JACK M., AVERITT

COLLEGE

GRADUATE Georgia Southern University
STUDIEDS .. .

Digital Commons@Georgia Southern
Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2015

Ultra-Fast, Autonomous, Reconfigurable Communication
System

Paul Bupe Jr

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

6‘ Part of the Aeronautical Vehicles Commons, Electrical and Electronics Commons,

Hardware Systems Commons, and the Systems and Communications Commons

Recommended Citation

Bupe, Paul Jr, "Ultra-Fast, Autonomous, Reconfigurable Communication System" (2015).
Electronic Theses and Dissertations. 1253.
https://digitalcommons.georgiasouthern.edu/etd/1253

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/219?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1253?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

ULTRA-FAST, AUTONOMOUS, RECONFIGURABLE UAV COMMUNICATION
SYSTEM

by
PAUL BUPE JR
(Under the Direction of Rami Haddad and Fernando Rios-Gutierrez)

ABSTRACT

The recent years have witnessed an increase in natural disasters in which the destruc-
tion of essential communication infrastructure has significantly affected the number
of casualties. In 2005, Hurricane Katrina in the United States resulted in over 1,900
deaths, three million land-line phones disconnections, and more than 2000 cell sites
going out of service. This incident highlighted an urgent need for a quick-deployment,
efficient communication network for emergency relief purposes. In this research, a
fully autonomous system to deploy Unmanned Aerial Vehicles (UAVs) as the first
phase disaster recovery communication network for wide-area relief is presented. As
part of this system, an automation algorithm has been developed to control the de-
ployment and positioning of the UAVs based on a traditional cell network structure
utilizing 7-cell clusters in a hexagonal pattern. In addition to the software algorithm,
a fully functional control interface was developed which allowed for full control of the
system both locally and over an internet connection. This system represents a novel
approach for handling a large-scale autonomous deployment of a UAV communica-

tions networks.

INDEX WORDS: Unmanned aerial vehicle, Emergency services, Telecommunication
network, Global Positioning System, Telemetry, Emergency disaster response

ULTRA-FAST, AUTONOMOUS, RECONFIGURABLE UAV COMMUNICATION
SYSTEM

by

PAUL BUPE JR

B.S. Electrical Engineering, Georgia Southern University, 2013

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in

Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN APPLIED ENGINEERING

STATESBORO, GEORGIA

i

© 2015
PAUL BUPE JR
All Rights Reserved

1ii

ULTRA-FAST, AUTONOMOUS, RECONFIGURABLE UAV COMMUNICATION
SYSTEM

by

PAUL BUPE JR

Major Professor: Rami Haddad
Committee: Fernando Rios-Gutierrez
Frank Goforth

Electronic Version Approved:
May 2015

v

DEDICATION
This thesis is dedicated to my family, who have always been by my side through life
and as I have been in school. A special thank you to my parents, Paul and
Catherine Bupe, who have always been a great example for me and have sacrificed
so much to ensure my success. I would also like to thank my sisters, Faith and Hope

Bupe, and brother David Bupe for always being there for me.

ACKNOWLEDGMENTS

I would first like to thank my thesis advisors, Dr. Rami Haddad and Dr. Fernando
Rios-Gutierrez, for their help and guidance over the past year and a half — this work
would not be possible without them. I would also like to thank my thesis committee,
Dr. Rami Haddad, Dr. Fernando Rios-Gutierrez, and Dr. Frank Goforth, for their
time and input through the thesis process. I would especially like to thank Dr. Rami
Haddad for his very meticulous and thorough editing of my thesis.

I would also like to acknowledge and thank Georgia Southern University and
specifically the Electrical Engineering department for allowing me to conduct my
research and providing the resources I needed to successfully complete my work,
which was funded by the Georgia Southern University College of Engineering and
Information Technology 2014 Seed Grant.

I would especially like to thank Andrew Michaud for his technical advice and
helpful instruction and also for allowing me to take over his workspace while I was
building thirteen unmanned aerial vehicles.

My sincere thanks to my friends and church family who have helped and
invested so much in me.

