2004). Also, nuclear microsatellite loci have been found to be effective tools 

in order to detect genetic variability within tick species (McCoy and Tirard, 2000; de 

Meeûs et al., 2002; McCoy et al., 2003).  
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Main Hypothesis 

Amblyomma cajennense has a large distribution range and we therefore, could 

expect to find a relationship between geographic and genetic distances. Land and water 

barriers such as the Andes Mountains, the Atlantic, and large Amazonian rivers would 

further isolate populations, decrease the genetic flow of A. cajennense, and increase 

genetic differentiation.   

Conversely, one could also imagine that, given the preferred association between 

A. cajennense and domestic animals, this tick may have accompanied humans throughout 

the subcontinent, therefore, maintaining continuous gene flow among tick populations.  

Transport of immature stages by migrating birds would also contribute to homogenous 

genetic populations. 

Purpose of study 

Compare the following scenarios: 

Hypothesis 1:  Amblyomma cajennense is carried by hosts (domestic ungulates and birds)  

over large geographic distances, thus leading to weak geographic genetic 

structure. 

Hypothesis 2:  Amblyomma cajennense occurs in ecologically highly diverse areas,  

with populations isolated from each other by barriers, and is subdivided into 

genetically divergent populations.   

In order to evaluate these hypotheses we have studied the genetic variability of three 

 A. cajennense mitochondrial gene sequences in tick samples collected in eight countries 

representing diverse ecological areas of the neotropics and Mexico. 
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CHAPTER 2 

MATERIALS AND METHODS 
 
Sample Collection  
 
 The samples used in this study were collected in Peru, Brazil, Ecuador, French 

Guiana, Argentina, Venezuela, Mexico and Costa Rica.  Samples were collected in 6 of 

the 8 biomes where A. 

cajennense is known to 

occur.  The biomes that 

were represented in this 

study were:   

(1) Tropical grasslands / 

Savannahs  

(2) Tropical humid forests,  

(3) Tropical dry forests / 

woodlands,  

(4) Temperate grasslands, 

(5) Sub-tropical / temperate 

rain forests / woodlands, and 

(6) Mixed mountain systems  

(FIG. 2).  Table 1: shows the 

sample locations and the biomes that were represented at the collection sites.  The 

samples were stored and shipped in vials containing 70% ethanol.  Some of the samples 

were obtained from the US National Tick Collection at Georgia Southern University, 
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Statesboro, GA.  Appendix A shows the location and who collected the specimens used 

in this study.  The outgroups chosen for this study were Amblyomma imitator and 

Amblyomma americanum.  Amblyomma americanum (lone star tick) is distributed 

throughout the southeastern and south central United States and has been associated with 

"Southern tick-associated rash illness" (STARI) (Masters et al., 2008).  Amblyomma 

imitator (North America-Texas) is morphologically similar to A. cajennense seeming to 

"imitate" the look of A. cajennense (Kohls, 1958).  Appendix B lists all of the samples 

extracted and sequenced for this study. 

 

Table 1: Amblyomma cajennense were collected from the following countries and the biomes 
of the sampled areas. 

Country Location Biome 

Ecuador Quito Border of tropical humid forests, and mixed mountain systems 

Costa Rica Guanacaste Tropical dry forests / woodlands 

Mexico Veracruz Tropical humid forests 

French Guiana Cayenne  Tropical humid forests 

Peru Jaen Mixed mountain systems 
Venezuela National Park Tropical dry forests / woodlands  

Argentina Yungas Border of tropical humid forests and tropical dry forests 
  Chaco Serrano Tropical dry forests / woodlands 
  Chaco Occidental Temperate grasslands 

Brazil Sāo Paulo Sub-tropical / temperate rain forests / woodlands 
  Corumba Tropical grasslands / savannas 
  Rio de Janeiro Tropical humid forests 
  Minas Gerais Sub-tropical / temperate rain forests / woodlands 
  Rondônia Tropical humid forests 

DNA Extraction 

 DNA extractions for all tick samples were carried out individually by using 

DNAeasy Tissue Kit (Qiagen, Inc., Chatsworth, CA) and according to a protocol 

modified from Beati and Keirans (2001).  A small sample on the posterior-lateral 

idiosoma of each tick was excised and the tick was placed in a 1.5 ml Eppendorf vial 

containing 180 µl of ATL buffer, and 40 µl of Proteinase K (14.3 mg / ml).  It was 
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vortexed until thoroughly mixed and then placed in a 56°C dry bath for 24 hours (Beati 

and Keirans, 2001).   

 A volume of 20 µl of AL buffer was added; the vials was vortexed and kept at 

72ºC for 10 minutes.  Absolute ethanol (240µl) was added and the vials were vortexed 

immediately.  The solution was transferred to a Qiagen column.  The clean tick cuticle 

was left in the Eppendorf tube and absolute ethanol was added to preserve the sample 

until it could be mounted on a slide for future morphological analyses.   

 The vials were centrifuged at 13,750 g (10,000 rpm) for 1 min.  The collection 

tube was discarded and the centrifuge column containing the DNA was placed in a fresh 

collection tube.  Two washes with 500 µl of AW1 and AW2 buffers followed.  The DNA 

was eluted in a total of 60 µl H2O and stored at + 4°C. 

PCR Analysis 

 The mitochondrial gene sequences of the 12S rDNA, cytochrome oxidase II 

(COII), and control region or d-loop were amplified and sequenced using primers listed 

in Table II (Beati and Keirans, 2001; and Beati, unpublished data).  Table III lists the 

composition of the PCR amplification mixtures and PCR programs. 

DNA electrophoresis was carried out on 1% agarose gels stained with ethidium 

bromide and in 0.5 x Tris Borate-EDTA (TBE) buffer.  The gels were run at 300 volts for 

approximately 20 minutes.  The DNA fragments were then examined under UV light.  A 

digital image was taken of each gel.  Positive samples were selected for further 

purification and sequencing. 
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Table 3:  PCR mixtures and programs for 12S rDNA, Control Region (dloop) and Cytochrome O xidase II.

                    12S                     D loop                     CO II
Kit M aster Triple Triple

PCR M ix dH 2O 10.3µl dH 2O 14.5µl dH 2O 14.5µl
Taq buffer* 2.50µl HIFI 2.50µl HIFI 2.50µl

Taq master enhancer 5.00µl M gCl2 2.50µl M gCl2 2.50µl

M gCl2 1.50µl Primer dloop3-1x 1.25µl Primer CitoXIIF 1.25µl
Primer TIB 1.25µl Primer dloop3-1x 1.25µl Primer CitoXIIR2 1.25µl
Primer T2A 1.25µl dNTP's 0.25µl dNTP's 0.25µl
dNTP's 0.50µl Taq DNA Polymerase 0.25µl Taq DNA Polymerase 0.25µl
Taq DNA Polymerase 0.20µl sample 2.50µl sample 2.50µl
sample 2.50µl

