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OPTIMIZATION OF ELECTROENCEPHALOGRAPH-BASED CLASSIFICATION

FOR IMAGINARY MOTION BRAIN COMPUTER INTERFACE STUDY

by

SYLVIA BHATTACHARYA

(Under the Direction of Rami J. Haddad)

ABSTRACT

Using Electroencephalography (EEG) to detect imaginary motions from brain waves, is a

very nascent and challenging field that started developing rapidly in the past few decades.

EEG involves having some electrodes attached on the scalp of the patient to capture the

brain signals generated through the patients thought process and record them in a computer.

This technique of human and computer interfacing is called Brain Computer Interface

(BCI). Disability is a serious problem of our nation and hence BCI can play an important

role in facilitating the lives of people who are incapable of communicating due to spinal

cord injuries. This technique uses the brain signals to make decisions, control objects and

communicate with the world using brain integration with peripheral devices and systems.

This requires some intelligence to classify these motions. Neural network have been used

as a mean to classify motions, however, the accuracy of classification for certain motions

was limited. The novelty of the proposed approach is in using a majority vote system for

a network of artificial neural networks (ANNs) that is used to optimally classify imaginary

motions performed by individual or multiple subjects. Three kinds of imaginary motions

were classified which are imaginary left hand movement, imaginary right hand movement,

and imagination of words starting with the same letter. Using an optimized set of electrodes,

classification accuracy was optimized for the three users as a group and also individually.

The optimization procedure was based on the ranking of the electrodes according to their



2

classification accuracy, electrodes with the lowest accuracies were eliminated to achieve

the optimal accuracy. The group optimization of 3 subjects altogether resulted in an

electrode structure consisting of 15 electrodes with a relatively high classification accuracy

of almost 80%. The individual optimization for each subject resulted in structure of 20

electrodes for subject 1 and subject 3 with classification accuracies of 63.63% and 84.33%,

respectively, and a single electrode structure for subject 2 with an accuracy of 94.01%. The

overall average classification accuracy of all the users with the individual optimization of

electrodes was as high as 82.32%.

Index Words: Artificial Neural Network, Brain Computer Interface, Majority Vote,

Electroencephalography
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CHAPTER 1

INTRODUCTION

The World Health Organization (WHO) reported that about 15% of the world population

(more than 1 billion persons) live with some form of disability with 110-190 million people

having very significant difficulties in functioning. In the United States of America, at least

70%of adultswith physical disabilities require some formof assistance to conduct their daily

activities which culminates to restricted social and economical implications [1]. In severe

cases such as spinal cord injuries, body paralysis is induced and Brain Computer Interface

(BCI) is used to provide a non-muscular output for communication and control using raw

signals from the human brain that reflects the user’s intention [2, 3, 4]. Hence, signal

processing is used to translate brain signals directly into specific actions [5]. The machine

used to record the electrical signals from the brain is called an Electroencephalograph and

the method used to record these signals is called Electroencephalography (EEG).

EEG is a non-invasive electrophysiological monitoring method that records the brain’s

analog electrical signals. This method comprises of several sets of electrodes, in which

the 10-20 electrode system is regarded as the standard international electrode system with

32 electrodes. These 32 electrodes are positioned in specific locations all over the scalp

according to the standard positioning system accepted internationally to record brain signals

across different parts of the brain [6]. EEG is still considered the best known tool for BCI

in terms of portability and cost benefit [7]. BCI using EEG is used to help facilitate the

mobility of individuals who have severe disabilities like spinal cord injury or tetraplegia,

brain stem stroke, and amyotrophic lateral sclerosis.

Brain signals are dynamic in nature and also vary across different people which tends

to hinder the application of BCI. The human brain generally generates five different waves

namely Alpha, Beta, Gamma, Delta and Theta moves. The bandwidth for the all the five

waves combined is 1 to 70 Hz. Alpha waves have a frequency between 7 to 13 Hz and
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are generated when a subject is relaxed and in an awakened state. Beta waves are present

only when a subject is awake and it is always associated with one of the other four waves.