Finally, I would like to thank God for giving me so many great opportunities,
granting me the knowledge and wisdom to be successful in my studies, and for keeping

me alive and well all these years.

vi

Table of Contents

ACKNOWLEDGMENTS

LIST OF FIGURES

1 INTRODUCTION
1.1 Communication
1.1.1 Satellite Communications
1.2 Multirotor Unmanned Aerial Vehicles
1.2.1 Stability and Efficiency
1.2.2 Conclusions

1.3 Contributions

2 LITERATURE REVIEW
2.1 Current Solutions
2.2 Portable Satellite Backhauling Solution

2.3 Emergency Communication System Based on IP and Airship

2.4 Feasibilityo

3 PROPOSED UAV COMMUNICATION SYSTEM
3.1 Hardware
3.1.1 Autopilot
3.1.2 Telemetry
3.1.3 GPS . .
3.2 Software
3.2.1 Python Application L.

3.2.2 User Interface

vii

vi

~N b~ W

10
10

12
12
12
15
17

3.3 System Operation

3.3.1 Launch Sequence

3.3.2 Fail-safes

4 RESULTS

4.1 System Performanceo
4.2 User Interface
4.3 Simulator

4.4 Remote Access o

4.5 Hardware Performance

4.5.1 Telemetry
4.5.2 GPS . .
4.6 The State of UAVs in the United States and the FAA

5 CONCLUSION

5.1 FUTURE WORK

BIBLIOGRAPHY

viil

43
43
44
45
46
49
49
50
20

52
52

54

1.1
1.2
1.3
1.4
1.5

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13

4.1
4.2

List of Figures

Satellite system. Source: Fultron 2007 5
Satellite orbits. Source: Harris CapRock 2014 6
Sun outage scenario. Source: Adams 2015 L. 6
Quadrotor motor rotation direction for basic flight. 8
Helicopter rotor pitch adjustments. Source: Sim 2009 9
e-Triage system overview. Source: Estrem and Werner 2010 15
Airship communication system. Source: Huang, Yu, and Hu 2010 . . 16
System Overview Lo 19
Assembled UAVs 20
3DR Autopilot 21
3DR Telemetry Radio. 23
3DR GPS Module 24
Main Control Loops 29
Finite-state Machine Implementation 29
State Diagramo 31
Cellular Concept 33
UAV formation with N =7 34
HTTP Polling vs WebSockets Bandwidth usage. Source: Lubbers, Al-

bers, and Salim 2011 39
Configuration Parameters 40
UAV launch sequence and configuration procedure. 41
HTML User Interface 44
Simulation output for one UAV 46

X

Simulation output for four UAVs 47

Simulation output for seven UAVs 47
Simulation output for seventeen UAVs 48
System control via HT'TP 48
UAV flying in PID tuning harness 49

Chapter 1

INTRODUCTION

Instant communication, whether wired or wireless, has come to be a vital and inte-
gral part of everyday life. Enabling this communication is a wide network of towers
and transmission lines covering most of the inhabited areas of the globe. During
normal operating conditions, this interconnected system provides the necessary ca-
pability to support the daily communication needs of the population, encompassing
personal, business, or emergency situations. One of the prominent features, and sub-
sequently one of the main problems with this type of network is that it relies heavily
on infrastructure. While advanced “wireless” devices like cellphones or other WiFi
devices may give the illusion of being wireless and independent, they still rely on a
wired infrastructure-based network; all of those cellphone towers are connected to a
backhaul trunk. This creates a very vulnerable and critical point of failure.
Infrastructure-based networks tend to be susceptible to major damage by nat-
ural disasters and other catastrophic situations. One example of such a situation
was Hurricane Katrina that hit the Gulf Coast in 2005. This hurricane was so de-
structive that it caused catastrophic damage to an area the size of Great Britain and
was, in some respects, the equivalent of a weapon of mass destruction (Miller 2006).
Hurricane Katrina delivered the most widespread critical infrastructure collapse of
any advanced country since World War II (Miller 2006). This infrastructure collapse
lead to a cascading of other failures which eventually lead to mass confusion and an
inability for emergency personnel to respond effectively to the problem at hand. Ac-
cording to Miller (2006, 192), widespread infrastructure collapse is one of the marker
elements that help differentiate “catastrophes” from “disasters”, which was exactly
the case in this situation. Hurricane Katrina is really a perfect example of the dev-

astation that natural disasters can have on infrastructure on a very wide scale. This

infrastructure collapse occurred over a wide area rapidly and almost simultaneously
— causing damage across multiple states (Miller 2006, 193).