PCR Program Initial Denaturation for 5min at 94ºC Initial Denaturation for 5min at 93ºC Initial Denaturation for 5min at 93ºC 
5 Cycles of: 8 Cycles of: 5 Cycles of:
     Denaturation for 25sec at 94ºC     Denaturation for 20sec at 93ºC     Denaturation for 20sec at 93ºC
     Annealing for 35sec at 50ºC      Annealing for 25sec at 65ºC -1.5ºC/cycle      Annealing for 30sec at 55ºC -1.0°C/cycle
     Elongation for 30sec at 68ºC      E longation for 45sec at 72ºC      Elongation for 1min at 72ºC -0.2ºC/cycle
30 Cycles of: 10 Cycles of: 10 Cycles of:
     Denaturation for 25sec at 94ºC      Denaturation for 20sec at 93ºC      Denaturation for 20sec at 93ºC
     Annealing for 30sec at 53ºC      Annealing for 30sec at 53ºC -0.4ºC/cycle      Annealing for 45sec at 50ºC -0.4ºC/cycle
     Elongation for 30sec at 70ºC      E longation for 45sec at 70ºC -0.2ºC/cycle      Elongation for 45sec at 70ºC -0.4ºC/cycle
Final Elongation for 5min at 70ºC 17 Cycles of: 20 Cycles of:
4ºC ?  End      Denaturation for 20sec at 93ºC      Denaturation for 20sec at 93ºC

     Annealing for 35sec at 51ºC      Annealing for 55sec at 46ºC

     E longation for 40sec at 69ºC      Elongation for 1min at 67ºC
Final Elongation for 5min at 69ºC Final Elongation for 5min at 67ºC
4ºC ?  End 4ºC ?  End

* 2.5x Taq reaction buffer (with 125 mM  KCl, 75 mM  Tris-HCl pH 8.4, 4 mM  M g2+, 0.25% Nonidet-P40)

 

 

 

Table 2:  Lists the gene position of the PCR amplification mixture and the primers used.

Gene
Approx. gene 

length

Position in the R. sanguineus 
mitochondrial genome 
(GenBank:NC_002074)

Approx. length of 
PCR product

Position of primers in the R. sanguineus 
mitochondrial genome 
(GenBank:NC_002074) Primer 

12SrRNA 686 bp 8063-8749 340 bp 8103 - 8123 (in 12S) T2A Forward 5'-AAAGAGTGACGGGCGATATGT-3'
8478 - 8459 (in 12S) T1B Reverse 5'-AAACTAGGATTAGATACCCT-3'

Dloop 304 bp 8750-9054 440 bp 8597 - 8617 (in 12S) Dloop3-1x Forward 5'-TAACCGCTGCTGCTGGCACAA-3'
9078 - 9060 (in tRNA-Ile) Dloop4-1x Reverse 5'-TAACCCTTTATTCAGGCAT-3'

Cytochrome 675 bp 2690-3365 600 bp 2644 - 2667 (in Cytochrome oxidase I) CitoXIIF Forward 5'-TCAGAACATTCTTTCAATCAAAAT-3'
Oxidase II 3288 - 3265 (in cytochrome oxidase II) CitoXIIR2 Reverse 5'-CCACAAATTTCTGAACATTGACCA-3'
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DNA Purification  

DNA was purified in preparation for DNA sequencing. Qiagen MinElute™ Spin 

Columns (Hilden, Germany) were used according to the manufacturer’s protocol. PB 

buffer (100 µl) and 20 µl of the amplified sample were mixed and placed into a colum

The columns were centrifuged at 13,750 g for 75 seconds.  PE buffer (735µl) was added 

to the column and then centrifuged again at 13,750 g for 75 seconds.  Purified DNA was 

eluted from the column with 30 µl of H2O and was refrigerated. 

Sequencing 

DNA sequencing was performed at the University of Washington High-

Throughput Genomics Unit.  Purified amplified products (5 ng / ul) mixed with one of 

the two primers (two reactions / sample) were sent to this facility.   

Assembly 

 Sequences were sent from the University of Washington through ftp.  The two 

strands of each sequence were verified for accuracy and assembled into a contig by 

Sequencher 4.5, Gene Codes Corporation (Ann Arbor, MI).  Primer sequences were 

removed and a FASTA file was created for each assembled contig (The FASTA for

utilized by the programs used for alignment and analysis). 

Alignment 

 The program MacClade 4.08 (Sinauer Associates, Inc., Sunderland, MA) was 

used to align the sequences for each gene (Maddison and Maddison, 2002).  The 

ribosomal 12S rDNA and Dloop sequences were aligned manually and according to 

secondary structure (Beati and Keirans, 2001).  COII is a protein-encoding gene.  

Therefore, in order to align COII, the sequences were translated into amino acids using 



 

MacClade 4.08.  The amino acid sequences helped in realigning the DNA sequences by 

codons, along their reading frames. Phylogenetic analyses for these molecular data sets 

were inferred by maximum parsimony (MP) using PAUP 4.0. (Swofford, 2002).  

Sequence distances were evaluated by maximum likelihood (by using the substitution 

model best matching the data) based on the MP tree with the best maximum likelihood 

score.  In PAUP all MP analyses were achieved using a heuristic search.  Gaps were 

treated as missing for the analyses of all three genes.  Branch supports (MP) were 

calculated by bootstrap analysis (1,000 replicates) and were considered to be resolved if 

 ≥70% (Hillis and Bull, 1993).  When more than one optimal tree was found by MP, a 

strict consensus tree was generated. Bayesian analysis of the alignments was performed 

by using MrBAYES (v3.1) (Huelsenbeck, 2000; Huelsenbeck and Ronquist, 2001).  

Bayesian Markov Monte Carlo analyses were performed by running simultaneously four 

chains (2 runs) for 1,000,000 replicates and by using the nucleotide substitution model 

selected by MrBayes.  Trees were sampled every 100 iterations.  Topologies that had 

been saved before the likelihood values stabilized were discarded from the final sample 

(25% burning).  A 50% majority-rule consensus tree of the remaining sampled trees was 

performed in PAUP, and posterior probability values recorded for each branch.  All these 

analyses were first completed separately for 12S rDNA, cytochrome oxidase II, and the 

control region (Dloop). A combined analysis of the concatenated sequences of the 3 

genes was also performed. 
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CHAPTER 3 

RESULTS 

Phylogenetic Analysis 

12S rDNA: 

The alignment of the 12S rDNA sequences (90 total) resulted in a matrix of 357 

characters. The stem portions of the 12S rDNA secondary structure are functionally 

constrained and therefore conserved and easy to align. Although more variable, the loop 

regions were also fairly easy to align. The alignment was reduced to a total of 30 unique 

haplotypes for phylogenetic analysis.  

The Peruvian samples had 8 haplotypes (total sequences), Ecuadorian 5, Mexican 

3, Argentina 5, Costa Rican 2, Brazil 5, and French Guiana 2 (Appendix B).  Identical 

haplotypes were found in Ecuador, Costa Rica, and Mexico. The 3 Venezuelan 

haplotypes were identical to each other and to one of French Guiana. The other 

haplotypes were region-specific. 