Beta waves range from 13 to 30 Hz in frequency and are associated with attentiveness

and concentration in mental activity. The frequency of Delta wave is between 1 to 4 Hz

and is generated when a subject is in a deep sleep state [8]. The frequency of Gamma

wave is 30 to 70 Hz and it is generated when processing various visual, auditory and touch

responses. Frequency of Theta wave is 4 to 7 Hz and it is generated during deep meditation,

and hypnosis. The Theta stage is called the twilight stage when a person is neither fully

awake nor asleep. The various types of brain waves and their frequencies are illustrated in

Figure 1.1

Brain Waves

Beta

13 to 30 Hz

Alpha

7 to 13 Hz

Theta

4 to 7 Hz

Delta

1 to 4 Hz

Gamma

30 to 70 Hz

Figure 1.1: Brain Waves

When sensing these signals, there can be more than one wave generated at any time

depending on the thought process. Every mental task generates a particular wave and

the strength of each wave varies depending on the individual [9]. This study deals with

imaginary tasks without any actual physical movement. This is only one type of EEG-based

signals used in BCI. Among the various EEG-based signals used in BCI (e.g. intentional

change of brain rhythms, evoked potentials, anticipatory potentials, cognitive potentials,

and imaginary movement). The brain signals become more complex when more than one

signal is generated at the same time which might overlap, therefore, classifying these signals

is a very difficult task.
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To help study brain signals, researchers classified imaginary tasks into small groups of

simple two or three tasks each time brain signals are recorded. The main types of motions

includes imaginary motion of hand, leg, finger, tongue, and imaginary word structure. The

various types of imaginary motions used in this research field are listed in the taxonomy in

Figure 1.2.

Imagination Tasks

Hand 

Movement

Foot 

Movement

Finger 

Movement

Head 

Movement

Tongue  

Movement

Imagination of 

Words

Figure 1.2: Taxonomy of Imaginary Motions
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 The Human Brain

The human brain is a very vital and complex organ of our body. It is the source of human

intelligence. The weight of a normal human brain is about 3 pounds [10]. It controls

behavior and body movement. The brain is protected inside a brain cage and brain fluid

surrounding it. Our identities, qualities, and decisions are defined by our brain. The brain

is divided into three parts namely Cerebrum, Cerebellum, and Brain Stem among which

the Cerebrum is the largest part which controls various important brain functions including

our thought process. The Cerebrum consists of four lobes. The names of these lobes are

Frontal lobe, Occipital lobe, Parietal lobe, and Temporal lobe [11]. The function of the

various lobes are highlighted in the Figure 2.1.

PARTS OF BRAIN

OCCIPITAL LOBE

(Eye)

TEMPORAL LOBE

(Memory, Sound)

FRONTAL LOBE

(Language, Reasoning)

PARIETAL LOBE

(Language, Memory)

Figure 2.1: Parts of the Brain

Each lobe has a specific function amongwhich Frontal lobe is responsible for language,

reasoning, higher level recognition, and motor skills [12]. The location of this lobe is at

the front part of the brain. Any injury to the frontal lobe leads to change of socialization,

attention, sexual habits etc. The Parietal lobe processes the information sent to the brain by

the sense organs and it makes us feel pain, pressure, and touch. The Parietal lobe is located

at the center of the brain. Injury to the Parietal lobe disturbs language, ability of controlling

eye gaze, and verbal memory. The Occipital lobe is responsible for interpreting the signals

sent by the eyes to the brain. Occipital lobe is located at the back of the brain. Any damage
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to the occipital lobe affects the visual ability and hampers the recognition power of colors,

words, and objects. The Temporal lobe is associated with memories and it processes the

sounds that is received by the ears. It is located at the bottom of the brain. Temporal damage

can cause problem with language skills, speech perception, and memory [13].

The human brain is divided into two halves. These halves are commonly called the

right side and the left side of the brain or hemispheres. It is known that the right and left

hemispheres control the opposite sides of the human body i.e, the right hemisphere controls

the left side and possess the vision of left eye and controls our left hand and leg while the

left hemisphere controls the right side of the body and possesses the right eye vision and

controls right hand and leg. The concept of the left and right brain developed in the late

1960s of an psychobiologist Roger W. Sperry [14]. The human brain has two different ways

of processing. The right side of the brain focuses on the overall image of an object first,

then goes into the details of that image. While the left brain is analytical and hence captures

every part of the image sequentially and then joins them altogether. The use of each of the

brain sides varies from one person to another. Some people use their left brain while some

use their right brain and it is involuntarily controlled. The difference in usage makes the

personality of each person unique. The left brain is also called the digital brain as it notes

minute details. It also controls reading and writing, calculation, and logical thinking. The

right brain is known as the analog brain [15]. It controls 3D sense, creativity, and artistic

senses [16]. The functionality of the left and right brain sides is summarized in Figure 2.2.