The White House report (The federal response to Hurricane Katrina : lessons
learned. 2006) on Katrina stated that 911 emergency services were debilitated, nearly
three million customers lost phone service, and over 50,000 utility poles were de-
stroyed in Mississippi alone. In addition, over 50 percent of area radio stations and
44 percent of television stations were put out of service (The federal response to Hur-
ricane Katrina : lessons learned. 2006). According to the Federal Communications
Commission (FCC) panel on Katrina, much of the backbone network for land lines
was flooded out and cell towers were put out of commission (Miller 2006). The magni-
tude of the storm, Miller (2006, 193) states, was such that the local communications
system wasn’t simply degraded; it was, at least for a period of time, destroyed. Miller
(2006, 194) goes on to cite the "Independent Panel Reviewing the Impact of Hurricane
Katrina on Communications Networks” stating that Hurricane Katrina knocked out
more than three million customer phone lines in Alabama, Louisiana, and Mississippi.
Local wireless networks also sustained considerable damage — more than a thousand
cell sites were knocked out of service by the hurricane.

In addition to the communications infrastructure, destruction of the trans-
portation infrastructure was also prevalent. Destruction of roads and bridges meant
that repair crews were delayed and the replenishment of supplies and fuel for gener-
ators was almost impossible.

A second example of a catastrophic disruption of telecommunications net-
works was the World Trade Center attack in 2001. It took just minutes for the
telecommunications network to be overloaded. The attacks caused an overload of a
phone switch with over 200,000 lines, 20 cellphone towers, and 9 TV broadcast sta-

tions (Noam 2004). All of the aforementioned issues lend evidence to the fact that

essential telecommunications systems need to be decentralized in order to prevent
them from having a single point of failure.

Disaster Emergency Communications, according to the Federal Emergency
Management Agency (FEMA), is a specialized field within the broader field of emer-
gency communications (FEMA 2015). These emergency communications encompass
all the technical means that emergency personnel use to conduct their daily commu-
nications. Disaster emergency communications, on the other hand, refers only to the
technical means that will allow for “operable and interoperable communication before,
during, and after presidentially declared emergencies, disasters, or planned National
Special Security Events” (FEMA 2015). FEMA'’s Disaster Emergency Communica-
tions Division oversees Mobile Emergency Response Support (MERS) detachments.
According to FEMA (2015), the MERS teams are used to:

e Meet the needs of the government emergency managers in their
efforts to save lives, protect property, and coordinate disaster and
all-hazard operations.

e Provide prompt and rapid multi-media communications, infor-
mation processing, logistics, and operational support to Federal,
State, and Local agencies during catastrophic emergencies and
disasters for government response and recovery operations.

The MERS teams during Hurricane Katrina, though, had little impact dur-
ing the first few days after the hurricane landed. The federal response to Hurri-
cane Katrina : lessons learned. (2006) stated that ”The complete devastation of the
communications infrastructure left responders without a reliable network to use for

coordinating emergency response operations.”

1.1 Communication
There are many phases in emergency disaster relief encompassing activities such as
search and rescue, construction of temporary shelter, and distribution of food supplies.
At the core of all the stages of emergency disaster relief is a communications back-

bone. The United Nation’s report on the 2010 Haiti disaster reaffirms the importance

of communication in disaster relief when it states that according to humanitarian or-
ganizations, good communication has proven to be essential after each major disaster
of the modern era (Crowlely and Chan 2011). In addition to providing a very crit-
ical relief path in disaster scenarios, communications also help to connect and move
logistical, rescue, and first responder resources (Fultron 2007, 1). Typically one of
the very first steps during an emergency response is to set up a reliable means of
communication. This typically involves the deployment of wireless communications.
As earlier mentioned in the introduction, most wireless networks are actually based
around a wired infrastructure backbone network. This means they are easily sus-
ceptible to damage by disasters. In many disasters this infrastructure is destroyed,
such as during Hurricane Katrina, or is not available before the disaster. This leaves

infrastructure-independent communications as the only viable option.