Distances between sequences are shown in Table IV. The sequence divergence 

within geographically close samples was very low (0.1-4.8%) when compared to the 

distance between samples from different localities (10.8-24.0%).  The sequences of the 

outgroups, two clearly distinct Amblyomma species, only differed from each other by 

(10%).  These data also show that differences between samples from Ecuador, Costa Rica 

and Mexico were minimal (0.1-1.2%).  Similarly samples from French Guiana 

/Venezuela/ Rondônia (0.1-0.6), and those from Brazil (Rio) and Yungas were very close 

(1.6-1.9%). The Minas Gerais sequences were related to the Brazilian samples but show a 

slightly higher level of divergence (4.8%).  
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Table 4:  Maximum likelihood distances (%) between 12S rDNA 
sequences   

 
Clade I    

Peru 
Clade II        

Argentina (Chaco)  
Clade III        

Brazil (Coastal) 
Clade IV         

French Guiana 
Clade V 
Mexico Outgroups

Clade I 0.1-0.6           
Clade II 18.3-20.9 0.3-0.6         
Clade III 16.0-21.5 17.0-20.7 0.3-4.8       
Clade IV 18.1-21.8 17.5-19.5 10.8-13.2 0.1-0.6     
Clade V 19.9-24.0 17.4-19.7 7.6-11.2 7.6-8.4 0.1-1.2   

Outgroups 20.3-27.5 25.4-27.5 17.1-27.7 24.4-27.6 23.5-30.4 10 

 

The aligned matrix was first analyzed by MP and contained 90 informative 

characters. A heuristic search produced 4 equally parsimonious trees (length=174; 

CI=0.787; RI=0.938). Their strict consensus is shown in Figure 3. Bootstrap values are 

shown above tree branches. Thicker lines represent lineages supported by ≥ 70% 

bootstrap. All A. cajennense are clustered in a monophyletic clade.  The basal lineage 

among A. cajennense is monophyletic and groups all Peruvian samples (Clade I). The 

next diverging branch includes all Argentinean ticks from the Chaco area (Clade II).  The 

remaining sequences are included in a monophyletic clade (Clade VI), which is 

subdivided in 3 strongly supported, but unranked, lineages: one includes the Brazilian 

samples from São Paulo, Rio de Janeiro, Minas Gerais, and Mato Grosso do Sul 

(Corumba), and the Argentinean from Yungas province (Clade III).  Within Clade III, the 

Yungas haplotypes cluster with one of the Sāo Paulo haplotypes (Clade IIIa).  The second 

clade encompassed the sequences from French Guiana, and Rondônia (Brazil).  The third 

clade is composed of the Mexican, Costa Rican and the Ecuadorian samples (Clade V). 
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  FIG. 3:  Strict consensus tree of Amblyomma cajennense 12S rDNA gene sequences. 

 

The Bayesian analysis (MB) and MP reconstructions show similar basal 

topologies with the Peruvian branch diverging first (Clade I), followed by the Chaco 

lineage (Clade II). However, within the next diverging clade MB, unlike MP, resolves 

some additional relationships.  Clade III diverges first, followed in order of divergence by 

Clade IV and V.  However, support for a monophyletic Clade IV-V is weak.  
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FIG. 4:  Bayesian phylogeny of Amblyomma cajennense 12S rDNA gene sequences. 
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D-loop 

 The alignment of the D-loop sequences resulted in a matrix of 415 total characters 

(79 parsimony informative). The sequences were organized into unique haplotypes (22 

total haplotypes).  The structure of the control region gene in invertebrates is known to 

include a highly variable region. The approximately 154 bp long variable region of the 

sequences of A. cajennense was so variable that it was impossible to align it in any 

acceptable way and was therefore discarded prior to phylogenetic analysis. The 

remaining sequence of DL was relatively more conserved and easy to align manually.   

The Peruvian samples have 3 haplotypes, Ecuadorian 1, Mexican 1, Argentina 7, 

Brazil 8, Venezuela 1, and French Guiana 1 (Appendix B).  Identical haplotypes were 

found in Ecuador, Costa Rica, and Mexico. The other haplotypes were region-specific. 

Distances between sequences are shown in Table V. The sequence divergence 

within geographically close samples was very low (0.1-5.8%) when compared to the 

distance between samples from different localities (11.6-23.1%).  The sequences of the 

outgroups, two clearly distinct Amblyomma species, only differ from each other by (14.9-

15.2%).  These data also show that differences between samples from Ecuador, Costa 

Rica and Mexico are minimal (0.2-0.5%).  Similarly samples from French Guiana 

/Venezuela/ Rondônia (0.1-3.6%), and those from Brazil (Rio) and Yungas are also very 

close (1.6-1.9%). The Minas Gerais sequences related to the Brazilian samples but show 

a slightly higher level of divergence (5.8%). 

The aligned matrix was first analyzed by MP and contained 79 informative 

characters. A heuristic search produced 16 equally parsimonious trees (length=197; 

CI=0.711; RI=0.881). Their strict consensus is shown in Figure 4. Bootstrap values are  
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Table 5:  Maximum likelihood distances (%) between D-loop sequences   

 
Clade I    

Peru 
Clade II        

Argentina (Chaco)  
Clade III        

Brazil (Coastal) 
Clade IV        

French Guiana 
Clade V 
Mexico Outgroups 

Clade I 0.1-3.6           
Clade II 18.4-18.8 0.2-0.5         
Clade III 19.4-21.3 15.5-17.1 0.2-5.8       
Clade IV 23.1-23.9 16.4-17.6 11.7-13.4 0.2-1.1     
Clade V 19.7-20.2 15.3-16.1 13.4-14.7 11.6-12.9 0.2-0.5   

Outgroups 17.4-18.6 22.4-23.7 18.4-19.9 16.1-17.7 18.0-19.1 14.9-15.2 

 

shown above tree branches. Lineages supported by ≥ 70% bootstrap are represented by 

thicker lines. All A. cajennense on the MP tree are clustered in a monophyletic clade and 

subdivided into 3 strongly supported, but unranked, lineages (FIG. 4):  Clade I, II and VI.  

These data cannot resolve basal relationships between the Peruvian and the Chaco 

samples.  As for 12S rDNA, clade VI was also a polytomy of 3 strongly supported clades.  

One branch was composed of the Mexican, Costa Rican and Ecuadorian sequences.  The 

second branch included a basal lineage of the French Guiana samples and a monophyletic 

branch that contained the Venezuelan and the Rondônia haplotypes.  The third lineage 

was split in a Minas Gerais clade and a clade which assembles clade III sequences.  As 

for the 12S rDNA tree, the Yungas haplotypes cluster with the Atlantic Brazilian 

haplotypes. 
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The MB DL analysis resulted in a tree with better resolution than that of the MP 

tree (FIG. 5).  Among the resolved clades, the Peruvian lineage is basal (clade I) 

followed, as was the case for 12S rDNA, by the Chaco district haplotypes.  Within the 

next clade, again, the branching order of the three monophyletic clades is not resolved.  
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COII 

The alignment of the COII sequences resulted in a matrix of 565 total characters 

(177 parsimony informative). The sequences were organized into unique haplotype (22 

total unique haplotypes).  The Peruvian samples have 2 haplotypes, Ecuadorian 1, 

Mexican 2, Argentina 6, French Guiana 4, and Brazil 7 (Appendix B).  Identical 

haplotypes were found in Ecuador and Mexico. The other haplotypes were region-

specific. 