In general, the left hemisphere of our brain conducts imaginative logical tasks [17].

The right hemisphere performs all creative tasks. The left brain is said to be more functional

in hand motion and language in about 92% of people [18].
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CREATIVITY 

IMAGINATION 
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VISUALIZATION 
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DAY DREAMING 

RYTHM 

ANALYSIS 

THINK IN 
WORDS 

LINEAR 

MATHEMATICS 

LANGUAGE 

FACTS 

LOGIC 

Right Brain Left Brain 

Figure 2.2: Characteristics of left brain and right brain

2.2 Electroencephalography (EEG)

An electroencephalogram (EEG) is a medical diagnostic test which is used to evaluate

the electrical activity within the brain. These electrical impulses connect the brain cells

with each other. EEG is effective in detecting the abnormalities in brain activity of a
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person. The test identifies and records the pattern of the brain wave. Small, flat metal

discs called electrodes are used to capture the signals by placing them on the scalp. The

electrodes capture the signals and transmit it to the computer to record. Any irregularity

in the pattern of the signals is the reason of some brain disorder such as seizure disorders

(Such as epilepsy), a head injury, encephalitis (an inflammation of the brain), a brain

tumor, encephalopathy (a disease that causes brain dysfunction), memory problems, sleep

disorders, stroke, and dementia. Magnetic Resonance Imaging (MRI) is another imaging

technique used to detect brain disorder but they are more expensive to operate than EEG.

EEG is a non-invasive and a very safe medical diagnostic test which has no side effects.

An epileptic patient’s stimuli causes a seizure while doing the EEG. The technician who

performs EEG on patients are specially trained to manage these kinds of situations.

2.3 EEG Electrode Positioning

EEG requires the placement of a large number of electrodes placed on the scalp at specific

positions. Based on the physiology of the brain, depending on the function of the specific

brain regions scientists came up with a standard positioning system of EEG electrodes. This

electrode positioning system is called 10-20 system which is adopted internationally [19].

This system comprises of 32 electrodes each of which is named according to the region of

the brain it is placed on. F, T, C, P, and O are the letters used which represents Frontal,

Temporal, Central, Parietal and Occipital lobes respectively. The letter ’z’ is used to denote

the center of each lobe. ’Cz’ represents the center of the scalp. Along with letters, numbers

are also designated for naming. Odd numbers are used to denote the electrodes on the left

side of the brain and even numbers are used to name the electrodes on the right side of the

brain [20]. The 10-20 electrode positioning system is shown in Figure 2.3.

In order to study some more advanced and detailed features of the brain waves, it is

not sufficient to only use 32 electrodes. In such cases, more than 32 electrodes are used



16

Front

Back

CZ

FP1 FP2

F3

AF3 AF4

FZ

F7

FC5

T3 C3

FC1 FC2

F4

CP5

T5

P3

CP1

PZ

F8

FC6

T4C4

CP2

PO4

P4

CP6

T6
PO3

O1 OZ O2

Figure 2.3: EEG Electrodes

and these extra electrodes are placed in between the spaces of these 32 major positioned

electrodes. This new system that added extra electrodes to the 10-20 system is called

Modified Combinatorial Nomenclature (MCN) [21].

2.4 Brain Computer Interface (BCI)

BCI is an interface system which utilizes the captured brain signal to control objects such

as controlling a devices or prosthetic limbs [22]. This helps a paralyzed person to control a

wheel chair, play video game or write a book. For controlling these objects, the brain signal

are processed and then classified with the help of a classifier [8]. Traditionally, BCI was

associated with implants but now the technique is completely non-invasive [23]. It was the

scientists from Europe who first came up with the idea of using non-invasive electrode caps

on the scalp of a human being to capture signals [24]. One of the area of that is still being

investigated is how to increase the classification accuracy of this technique. An increased
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accuracy would improve the overall performance, hence it is very important to find out the

optimal classifier to classify a particular task. An overview of the overall BCI system is

shown in Figure 2.4.