1.1.1 Satellite Communications
Satellite communication is currently the best infrastructure-independent communi-
cation system available for use anywhere on the planet. On a basic level, satellite
communication works by relaying messages through an orbiting satellite between any
number of devices, as shown in fig 1.1. There are two primary satellite types avail-
able for use in communications: geostationary satellites (GEO) and low Earth orbit

(LEO) satellites (Fultron 2007, 1). These satellite orbits are illustrated in figure 1.2.

GEO Satellites

Located at an altitude of approximately 36,000km, geostationary (GEO) satellites
stay at a fixed position in relation to the earth. These satellites can cover up to a third
of the earth at a time and are typically positioned above the equator. Infrastructure
used with these GEO satellites ranges from the typical large satellite dish antennae

to mobile satellite phones.

Portable
VSAT
Terminal
Gateway or Hub .
Antenna
IP Fixed
Terminal
Satphone Q
Handheld

Terminal

§

ey

-

LAN Switch
Maritime VSAT ‘
Terminal Transponable
VSAT

Terminal

Figure 1.1. Satellite system. Source: Fultron 2007

GEO satellites are susceptible to an event called a sun outage, which is also
referred to as sun fade or sun transit. Since the equator is offset by 22.5 degrees, the
sun aligns with GEO satellites once in the spring and again in the autumn (Intelsat
2015). This phenomenon is displayed in figure 1.3. The thermal noise emitted by
the sun covers all frequencies, including those utilized by the satellites. Interference
occurs when the sun’s thermal noise perfectly aligns with a GEO satellite and its
corresponding receiver on earth. The noise created by this interaction is significant
enough to cause a temporary loss of reception due to the fact that the receiver cannot
distinguish between the sun’s energy and the communication signal (Intelsat 2015).
This intermittently over the course of two weeks starting with signal loss of a few
minutes to a maximum of 24 minutes, depending on position, during peak outage
time when the sun, earth, and satellite are perfectly aligned (Intelsat 2015).

Currently, there are almost 300 commercial GEO satellites in use (Fultron
2007, 1). These satellite networks are used constantly in many countries for providing
data sensor to government agencies regarding flooding and seismic activity, broad-

casting disaster warning notices, and facilitating communication between government

I Geostationary Orbit (GEQ) - 250-280 milliseconds

. Medium Earth Orbit (MEQ) - 110-130 milliseconds m

- Low Earth Orbit (LEO) - 20-25 milliseconds Static

In Motion

In Motion \

'\

Note: Not drawn to scale

Figure 1.2. Satellite orbits. Source: Harris CapRock 2014

agencies, relief organizations, and the public. The main drawbacks of GEO satellites
is that they have a very high cost of launching them into orbit, they have a very
long link distance (36,000km), and as a result have large propagation delays (Fultron
2007, 2).

Antenna
| Beam-Width

Figure 1.3. Sun outage scenario. Source: Adams 2015

Low Earth orbit (LEO) satellites operate at a much lower altitude in compar-

ison to GEO satellites, between 780km and 1,500km. LEO satellites are generally

free of the aforementioned issues of GEO satellites, having high bandwidth and very
short propagation delay times. The primary disadvantage of LEO satellites is that
unlike GEO satellites, they are not visible at all times from any single point on earth
and thus are usually not utilized in ”critical” applications.

Despite the aforementioned disadvantages, satellite communication is still an
important part of emergency communication. The primary advantage of satellite
communication is that it does not require any type of fixed infrastructure on earth
to function. After Hurricane Katrina, satellite phones worked and were effective but
they were very limited in quantity and eventually many ran out of battery (Miller
2006, 195). Satellite equipment is also not readily available and, for the more robust

systems, takes a significant amount of time to set up and configure.

1.2 Multirotor Unmanned Aerial Vehicles
Multirotor UAVs are comparatively very simple devices in the aeronautics world.
Their structure and dynamics are much simpler than conventional helicopters, making
them less complex to control (Gyou et al. 2013, 1). The name of a multirotor UAV
is typically related to the number of motors the UAV has. A quadrotor, for example,
has four motors while a hexrotor has six motors. This nomenclature is used for as
many motors as designed on the craft.