Distances between sequences are shown in Table VI. The sequence divergence 

within geographically close samples is very low (0.1-5.6%) when compared to the 

distance between samples from different localities (9.4-16.8%).  The sequences of the 

outgroups, two clearly distinct Amblyomma species, only differed from each other by 

(12.5%).  These data also show that differences between samples from Ecuador, Costa 

Rica and Mexico are minimal (0.1-0.3%).  Similarly samples from French Guiana 

/Venezuela/Rondônia (0.3-0.5%), and those from Brazil (Rio) and Yungas are also very 

close (1.6-1.9%). The Minas Gerais sequences related to the Brazilian samples but show 

a slightly higher level of divergence (5.6%). 

 

Table VI:  Maximum likelihood distances (%) between COII sequences   

 
Clade I    

Peru 
Clade II        

Argentina (Chaco)  
Clade III        

Brazil (Coastal) 
Clade IV        

French Guiana 
Clade V 
Mexico Outgroups 

Clade I 0.3-0.5           
Clade II 9.4-11.2 0.5-1.1         
Clade III 16.8-21.6 16.5-21.7 1.0-5.6       
Clade IV 14.3-16.4 13.3-15.5 9.5-14.7 1.0-1.3     
Clade V 14.1-15.7 12.9-14.0 11.0-14.5 7.3-8.8 01.-0.3   

Outgroups 20.3-30.0 15.5-16.3 18.4-21.1 20.5-29.0 17.0-24.8 12.5 
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The aligned matrix was first analyzed by MP and contained 177 informative 

characters. A heuristic search produced 16 best equally parsimonious trees (length=364; 

CI=0.713; RI=0.819). Their strict consensus is shown in Figure 7.  Bootstrap values are 

shown above tree branches. Thicker lines represent lineages supported by ≥ 70% 

bootstrap.  All A. cajennense on the MP tree are clustered in a monophyletic clade and 

subdivided into 2 strongly supported, ranked, lineages (FIG. 6).  The basal clade included 

the Peruvian and the Chaco lineages (clades I & II).  The second clade included all 

remaining haplotypes (clade VI).  Clade III was subdivided in 2 monophyletic sister 

groups. One branch included the Brazilian samples (Sāo Paulo & Minas Gerais) and the 

other included Argentinean (Yungas) and Brazilian Rio de Janeiro sequences.  The 

second branch was also composed of two strongly supported groups: the Rondônia region 

sequences, and one containing a basal Ecuadorian/Costa Rican lineage and the Mexican 

sequences. 

For COII the ML and MB reconstructions show similar topologies (FIG. 7).  All 

A. cajennense on the ML tree were clustered as in the MP tree in a monophyletic clade 

and subdivided into 2 sister lineages.  Relationships between clades was fully resolved.  

The basal lineage was split into two well resolved groups, the Peruvian and the Chaco 

districts.  The next clade is constituted by two lineages:  one included clade III and clade 

V (clade IV nested), whereas the other included the Yungas and coastal Brazilian 

haplotypes. 

 

 

 

 

29 



 

V

III

IV

I

II

 Ecuador - Quito 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

 

 

 

100

87

100

100

99

100

60

100

83

80

99

Mexico - Veracruz 

Mexico - Veracruz 

Brazil - Rondônia 

Brazil - Rondônia 

Argentina - Yungas 

Brazil – Rio de Janeiro 

Brazil – Sāo Paulo 

Brazil – Minas Gerais 

Brazil – Minas Gerais 

Argentina – Chaco Serrano

Argentina – Chaco Serrano

Argentina – Chaco Serrano

Argentina – Chaco Occidental

Peru - Jaen 

Amblyomma imitator 

Amblyomma americanum
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In general, if discrepancies were found when comparing results obtained by 

analyzing different genes.  They were always related to the branching order between the 
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Peru and the Chaco lineages and/or to the relationships between the three main branches 

in Clade VI.   
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Concatenated analysis 

 After concatenating the sequences for all available samples, we obtained a data 

matrix of 1314 bp (330 parsimony informative).  The MP analysis of the concatenated 

data matrix resulted in 2 equally short trees (length 726; CI = 0.726; RI = 0.828).  Their 

strict consensus (FIG. 9) shows that all sequences clustered in a monophyletic clade. The 

branching pattern of the lineages diverging first, the Peruvian and the Chaco branches, is 

not resolved whereas the relationships between the remaining branches are well resolved.  

The three main clades were subdivided in two sister groups, one including the 

Yungas/Brazilian Atlantic sequences, with the Minas Gerais sequences being basal, and 

the other being separated into two monophyletic groups, the Ecuador/Mexico/Costa Rica 

lineage and the French Guiana/Rondônia/ Venezuela clade.  The overall structure of the 

MB tree (FIG. 10) is identical to that of the MP tree.  Nevertheless, after the Bayesian 

analysis of the Peruvian and Chaco lineages are strongly clustered in a basal 

monophyletic clade.  The concatenated analysis shows the same topology than that of the 

COII sequences. 
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FIG. 10: Concatenated bayesian phylogeny of Amblyomma cajennense gene sequences. 
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CHAPTER 4 

CONCLUSIONS 

Sampling   

The main focus of this study was to determine whether or not A. cajennense is 

genetically structured. We studied the genetic variability of three A. cajennense 

mitochondrial gene sequences in tick samples collected in eight locations representing 

diverse ecological biomes throughout South & Central America including Mexico. For 

each locality, if at all possible, we analyzed several samples in order to compare diversity 

within and between localities. The sampling was limited by availability. The ticks used in 

this study were collected in Mexico, Costa Rica, Venezuela, Ecuador, French Guiana, 

Peru, Brazil and Argentina.  Unfortunately, DNA could not be obtained from samples 

from additional countries or ecological areas (USA-Texas, Colombia, Bolivia, Jamaica). 

However, the specimens used in this study represent the diversity in ecosystems 

considered to be suitable for A. cajennense. Samples were collected in 6 of the 8 different 

biomes where A. cajennense was known to occur. The only two biomes not investigated 

in this study were mixed island systems (Caribbean islands) and temperate broad-leaf 

forests (southern-central Florida). These two biomes should be sampled in future to 

determine whether there are, in fact, other genetic lineages found in these areas. 

Choice of gene sequences  

In this study we studied the genetic diversity of A. cajennense by analyzing 

phylogenetically three mitochondrial gene sequences, the 12S rDNA, the control region, 

and the cytochrome oxidase II. Mitochondrial genes sequences are commonly used for 

the evaluation of the relationships between and within tick species (Barker and Murrell, 
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2004; Norris et al., 1996; Beati and Keirans, 2001).  The mitochondrial genes are 

maternally inherited, and thus evolve at a faster rate than that of nuclear genes (Norris et 

al., 1996).  This faster evolution provides better resolution where investigating closely 

related taxa.  The 12S rDNA gene for example, has been observed to evolve rapidly and 

has been used in a number of population genetic studies, including this one, for this very 

reason (Norris et al., 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 11:  Mitochondrial genome of Rhipicephalus sanguineus 12S rDNA, D-loop and COII and 

 the corresponding primer used for A. cajennense. 
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The mitochondrial genome of most tick species that have been studied thus far are 

typically 14 kb long.  The genome is circular, with 37 genes including 13 protein 

encoding genes (e.g., cytochrome oxidase II), 2 ribosomal RNA genes (12S rDNA) and a 

non coding regulatory control region (dloop) (Black and Roehrdanz, 1998). 