SIGNAL 

AQUISITION

FEATURE 

EXTRACTION

SIGNAL 

CLASSIFICATION

NEUROPROSTHESIS

CONTROL

NEURAL 

SPELLING

NEURO GAMING

BRAIN

Figure 2.4: EEG Electrodes

BCI system is almost always asscociated with EEG due to its high temporal resolution

and its ease of use [25]. However, EEG signal tends to picksup noise which limits its

usability. To overcome such limitation, EEG signals are usually pre-processed raw to

eliminate this noise [26]. Pre-processing of raw EEG signals involve many techniques

among which is P300 [27].

Presently, the work of Bin He [28] fused the imaging and signal processing together

with BCI in order to get more detailed information to be utilized to control objects [29]. He

used advanced functional neuroimaging including functional MRI and EEG source imag-

ing. His work identified the co-variation and co-localization of electrophysiological and

hemodynamic signals induced by motor imagination [30]. Using neuroimaging approach

and applying a training protocol, the ability of a non-invasive EEG based brain-computer

interface to control the flight of a virtual helicopter in 3-dimensional space, based upon

motor imagination was demonstrated [31].

For BCI to work, the EEG signals are processed and then classified into different

imaginary motions using pattern recognition based classifiers. When a subject performs
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such imaginary motions, these motions are either self paced or changed according to

the operator’s instruction. In the self-paced instructions, the subject proceeds from one

imaginary task to the next based on his/her own pace. So it is completely based on the

subject’s response and does not require any immediate instruction from an operator. As

for the operator instructed tasks, the subject will have to respond to what imaginary task

the operator is currently instructing. Hence, the means of recording imaginary motions are

summarized in Figure 2.5.

Motions

Self paced 

instructions

Operators 

Instructions

Figure 2.5: Means of conducting Imaginary Motions

2.5 Literature Review

A study using BCI data with two features classifier (right and left hand movement at oper-

ator’s instruction) shows better performance when using Artificial neural network (ANN)

compared to Hidden Markov Model (HMM) [32] [33]. The study also concludes that

reducing the number of electrodes used in the BCI setup gives a much better accuracy.

A similar study compared between Linear Discriminant Analysis (LDA), ANN, and Deci-

sion Trees also showed that ANN outperformed the other classifiers with an accuracy of

81.6% [34, 35].

A different study was conducted to compare the performance of classifying imaginary

motions such as hand, foot, and tongue. In this study, a nonlinear K-nearest neighbor

algorithm based Support Vector Machine (KNN-SVM) was compared with two linear
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classifiers; LDA and Naive Bayesian. The nonlinear SVM was reported to outperform the

other classifiers with an accuracy of 82.14% [36]. Additionally, it was reported that when

the size of the data set is reduced, then KNN-SVMaccuracy increases by 5%. Fuzzy particle

swarm optimization was also used with neural network to classify BCI data of imaginative

head movement and it has achieved an accuracy of 84.4% [37, 38].

P300 classification which is based on Independent Component Analysis (ICA) and

Wavelet Transform proves to be a very good approach in selecting optimal features from the

time domain and frequency domain. Based on specific subjects and it reduces the amount

to data to improve the speed of classification but at the same time it increases the accuracy.

This algorithm was tested on imagination of characters from words defined by the operator

[36].

The University of Barcelona used Statistical Discriminator with the preprocessed EEG

data samples to classify three types of imaginary motions that were conducted by the sub-

jects in a self paced repetitive fashion. The imaginary motion classified were left-hand,

right-hand movements, and the generation of words beginning with same random letter.

Data was preprocessed offline at first and then processed using a statistical discrimination

classifier [39]. The three mental tasks are classified after normalizing and then transforming

the normalized data using canonical variate transform. This algorithm achieved an average

accuracy of nearly 71%. Another interesting study was conducted by the Computer Vision

and Multimedia Lab. at the University of Geneva, Switzerland. They tested four different

classifiers which are Support Vector Machine (SVM), decision tree, Learning Vector Quan-

tization (LVQ), and Naive Bayes classifier. Each of the datasets was used to train these

classifiers and the results generated showed that SVM gives better accuracy than the rest of

the three classifiers with a margin of 8% [40]. The dataset used in these studies was chosen

to be used in this study. The reason behind choosing this particular dataset is the relatively

low reported classification accuracy. However, we used a different method than what was
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used by the University of Barcelona.

Imaginary movements can be classified using classifiers, linear and nonlinear [41].

Linear classifiers are said to be more suitable for this kind of data. Linear classifier is again

broadly divided into two models namely generative and discriminative models. The various

types of classifiers are illustrated in the Figure 2.6.