A quadrotor, the most basic multirotor UAV, has four rotors that run at very
high speeds in opposing pairs. Figure 1.4 demonstrates this principle. In order for
the UAV to achieve stable flight, the two motors on the x-plane have to spin in the
opposite direction of the two motors on the y-plane. This creates vertical lift which
then powers the craft.

The most basic quadrotor consists of a frame and propulsion system as afore-
mentioned, a flight control computer, and a ground control system. The flight con-

trol computer handles all the in-flight logic including controlling the motors and the

Figure 1.4. Quadrotor motor rotation direction for basic flight.

ground control systems is in constant communication with the quadrotor, sending
commands and receiving feedback (Gyou et al. 2013, 2). Navigation of a quadrotor

is done by varying the speed of the motors either individually or in pairs.

1.2.1 Stability and Efficiency

A common misconception around multirotor UAVs is that they are stable systems.
While simpler in design, multirotors are less stable and less efficient than regular
helicopters. Helicopters typically have two rotors, the main rotor and the tail rotor.
The main rotor of a helicopter adjusts its pitch as it spins in order to vector its thrust,
as illustrated in figure 1.5. This in combination with the trail rotor is what allows
helicopters to maneuver (Gao 2013). Multirotors, on the other hand, use fixed-pitch
blades that are directly coupled to motors. There are no rotor pitch adjustments
that have to be made. The controls that go into operating the rotors on regular
helicopters, though, are extremely complex —lending credence to the simplicity of
multirotors.

This raises the issue of stability. Multirotors, quadcopters in particular, are in-
herently unstable and are less stable than regular helicopters. Due to this instability,

they require a significant amount of electronic stabilization to fly. Flying an equiv-

Decreased Elade Pitch

In¢ reased Blade Pitch

_ Same as .
[I h IatHover _I“‘J"Z_J
Figure 1.5. Helicopter rotor pitch adjustments. Source: Sim 2009

alently sized helicopter with the same electronic stabilization system of a multirotor
would quickly prove that a helicopter is in fact more stable (Gao 2013). A quadrotor
stays airborne by individually adjusting the thrust of each propeller (speeding up or
slowing down the motor) in response to the calculations performed by the stabilization
system. Since speeding up and slowing down each propeller takes time and energy,
there is a time delay to how fast a multirotor can react. The bigger the propeller, the
more energy it takes to change speed. On the other hand, helicopters simply need
to change the pitch of their blades to change thrust, which requires significantly less
energy (Gao 2013). This is one of the main reasons that multirotors are only feasible

in relatively small sizes.

Efficiency

The biggest point of inefficiency for multirotors is having to continuously speed up
and slow down the propellers to maintain stability, which is not a factor in regular
helicopters. Larger and slower spinning propellers are in fact more aerodynamically
efficient than small fast-spinning propellers (Gao 2013). This is true because, accord-

ing to the formula for kinetic energy %va, it takes four times more energy to move

10

a mass of air at twice the speed (Gao 2013). This means that a larger slower moving
propeller such as that in a helicopter is more efficient than the smaller faster moving

helicopter in a multirotor.

1.2.2 Conclusions
While it is true that helicopters are inherently more stable and efficient than quadro-
tors, it’s important to note that this only applies when compared on a full-size scale.
On a small scale, as multirotors are typically built, the mechanical simplicity of mul-
tirotors makes them much more desirable and useful than helicopters. The point of
stability is also not an issue since multirotors are always equipped with stabilization.
The simplicity of design of multirotors makes them ideal for swarm operations and

also field operations due to the ease of maintenance.

1.3 Contributions
This work aims to provide a robust, quick to deploy GPS-based UAV platform that is
able to serve as an Ad Hoc temporary emergency communications network. Imagine
an emergency or disaster situation such as the aforementioned where the communica-
tions infrastructure is either completely destroyed or severely overloaded to the point
of uselessness. With this Ad Hoc, any number of UAVs could be brought in to the
affected area, connected to the Ad Hoc network via radio telemetry, and then after
passing automatic flight checks would be deployed over the area with a single click of
a button. The system would then control everything from positioning for maximum
coverage, re-configuring if a UAV is added or removed, and also responding to any
manual input from the operator via the provided interface. The main advantage of
this system is that it is extremely fast to deploy. This is quite an important factor
in emergency situations because it enables emergency responders to quickly estab-
lish reliable communication in an infrastructure-independent environment or heavily

congested environments. The main contributions of this work are:

11

e The presentation of a quadcopter UAV platform upon which an Ad Hoc com-

munications network can be deployed, regardless of protocol.

e A cross-platform application and algorithm to autonomously deploy and control

any number of UAVs in a hexagonal cell pattern.

e An interface to effectively monitor and control a swarm of UAVs.