 The genes in this study were also chosen because of their location on the 

mitochondrial genome (FIG. 11.).  The 12S rDNA and the control region are located next 

to one another, while the cytochrome oxidase II gene is on the opposite side of the 

genome.  Because of possible introgression of mitochondrial genetic material ("invasion" 

of a mitochondrial genome by DNA from foreign mitochondria), it is always advisable to 

use more than one mitochondrial gene in any phylogenetic analysis (Dowling and Secor, 

1997).  The genes should be chosen from different sections of the mitochondrial genome.  

If for example the 12S rDNA and the contiguous D-loop genes had been inserted through 

introgression into the A. cajennense genome, their phylogenies would be similar to each 

other but be totally differed from that of the COII trees.  All our phylogenetic trees show 

congruent topologies, which would argue against possible introgression events in these 

genes.  Nevertheless, knowing that the analysis of mitochondrial and nuclear gene 

sequences sometimes result in non congruent phylogenies, it is certainly useful, in future, 

to also sequence a fast evolving nuclear gene of these specimens in order to see if its 

analysis corroborates our data. 

Phylogenetic analyses 

Good resolution. With the three genes, phylogenetic analyses show good overall 

resolution with most bootstrap and posterior probability values exceeding 70%. This 
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indicates that the genes chosen in this study were informative at the required taxonomic 

level. 

Congruent reconstructions in each gene when comparing the two different 

analysis methods (MP vs. MB).  For all our genes, the topology and level of resolution of 

the trees were very similar when comparing MP and MB.  The fact that different 

algorithms result in the same branching patterns indicate that, for each data set, we have a 

good proportion of informative characters and that the results cannot be altered by simply 

changing the analysis method. 

Congruent reconstructions when comparing different genes.  Analyses with the 

three genes result in fairly similar topologies.  If contradictions are found, they are all 

related to non-resolved lineages.  The trees obtained with the 3 genes all show that A. 

cajennense  is subdivided in the same 5 monophyletic, strongly supported clades.  The 

clades have a distinct geographic distribution and are characterized by mutually exclusive 

haplotypes, with no apparent overlap.  However, we have not sampled in the regions 

between areas occupied by each of these clades and can, therefore, not know whether or 

not there are areas where these groups may occur in sympatry.  The MB analysis of the 

concatenated gene sequences resulted in a fully resolved phylogeny with one basal 

lineage subdivided in two monophyletic branches, the Peruvian and Chaco clades.  The 

next diverging clade includes the Brazilian/Yungas samples, whereas the most recently 

evolving clade contains the two sister lineages: French Guiana/Venezuela/Rondônia and 

Ecuador/Costa Rica/Mexico.  By combining the 3 gene data sets, the minor weaknesses 

observed in the separate phylogenies were compensated and this emphasizes the effect of 

increasing the number of informative characters for better phylogenetic results. 
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In terms of ecology, lineages that first diverge from the root are the Peruvian and 

the Chaco sequences.  It would appear that the basal lineages in our phylogeney are better 

adapted to dry climatic environments such as the dry mountainous shrubland regions of 

the interandean valleys of Peru and the dry grasslands of the southern Chaco regions of 

Argentina.  The third group includes specimens collected from the tropical dry, humid 

and subtropical forest areas ranging from northern Argentina (Yungas), through southern 

Brazil (Rio de Janeiro, Sāo Paulo, Mato Grosso, and Minas Gerais).  The fourth lineage 

includes the tropical humid and tropical grasslands of the Rondônia region of Brazil, 

French Guiana and the Venezuela group.  The last lineage includes the tropical humid/dry 

forests of Ecuador, Costa Rica and Mexico.  

Future studies  

Evidence of our experiment suggests that there are at least five geographically 

distinct populations of Amblyomma cajennense.  However, it is as yet unknown whether 

these groups qualify as cryptic species (species that are morphologically identical but 

cannot interbreed).  Our data show that sequence divergences between these groups are 

much higher than genetic variability within groups. Furthermore, genetic distance 

between the two outgroup species (clearly distinguishable taxa) is often less important 

than that found between our clades.  Although genetic distances cannot be used as such 

for species definitions, they provide support for the hypothesis that the clades correspond 

in fact to different species.  

 In order to further investigate this issue, the morphology of ticks belonging to the 

five clades should be thoroughly reassessed.  When conducting this experiment, the ticks 

were not pulverized to obtain their DNA, but instead, cut in such a way that the cuticle 
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was kept intact for further morphological examination.  By examining the cuticles from 

these ticks, there could potentially be phenotypic features that are unique for any of the 

five lineages – features ignored by the taxonomists who decided that this is merely a 

taxon with high morphological intraspecific polymorphism.  Preliminary observations of 

these cuticles have already indicated that there are, in fact, unique phenotypic 

characteristics unique to each clade. 

 Another way of determining whether or not these are different species would be 

to establish colonies for each clade and then do cross-breeding experiments.  Again, some 

of these experiments are under way and are already showing incompatibility between 

some of these groups. 

 In conclusion, analyses of mitochondrial gene sequences have revealed the 

occurrence of genetic structure in A. cajennense which is compatible with cryptic 

speciation.  Preliminary data (morphology and cross breeding experiments) are 

confirming our results. 

These findings are important because they help to resolve an old taxonomic 

question and because they may explain why some A. cajennense populations are known 

to transmit R. rickettesii (Brazil – Atlantic coast and Argentina – Yungas) and others are 

either infected with non-pathogenic rickettsiae (Ecuador) (Greg Dasch, CDC personal 

communication) or not infected at all (Argentina – Chaco).  These data emphasize the 

importance of thorough systematic analysis when studying vectors of public health 

interest. 
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FIG. 12:  Geographic clades of A. cajennense when compared to concatenated Bayesian tree.
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APPENDIX A: 

Location and collectors of samples used in this study 

Country Locations Collector 
Costa Rica Guanacaste Lorenza Beati 
Mexico Veracruz Carmén Guzmán Cornejo 
French Guiana Cayenne Lorenza Beati 
Peru Jaen Abraham Cáceres 
Venezuala National Park IAP-USNTC 
Argentina Yungas Alberto Guglielmone 
  Chaco Serrano   
  Chaco Occidental   
Brazil Sao Paulo Darcí Barros-Battesti, Marcelo Labruna  
  Corumba & IAP-USNTC 
  Rio de Janeiro   
  Minas Gerais   
  Rondonia   

Ecuador Quito 
Lee Cohnstaed, Rommy Terán, Renato León, 
Lorenza Beati & IAP-USNTC* 

   
*Institute of Arthropodology & Parasitology - US National Tick Collection 
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APPENDIX B: 

Samples collected in Central and South America used in this study. 
         