Classifier

Linear Non-Linear

Discriminative 
Model

Linear 
Discriminant 

Analysis
Naive Bayes

Hidden 
Markov 
Model

Support 
Vector 

Machine

Artificial 
Neural 

Network

Generative
 Model

k-Nearest 
Neighbors 

Figure 2.6: EEG Classifier Taxonomy

Most of the studies in this field showed that certain algorithms like Elman recurrent,

wavelet transform, Fuzzy logic, and Principal component analysis are used along with ANN

in order to classify the imaginary motions accurately. Some of the common algorithms that

are used along with ANN are shown below in the Figure 2.7.

Commonly used 
Algorithms with ANN

Principal Component 
Analysis

Fuzzy logic
Wavelet 

Transform
Elman 

recurrent

Figure 2.7: ANN Algorithms
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CHAPTER 3

INDIVIDUAL USER BCI USING EEG ELECTRODE OPTIMIZATION

Although the physiology of the brain is same for every human being, still there is a big

difference between each person by the way they use their brain. Some people use their left

side of the brain during their thought process while some use their right side of the brain.

General tendency of any human being is to use both left and right side of the brain and this

usage of brain is completely involuntary [42]. So, in order to get a good accuracy for object

controlling, it is required to design the electrode positioning of each indiviual seperately.

Keeping this in mind, we tried to find out the best set of probes of a person and study the

difference of probes used across individuals. Our objective was also to study the brain usage

pattern across different subjects.

3.1 Data Set Used

For the purpose of their work, the BCI Competition III dataset V were used as the exper-

imental dataset. This dataset is generated by the IDIAP research institute in Switzerland

[40]. In this dataset, data of 3 healthy subjects were recorded, with 3 sessions for each of

them performing 3 Imaginary mental motion tasks (Imagination of Left hand movement,

Right hand movement and word generation starting with the same letter). All of these 3

sessions for each subject were recorded on the same day. Each session lasted for 4 minutes

with a break of 5-10 minutes in between each session. In each session, a subject performed

all three kinds of Imaginary motions with each motion lasting for about 15 seconds and then

switching to another motion at the operator’s request. The EEG potentials were recorded at

512 Hz sampling rate using a portable Biosemi EEG machine with 32 electrodes placed on

the scalp according to 10-20 system of standard electrode positioning. Each electrode was

assigned a channel number to simplify the experimentation as shown in Table 3.1.

Recorded EEG data were provided in two formats, 1) raw EEG potentials and 2)
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Table 3.1: 10-20 system electrodes used in experiments

Channels Electrode Channels Electrode

1 FP1 17 O2

2 AF3 18 PO4

3 F7 19 P4

4 F3 20 T6

5 FC1 21 CP6

6 FC5 22 CP2

7 T3 23 C4

8 C3 24 T4

9 CP1 25 FC6

10 CP5 26 FC2

11 T5 27 F4

12 P3 28 F8

13 PZ 29 AF4

14 PO3 30 FP2

15 O1 31 FZ

16 OZ 32 CZ

precomputed Power Spectral Density (PSD). In this thesis, the raw data (without any pre-

processing) with over 288 data samples were used for training and testing of the proposed

system of ANNs. This dataset is previously used by other universities during BCI competi-

tion and University of Barcelona is ranked first for classifying the dataset with an accuracy

of 71%. This accuracy was used as the benchmark to the performance of the proposed

classifying technique.
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3.2 Proposed Technique

To classify this dataset of imaginary motions, ANN was the classifier of choice. Although,

ANN was used in BCI Competition before by the University of Essex, they only ranked

eighth with a reported accuracy of 63.91%. The goal of this work, is not only to improve

the reported accuracy by the University of Essex, but also exceed the best reported accuracy

of 71%. The proposed model involves using, separate ANN for each channel (electrode)

and then combine all classification using a majority vote. Artificial neural networks are

network models that are created with motivations from biological neural networks. These

networks use an approximation function that assimilates a wide variety of inputs and targets

and provides an output The model uses a system of neurons that are interconnected to

learn the patterns underlying a large array of inputs. An artificial neural network operates

by creating connections between many different processing elements, each analogous to

a single neuron in a biological brain. These neurons may be physically constructed or

simulated by a digital computer [43]. The proposed neural network consists of two hidden

layers of 10 and 20 neuron in size to maintain a high classification accuracy for the network.