Sample # 
Collection 

# Country 
vial 

# sex/stage
extraction 

date 12S 
 

dloop
CcO 

II 
1   Peru 15 f* n/a -     
2   Peru 15 f* n/a -     
3   Peru 15 f* n/a -     
4   Peru 15 f* n/a -     
5   Peru 15 m* n/a -     
6   Peru 15 m* n/a -     
7   Peru 15 m* n/a -     
8   Peru 15 m* n/a +     
9   Peru 15 m n/a +     

10   Peru 15 f n/a + -   
11   Peru 15 m n/a + -   
12   Peru 15 m n/a + -   
13   Peru 15 f n/a + + + 
14   Peru 15 f n/a + + + 
15   Peru 17 m n/a -     
16   Peru 17 m n/a +     
17   Peru 17 m n/a +     
18   Peru 17 m n/a +     
19   Peru 17 m n/a +     
20   Peru 17 m n/a -     
21   Peru 17 m n/a -     
22   Peru 17 m n/a -     
23   Peru 17 f n/a +   + 
24   Peru 17 f n/a +     
25   Peru 17 f n/a -     
26   Peru 17 f n/a + +   
27   Peru 17 m n/a -     
28   Peru 17 m n/a +     
29   Peru 17 m n/a +     
30   Peru 17 m n/a -     
31   Peru 17 * n/a -     
32   Peru 17 * n/a -     
33   Peru 17 * n/a +     
34   Peru 17 * n/a -     
35   Peru 17 * n/a +     
36   Peru 17 * n/a +     
37   Peru 17 * n/a +     
38   Peru 17 * n/a +     
39   Peru 17 f n/a + + + 
40   Peru 17 f n/a + + + 
41   Peru 17 f n/a + + + 
42   Peru 17 f n/a - -   
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43   Peru 17 m n/a + + + 
44   Peru 17 m n/a + + + 
45   Peru 17 m n/a + + + 
46   Peru 17 m n/a + + + 
47   Peru 17 f 1/12/2006 + -   
48   Peru 17 f 1/12/2006 + + + 
49   Peru 17 f 1/12/2006 -     
50   Peru 17 f 1/12/2006 + -   
51   Peru 17 m 1/12/2006 + -   
52   Peru 16 m 1/12/2006 + + + 
53   Peru 16 m 1/12/2006 + -   
54   Peru 16 m 1/12/2006 + + + 
55   Peru 16 f 1/13/2006 + -   
56   Peru 16 f 1/13/2006 + -   
57   Peru 16 f 1/13/2006 + + + 
58   Peru 16 f 1/13/2006 + -   
59   Peru 16 m 1/13/2006 -     
60   Peru 16 m 1/13/2006 + + + 
61   Peru 16 m 1/13/2006 +     
62   Peru 16 m 1/13/2006 +     
63   Peru 17 f 1/18/2006 -     
64   Peru 17 f 1/18/2006 -     
65   Peru 17 f 1/18/2006 -     
66   Peru 17 f 1/18/2006 + + + 
67   Peru 17 f 1/18/2006 +     
68   Peru 17 m 1/18/2006 + + + 
69   Peru 17 m 1/18/2006 -     
70   Peru 17 m 1/18/2006 + -   
71   Peru 17 m 1/18/2006 + -   
72   Peru 17 m 1/18/2006 + + + 
73   Peru 17 m 1/18/2006 + -   
74   Peru 17 m 1/18/2006 + + + 
75   Peru 17 m 1/18/2006 + + + 
76   Peru 17 m 1/18/2006 + + + 
77   Peru 17 m 1/18/2006 + + + 
78   Peru 17 m 1/18/2006 + + + 
79   Peru 16 m 1/19/2006 + + + 
80   Peru 16 m 1/19/2006 -     
81   Peru 16 m 1/19/2006 -     
82   Peru 16 m 1/19/2006 +     
83   Peru 16 m 1/19/2006 +     
84   Peru 16 m 1/19/2006 +     
85   Peru 16 m 1/19/2006 +     
86   Peru 16 m 1/19/2006 +     
87   Peru 16 m 1/19/2006 +     
88   Peru 16 m 1/19/2006 +     
89   Peru 16 m 1/19/2006 +     
90   Peru 16 m 1/19/2006 + + + 
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91   Peru 16 m 1/19/2006 + + + 
92   Peru 16 m 1/19/2006 +     
93   Peru 16 m 1/19/2006 +     
94   Peru 16 m 1/19/2006 +     
95   Peru 16 f 1/25/2006 + + + 
96   Peru 16 m 1/25/2006 +     
97   Peru 16 m 1/25/2006 +     
98   Peru 16 m 1/25/2006 -     
99   Peru 16 m 1/25/2006 -     
100   Peru 16 m 1/25/2006 -     
101   Peru 16 m 1/25/2006 -     
102   Peru 16 m 1/25/2006 -     
103   Peru 16 m 1/25/2006 +     
104   Peru 16 m 1/25/2006 +     
105   Peru 16 m 1/25/2006 +     
106   Peru 16 m 1/25/2006 +     
107   Peru 16 n 1/25/2006 +     
108   Peru 16 n 1/25/2006 +     
109   Peru 16 n 1/25/2006 +     
110   Peru 16 n 1/25/2006 +     
111   Peru 16 n 1/25/2006 +     
112   Peru 16 n 1/25/2006 +     
113   Peru 16 n 1/25/2006 +     
114   Peru 16 n 1/25/2006 +     
115   Peru 16 n 1/25/2006 +     
116   Peru 16 n 1/25/2006 +     
117   Peru 16 n 1/25/2006 +     
118   Peru 17 m 1/26/2006 +     
119   Peru 17 n 1/26/2006 +     
120   Peru 17 n 1/26/2006 +     
121   Peru 17 n 1/26/2006 -     
122   Peru 17 n 1/26/2006 -     
123   Peru 16 n 1/26/2006 -     
124   Peru 16 n 1/26/2006 +     
125   Peru 16 n 1/26/2006 +     
126   Peru 16 n 1/26/2006 +     
127   Peru 16 n 1/26/2006 +     
128   Peru 16 n 1/26/2006 +     
129   Peru 16 n 1/26/2006 +     
130   Peru 15 n 2/1/2006 +     
131   Peru 15 n 2/1/2006 +     
132   Peru 15 n 2/1/2006 +     
133   Peru 15 n 2/1/2006 +     
134   Peru 15 n 2/1/2006 +     
135   Peru 15 n 2/1/2006 +     
136   Peru 15 n 2/1/2006 +     
137   Peru 15 n 2/1/2006 +     
138   Peru 15 n 2/1/2006 +     
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139   Peru 15 n 2/1/2006 +     
140   Peru 15 n 2/1/2006 +     
141   Peru 15 n 2/1/2006 -     
142   Peru 15 n 2/1/2006 +     
143   Peru 15 n 2/1/2006 +     
144   Peru 15 n 2/1/2006 -     
145   Peru 15 n 2/1/2006 +     
146   Peru 15 n 2/1/2006 +     
147   Peru 15 n 2/1/2006 +     
148   Peru 15 n 2/1/2006 +     
149   Peru 15 n 2/1/2006 +     
150   Peru 15 n 2/1/2006 +     
151   Peru 15 n 2/1/2006 +     
152   Peru 15 n 2/1/2006 +     