The number of neurons in each layer is selected based on various experimentation. Back

propagation method was used to train this network. Artificial neural networks have proved

useful in a variety of real-world applications that deal with complex data such as visual

pattern recognition and speech recognition. In addition, recent programs for text-to-speech

have utilized ANNs. Many handwriting analysis programs are powered by ANNs [44]. The

ANN structure used in this study for individual user accuracy classification is shown in

Figure 3.1.

The novelty of this proposed system lies in using the Majority Vote system in conjunc-

tion with a network of ANNs. Using majority vote system along with the network of ANNs

improved the ability of the system to successfully detect motions since it was based voting

which didn’t require high accuracy per channel. The structure of our proposed system is
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Figure 3.1: A Single Artifical Neural Network

detailed below 4.1. The process of classification utilizes the data acquired from an electrode

and categorizes these values into three imaginary task categories or classes. This is done

using the target specifications in the data-set.

Majority Vote 

(mode) of All 

ANNs.
.
.

Final Classification 

Output
Channel Inputs

(ANN/Ch.)

Figure 3.2: ANN Architecture

Majority vote is the concept which chooses the decision of more than half hence,

majority [45]. Majority voting is a very powerful tool in case of odd number of classes in

any pattern recognition process [46]. It is seen that majority voting is a much faster way

of decision making than other algorithms like Genetic Algorithm. In this study, hence we

implemented the concept of majority voting to classify motions into three classes namely

Class 7, Class 3, Class 2. The ANNs are trained with with the data of all the 32 channels as

the first step. Then the outputs for the individual channels are combined using a majority

vote system in order to find the final voted classification [47]. The outputs of the classes

are represented in the form of bits(1 or 0) and the class which gets the highest number of
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votes the final classification. To validate the results obtained, the final classifications are

compared with the original motions recorded in the target files. If two of the classes have

the same vote then the previous vote is also considered to break the tie.

The implementation of majority vote has been the key factor in enhancing the accuracy

of the EEG classification. Besides, increasing the classification accuracy using the majority

vote, the set of electrodes were optimized to get the optimal accuracy. For the process of

optimization, the 32 ANNs for each subject were used. Based on the accuracy of each

channel, all the channels were ranked to optimize the electrodes. The optimization process

is shown in Figure 3.3. An optimized set of electrodes was obtained for every subject

since human in general differ in the way they use their brains. But for each subject the

brain behaves differently and there is no consistency and it is necessary to find optimized

electrodes for each user. The electrodes were optimized for each user separately and then

used to obtain the individual classification accuracy. finally these accuracies were averaged

out to obtain the overall accuracy. To optimize the set of electrodes, first the EEG raw inputs

of three session for every subject were used to train and test the 32 ANNs with 50% of data

for training and 50% for testing. The accuracies of the 32 electrodes across three sessions

are averaged and the channels are ranked then according to their accuracies. Using this rank,

we eliminated the worst electrodes were eliminated one at a time to obtain the new accuracy

of the majority vote. The process continues until the classification accuracy obtained is the

maximum. The resulting set of electrodes that obtain the maximum classsification accuracy

is the optimal set of electrodes.

3.3 Result For Individual Subject Analysis

At first, the classification accuracy was recorded for each electrode and subject. Figures 3.4-

(a, b, c) illustrate the accuracies of all the electrodes for subject 1, subject 2, and subject 3,

respectively.
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Figure 3.3: Optimization of electrodes for individual user

Based on the average classification accuracy of each individual electrode for each

subject, the electrodes were optimized. For the dataset used in this experiment, subject 1

had a set of 20 electrodes as the optimized electrode set which resulted in a classification

accuracy of 63.33%, while subject 2 had a set of only 1 electrode with a classification

accuracy of 94.01%. Subject 2 had only one electrode since this electrode classification

accuracy was significantly higher compared to the rest of the electrodes. Finally, subject

3 optimal set of electrodes consisted of 14 electrodes with a classification accuracy of

84.33%. Figure 3.5-(a, b, c) illustrate the placement of the optimal set of electrodes for

subject 1, subject 2, and subject 3, respectively. It is obvious from these results, that each

subject utilized a different set of electrodes to obtain the optimal classification accuracy.

For two subjects (subject 1 and 3), both sides of the brain worked together through Corpus

Callosum, while subject 2 was left lateralized, since the left side of the brain is known for

critical thinking. It is worth noting that subject 2 performed the best among all three.

Figure 3.6 illustrates the overall classification accuracy results of the optimization

process as a function of the number of electrodes used for subject 1, subject 2, and subject
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(a) Subject 1

(b) Subject 2

(c) Subject 3

Figure 3.4: Individual Electrode Classification Accuracy for a) Subject 1, b) Subject 2, c)

Subject 3
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Figure 3.5: Optimal set of electrodes for a) Subject 1, b) Subject 2, c) Subject 3

3, respectively.

Table 3.2 summarizes all the optimized classification accuracies of all the subjects.

The reported overall accuracy calculated by averaging the classification accuracy of all

subjects was 82.32% which is higher than the 71% accuracy reported by the University of

Barcelona. It is also observed that subject 1 and subject 3 used both the left and the right

side of their brains to perform the imaginary tasks given while subject 2 used only right

side of the brain to do so.
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Figure 3.6: Classification Accuracy vs. No. of Channels for a) Subject 1, b) Subject 2, c)

Subject 3

Table 3.2: Optimization of Electrodes for Individual Subjects

Subject Classification Accuracy

1 63.63%

2 94.01%

3 84.33%

Average 82.32%
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CHAPTER 4

MULTIUSER BCI USING EEG ELECTRODE OPTIMIZATION

Even though human beings are unique in the way they use their brain, there are some

applications where the BCI system would only be utilized for a small amount of time such

as gaming. In such uses, to enhance the BCI system commercial viability and utilization

a multiuser BCI system with an optimized set of electrodes can help achieve these goals.

In the multiuser BCI system, multiple users will share this system at different times which

help save the cost of purchasing dedicated systems for every user.

4.1 Result For Individual Subject Analysis

In this research work, a three-layer feed-forward neural network per electrode was used, with

sigmoid hidden and output layers. This neural network can classify all the three different

imaginary motions relatively well, given a 10 and 20 neurons in its two hidden layers.

The network was trained using the scaled conjugate gradient back-propagation algorithm.

The novelty of this proposed approach is in using a majority vote system for a network

of artificial neural networks (ANNs) that is used to optimally classify imaginary motions

performed by multiple subjects. 32 channels were used to train 32 ANNs in order to reduce

the complexity of designing a single ANN with 32 inputs. The difference between the other

reported studies and this one is that, they used a single ANN with 32 channels input which

resulted in a complicated ANN structure and low overall accuracy. unlike the proposed

model uses a simple ANN for every channel. Figure 4.1 illustrates the proposed model.

In general, all the EEG based BCI systems will target a specific class of imaginary

motions to classify. This provides a priory information about which region of the scalp will

be more effective which help reduce the number of channels used. However, this approach

won’t be as effective when developing an optimal system for multiusers due to the individual

difference among the users. Therefore, the number of electrode channels used are optimized
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Figure 4.1: Structure of ANN

by maximizing the overall multiuser classification accuracy. The channel optimization is

based on the elimination of channels with low average classification accuracy across all

users. To do so, the channels are first ranked based on their average classification accuracy

across all users as illustrated in Figure 4.2. The cost function for this optimization problem

is to maximize the overall average classification accuracy of the system.

4.2 Result For Multiuser Subject Analysis

To validate the performance of the proposed method discussed in this chapter, the BCI

Competition III dataset V was used to train and test the network of ANNs. First, we

recorded the classification accuracy for each channel separately as reported in Figure 4.3.

Based on the individual channel classification accuracy results obtained in the previous

step, the 17 channels with the highest classification accuracies channels were chosen as the

first initial optimized set of electrodes with minimum accuracy of 58.63%. The chosen

electrodes are illustrated in Figure 4.4 (a). It is observed that the left side and the center of

the scalp are the most effective common regions among the 3 users in this study. Most of

our selected electrodes are on the left lateral frontal lobe region of the brain. This region is

known to be responsible for motor functions and word generation [48].
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Figure 4.2: Optimization of Electrodes for Multiusers

The overall system performance using the 17 channel structure resulted in an average

classification accuracy of 78.71%, which is higher than the maximum reported accuracy of

nearly 71% for this dataset [39]. A fine optimization stage was implemented, by eliminating

channels 15, 31, and 7, respectively. The final optimal structure consisted of 15 electrodes,

as illustrated with an average classification accuracy of 79.96%. The set of 16 and 15 chosen
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Figure 4.3: Individual Channel Classification Accuracy

electrodes are illustrated in Figures 4.4 (b) and (c), respectively. The results of optimization

step is recorded in Table 4.1.