153   Peru 15 n 2/1/2006 -     
1   Ecuador 1 f 5/23/2006 -     
2   Ecuador 1 f 5/23/2006 + -   
3   Ecuador 1 f 5/23/2006 + -   
4   Ecuador 1 f 5/23/2006 + -   
5   Ecuador 1 f 5/23/2006 + -   
6   Ecuador 1 f 5/23/2006 + + + 
7   Ecuador 1 f 5/23/2006 + + + 
8   Ecuador 1 f 5/23/2006 + + + 
9   Ecuador 1 f 5/23/2006 + + + 

10   Ecuador 1 f 5/23/2006 -     
11   Ecuador 1 m 5/23/2006 -     
12   Ecuador 1 m 5/23/2006 -     
13   Ecuador 1 m 5/23/2006 -     
14   Ecuador 1 m 5/31/2006 -     
15   Ecuador 1 m 5/31/2006 + + + 
16   Ecuador 1 m 5/31/2006 + + + 
17   Ecuador 1 m 5/31/2006 + + + 
18   Ecuador 1 m 5/31/2006 + + + 
19   Ecuador 1 n 5/31/2006 -     
20   Ecuador 1 n 5/31/2006 +     
21   Ecuador 1 n 5/31/2006 +     
22   Ecuador 1 n 5/31/2006 + -   
23   Ecuador 1 n 5/31/2006 + + - 
24   Ecuador 1 n 5/31/2006 + + - 
25   Ecuador 1 n 5/31/2006 + + - 
26   Ecuador 1 n 5/31/2006 + + + 
27   Ecuador 1 n 5/31/2006 + + + 
28   Ecuador 1 n 5/31/2006 + + + 
29   Ecuador 1 n 5/31/2006 + + + 
30   Ecuador 1 n 5/31/2006 + + + 
31   Ecuador 1 n 5/31/2006 + + + 
32   Ecuador 1 n 5/31/2006 + + + 
33   Ecuador 1 n 5/31/2006 + + + 
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34   Ecuador 1 n 5/31/2006 + + + 
35   Ecuador 1 n 5/31/2006 + + + 
36   Ecuador 1 n 5/31/2006 + + + 
37   Ecuador 1 n 5/31/2006 + + + 
38   Ecuador 1 n 5/31/2006 + + + 
39   Ecuador 1 n 5/31/2006 + + + 
40   Ecuador 1 n 5/31/2006 + + + 
41   Ecuador 1 n 5/31/2006 + + + 
42   Ecuador 1 n 5/31/2006 + + + 
43   Ecuador 1 n 5/31/2006 + + + 
44   Ecuador 1 n 5/31/2006 + + + 
46   Ecuador 2 m 6/5/2006 +     
47   Ecuador 2 n 6/5/2006 +     
48   Ecuador 2 n 6/5/2006 +     
49   Ecuador 2 n 6/5/2006 +     
50   Ecuador 2 n 6/5/2006 +     
51   Ecuador 2 n 6/5/2006 +     
52   Ecuador 2 n 6/5/2006 +     
53   Ecuador 2 n 6/6/2006 +     
54   Ecuador 2 n 6/6/2006 +     
55   Ecuador 2 n 6/6/2006 +     
56   Ecuador 2 n 6/6/2006 +     
57   Ecuador 2 n 6/6/2006 -     
58   Ecuador 2 n 6/6/2006 +     
59   Ecuador 2 n 6/6/2006 -     
60   Ecuador 2 n 6/6/2006 -     
61   Ecuador 2 n 6/6/2006 +     
62   Ecuador 2 n 6/6/2006 +     
63   Ecuador 2 n 6/6/2006 +     
64   Ecuador 2 n 6/6/2006 -     
65   Ecuador 2 n 6/6/2006 +     
66   Ecuador 2 n 6/6/2006 +     
67   Ecuador 2 n 6/6/2006 +     
68   Ecuador 2 n 6/6/2006 +     
69   Ecuador 2 n 6/6/2006 +     
70   Ecuador 2 n 6/6/2006 -     
71   Ecuador 2 n 6/6/2006 +     
72   Ecuador 2 n 6/6/2006 +     
73   Ecuador 2 n 6/6/2006 +     
74   Ecuador 2 n 6/6/2006 +     
75   Ecuador 2 n 6/6/2006 +     
76   Ecuador 3 m 6/15/2006 + + + 
77   Ecuador 3 m 6/15/2006 + + + 
78   Ecuador 3 m 6/15/2006 + + + 
79   Ecuador 3 n 6/15/2006 +     
80   Ecuador 3 n 6/15/2006 +     
81   Ecuador 3 n 6/15/2006 +     
82   Ecuador 3 n 6/15/2006 +     
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83   Ecuador 3 n 6/15/2006 +     
84   Ecuador 3 n 6/15/2006 +     
85   Ecuador 3 n 6/15/2006 +     
86   Ecuador 3 n 6/15/2006 +     
87   Ecuador 3 n 6/15/2006 +     
88   Ecuador 3 n 6/15/2006 -     
89   Ecuador 3 n 6/15/2006 +     
90   Ecuador 3 n 6/15/2006 +     
91   Ecuador 3 n 6/15/2006 +     
92   Ecuador 3 n 6/15/2006 +     
93   Ecuador 3 n 6/15/2006 +     
94   Ecuador 3 n 6/15/2006 -     
95   Ecuador 3 n 6/15/2006 +     
96   Ecuador 3 n 6/15/2006 +     
97   Ecuador 3 n 6/15/2006 +     
98   Ecuador 3 n 6/15/2006 +     
99   Ecuador 3 n 6/15/2006 -     
100   Ecuador 3 n 6/15/2006 +     
101   Ecuador 3 n 6/15/2006 +     
102   Ecuador 3 n 6/15/2006 +     
103   Ecuador 3 n 6/15/2006 +     
104   Ecuador 3 n 6/15/2006 +     
105   Ecuador 3 n 6/15/2006 -     
106   Ecuador 3 n 6/15/2006 -     

107   Ecuador 3 n 6/15/2006 -     
1   Costa Rica 1 n/a n/a + + + 
2   Costa Rica 1 n/a n/a + + + 
3   Costa Rica 1 n/a n/a + -   
4   Costa Rica 1 n/a n/a + + + 
5   Costa Rica 1 n/a n/a + + + 
6   Costa Rica 1 n/a n/a + + + 
7   Costa Rica 1 n/a n/a + -   
8   Costa Rica 1 n/a n/a + -   
9   Costa Rica 1 n/a n/a + -   

10   Costa Rica 1 n/a n/a + + - 

1   
French 
Guiana 1 n/a n/a + - + 

2   
French 
Guiana 1 n/a n/a + + - 

3   
French 
Guiana 1 n/a n/a + + + 

4   
French 
Guiana 1 n/a n/a + + + 

1   Mexico 1 F 10/21/2006 + + - 
2   Mexico 1 F 10/21/2006 + + - 
3   Mexico 1 M 10/21/2006 + + + 
4   Mexico 1 M 10/21/2006 + + + 
5   Mexico 1 M 10/21/2006 + + + 
6   Mexico 1 N 10/21/2006 + + + 
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7   Mexico 1 N 10/21/2006 + + - 
8   Mexico 1 N 10/21/2006 + + - 
9   Mexico 1 N 10/21/2006 + + + 

10   Mexico 1 N 10/21/2006 + + + 
11   Mexico 1 N 10/21/2006 + + + 

12   Mexico 1 N 10/21/2006 + + + 
1 123780 Argentina 1 F 2/20/2007 + + + 
2 123780 Argentina 1 M 2/20/2007 + + + 
3 123780 Argentina 1 M 2/20/2007 + + + 
4 123780 Argentina 1 M 2/20/2007 + + + 
5 123784 Argentina 2 M 2/20/2007 + + + 
6 123784 Argentina 2 F 2/20/2007 + + + 
7 123784 Argentina 2 F 2/20/2007 + + + 
8 123782 Argentina 3 F 2/20/2007 + + + 
9 123782 Argentina 3 F 2/20/2007 + + + 

10 123782 Argentina 3 M 2/20/2007 + + + 
11 123781 Argentina 4 M 2/20/2007 + + + 
12 123779 Argentina 5 M 2/20/2007 + + - 
13 123779 Argentina 5 F 2/20/2007 + + + 
14 123783 Argentina 6 M 2/20/2007 + + + 

15 123783 Argentina 6 M 2/20/2007 + + + 

 

 

 

 

 

 

 

 

 

 

 

 

 

54 



 

APPENDIX C: 

CLADE 1 Haplotypes
Location Samples 12SrRNA Dloop COII

Peru Peru_13 1  -  - 
Peru_44 1 1  - 
Peru_45  - 1  - 
Peru_95  - 1  - 
Peru_14 2 1 -
Peru_46 2 1  - 
Peru_52 2 1  - 
Peru_75 2 1  - 
Peru_60 2 1  - 
Peru_39 2  -  - 
Peru_92 2  -  - 
Peru_26 3  -  - 
Peru_78 3 3  - 
Peru_77 3 1 3
Peru_91 3 1  - 
Peru_66 3 1  - 
Peru_54 3 1  - 
Peru_41 4  -  - 
Peru_43 4 1  - 
Peru_74 5  -  - 
Peru_57 5 1  - 
Peru_79 5 1  - 
Peru_68 6 6  - 
Peru_76 7  -  - 
Peru_72 7 7  - 
Peru_90 8 1  - 

CLADE 2 Haplotypes
Location Samples 12SrRNA Dloop COII

Argentina (Chaco Occi) Argentina_1 17 17  - 
Argentina_2 18 18 18
Argentina_3 18 5 20
Argentina_4 18 10  - 

Argentina (Chaco Serr) Argentina_5 19 19 19
Argentina_6 19 19 19
Argentina_7 19 19 19
Argentina_11 19 19  - 
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CLADE 3 Haplotypes
Location Samples 12SrRNA Dloop COII

Argentina (Yungas) Argentina_8 20 20  - 
Argentina_9 20 11 20
Argentina_12 20 12 12
Argentina_13 20 13 13
Argentina_14 20 14  - 
Argentina_10 21 21 21
Argentina_15 21 21 21

Brazil (Sao Paulo) SPF1 24 8 4
SpM10 25  -  - 
SPM1  - 25  - 
SPM2  -  - 4
SPM5  -  - 4

Brazil (Minas Gerais) dlc22  - 8  - 
MGM4 24  -  - 
MGF8 24  -  - 
MGF2  - 27 8
MGF3  -  - 9

Brazil (Rio de Jinero) SAF5 25  -  - 
Saf7 25  -  - 
Saf6 26  -  - 
SAFF2  - 23  - 
dlw14  - 23  - 
SAFM2  - 26  - 
dlw15  - 29  - 
dlw16  - 30  - 
dlw17  - 31  - 
dlw18  - 32  - 
SAFF2  - 5  - 
SAFF4  - 5  - 

CLADE 4 Haplotypes
Location Samples 12SrRNA Dloop COII

Brazil (Corumba) Amcaj122954 26  -  - 
Amcaj122965 22  -  - 

Brazil (Rondonia) ROF1  - 22  - 
ROF4  - 22  - 
ROFF2  -  - 6
ROFF1  -  - 7

Venezuela Amcaj47831 23  -  - 
47831 Venezuela  - 28  - 

French Guiana F.G. drag 23  -  - 
FG03  - 24  - 
FG20081  -  - 33
FG20082  -  - 33
FG20083  -  - 33
FG20084  -  - 33
FG20085  -  - 33
FG20086  -  - 33
FG20087  -  - 33
FG20088  -  - 33
FG20089  -  - 33
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CLADE 5
Location Samples 12SrRNA Dloop COII
Ecuador Ecuador_6 9 9 9

Ecuador_7 9 9 9
Ecuador_76 9 9 9
Ecuador_77 9 9 9
Ecuador_78 9 9 9
Ecuador_26 9 9 -
Ecuador_27 9 9 -
Ecuador_28 9 9 -
Ecuador_29 9 9 -
Ecuador_30 9 9 -
Ecuador_31 9 9 -
Ecuador_32 9 9 -
Ecuador_33 9 9 -
Ecuador_34 9 9 -
Ecuador_35 9 9 -
Ecuador_36 9 9 -
Ecuador_37 9 9 -
Ecuador_39 9 9 -
Ecuador_40 9 9 -
Ecuador_8 9 - 9
Ecuador_9 9 - 9
Ecuador_17 9 - 9
dlw5-Ecuador  - 9 -
dlw7-Ecuador  - 9 -
Ecuador_16  -  - 9
Ecuador_15 9 - 1
dlw6-Ecuador  - 2  - 
Ecuador_38 9 2 -
Ecuador_42 9 2 -
Ecuador_18 10 9 9
Ecuador_41 11 9 -
Ecuador_43 12 9 -
Ecuador_44 13 2 -

Costa Rica Costa Rica_01  - 9  - 
Costa Rica_02  - 9  - 
Costa Rica_04  - 9  - 
Costa Rica_05  - 9  - 
CRIIBF 9  -  - 
CRXF 9  -  - 
CRXIBN 9  - 9
CRXIIBF  -  - 9
CRXIIBF2  -  - 9
CRVIIIA 14  - 9
CRXIIB12 14  -  - 
CRIXII 14  -  - 
CRBF12 14  -  - 
Costa Rica_06  - 4  - 
CRXIBF12 21  -  - 

Mexico Mexico_3 14 9 14
Mexico_5 14 9 14
Mexico_6 14 9 14
Mexico_11 14 9  - 
Mexico_15  -  - 9
Mexico_4 14 2 2
Mexico_12 14 16  - 
Mexico_10 16 9  - 
Mexico_9 15 15  - 
dlw20 - 33 -
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