Table 4.1: Optimization of Electrodes

No. of Channels Classification Accuracy

17 78.71%

16 79.21%

15 79.96%

14 78.91%

Figure 4.5 illustrates how the classification accuracy varies with time across sessions

for the 17, 16, 15, and 14 electrode structures. It is observed that classification accuracy

varies across the different users with subject 2 having the highest accuracy followed by

subjects 3 and 1, respectively. In addition, it is also observed that the classification accuracy

degrades with time for all users, which could be due to fatigue and lose of interest.

Figure 4.6 illustrates how the classification accuracy varies with different electrode

structures in 3 different sessions. It is observed that the classification accuracy do not
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Figure 4.4: The Optimal Electrode Sets using a) 17 Channels, b) 16 Channels, c) 15

Channels

vary significantly with the structure consisting of 15 electrodes providing the best accuracy.

However, it is observed that the classification accuracy per user varies differently across

sessions with subject 1 having the highest variation across sessions. This emphasize that

EEG based BCI is very user dependent and this makes the optimization of a specific set of

EEG electrodes to serve as a unified multiuser BCI system very difficult.
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Figure 4.5: Classification accuracy of each subject versus sessions for 17, 16, 15, and 14

electrode structures

From Table 4.2, the University of Barcelona that ranked first reported an accuracy of

71.00% but our method of majority vote improved the accuracy to 79.96% for multiuser

optimized BCI and 82.32% for individually optimized BCI.

Table 4.2: Result Comparison

Institution Classification Technique Overall Accuracy

Georgia Southern Uni. MV with ANNs (Individual User Optimized) 82.32 %

Georgia Southern Uni. MV with ANNs (Multiuser Optimized) 79.96 %

Uni. of Barcelona Statistical Discriminator 71.00 %

Uni. of Essex ANN 63.91 %



36

14 15 16 17
50

60

70

80

90

# of Channels

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

Subject 1
Subject 2
Subject 3

(a) Session 1

14 15 16 17
50

60

70

80

90

# of Channels
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y 
(%

)

 

 

Subject 1
Subject 2
Subject 3

(b) Session 2

14 15 16 17
50

60

70

80

90

# of Channels

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

Subject 1
Subject 2
Subject 3

(c) Session 3

Figure 4.6: Classification accuracy of each subject versus channel structure for 3 different

sessions



37

CHAPTER 5

CONCLUSION AND FUTURE WORK

A majority vote system for a network of artificial neural networks (ANN) to optimally

classify imaginary motions performed by individual and multiple subjects were proposed.

The proposed method optimizes the channels used for single user and multi-user classifi-

cation by ranking the channels based on their classification accuracy. The best performing

electrodes are identified with the help of some statistical analysis. The performance of the

proposed method was evaluated using the BCI competition III dataset V which primarily

consisted of three imaginative motions like Imaginary left hand movement, Imaginary right

hand movement, Imaginaton of words starting with the same letter. It was observed that

using a separate ANN for every channel coupled with a majority vote system was able to

improve the average classification accuracy of such imaginary motions for all three users

from a maximum 71% to almost 82.32% for individual use while maintaining a relatively

simple ANN structure. In addition, the quality of the EEG signal generated by the users

declined with time due to fatigue and loss of concentration. It was also concluded that the

classification accuracy is user dependent in nature which limits it optimization for multiple

subjects. The proposed method presented is novel in the structure of such classification

network and in the optimization of its channels. It is concluded that classification accuracy

is user dependent and hence each user has a different set of optimal electrodes.

Although, we reported good classification results, the study has some inherent lim-

itations the dataset is based on three subjects only, there might be more variation when

considering more subjects. Also the subjects in the dataset are of same age group and of

same gender (male). The study would be even stronger if more diverse subjects are consid-

ered. As seen from the results, a change of performance in every session, was due to fatigue

and loss of concentration which could be aged dependent. Therefore the limitation within

the dataset prevented testing all the variables. in addition the optimization method used
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was linear. Hence, in order to improve the optimization process, a nonlinear optimization

technique such as genetic algorithm can be used.
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