Chapter 2

LITERATURE REVIEW

2.1 Current Solutions

To date there have been very few practical solutions offered, outside of military ap-
plications, to the issue of immediate emergency disaster relief communication. When
dealing with heavy congestion of cellular networks, the current approach is to bring
in portable cell phone towers on trucks typically called Cell on Wheels (COW). These
trucks, with telescoping poles and backup generators, can usually be found at venues
and events that draw thousands of people, such as football games and other sporting
events.

In addition to COWs, cell phone carriers also have trucks that carry emergency
equipment that allow for satellite communication. While these trucks satisfy the need
for infrastructure-free communication, they cost hundreds of thousands of dollars and
are few in number (Richtel 2009). The main theme among all these applications
involving COWs is that they are planned events. Most sporting events are planned
months ahead of time and provisions are made to handle such special situations.
Bringing in a COW to a disaster area could prove to be difficult due to the random
nature of such occurrences, damage to the transportation infrastructure, or just the
inability to navigate a large truck to a specific area.

There has been a recent effort to develop more robust and near instantaneous
disaster relief communications systems. Two examples in particular have offered some

solutions to this issue utilizing various wireless protocols.

2.2 Portable Satellite Backhauling Solution
A portable satellite backhauling solution for emergency communications was proposed

by Estrem and Werner (2010). This particular system was to be used as part of the

12

13

e-Triage project. The e-Triage project is sponsored by the German Federal Ministry
of Education and Research and is a system meant to electronically register victims
and distribute information among the medical and control centers in the case of an
emergency (Estrem and Werner 2010, 262). The overall goal was to make the triage
process easier and much more reliable for emergency responders (Estrem and Werner
2010, 262).

The e-Triage communication system, displayed in figure 2.1, primarily con-
sists of 3 parts which are of the actual triage end device, the distributed database
containing victim information, and the communication infrastructure (Estrem and
Werner 2010, 262). The end device can be something like a tablet or any device
used by triage personnel to interface with the system. Esteem and Werner’s paper
concentrated on the technical aspects of this system and designing a portable solution
that would encompass enabling global system for mobile communication with general
packet radio service (GSM/GPRS) and wireless local area network (WLAN) coverage
for first responders. The system was also designed to fit in a hand-luggage-size suit-
case (Estrem and Werner 2010, 262). Requirements for the e-Triage communication
system as described by Estrem and Werner (2010) were:

e Reliable and high bandwidth links with large coverage for voice
and data in the disaster area.

e High bandwidth links between disaster-safe and disaster areas.

e Portable by single person, also in rough terrain, to almost inac-
cessible places.

e Fast deployment and reliable.

e Scalable in terms of the dimensions of the MCI.

To accomplish this task, WLAN, GSM/GPRS, and Terrestrial Trunked Radio
(TETRA) were chosen as the communication protocols for voice and data. Voice was
set to be transmitted over the User Datagram Protocol (UDP) due to transmission
time being a higher factor over reliability and database traffic was transmitted over

TCP (Estrem and Werner 2010, 262). UDP is typically used for audio and video

14

applications because it does not have transmission overhead. It doesn’t have any
connection overhead or need to retransmit lost packets with error checking.

Due to the broad nature of the system, two solutions were developed. The first
of these was a portable, rapid deployment unit. This unit, though, did not offer all
technologies and a high data rate due to its small form factor. The unit was designed
to fit in a suitcase and as a result could not utilize full sized antenna and other more
advanced communications equipment. The second solution was a unit installed in a
command truck. This unit offered the full suite of technologies including a bigger
coverage area and a higher bandwidth satellite link (Estrem and Werner 2010, 263).
The first solution was, as earlier mentioned, portable and easy to deploy while the
second solution was not portable and was slower to deploy. The order of deployment
would be the portable unit first and then the command truck second.

The elements that comprised the communications equipment were the Emer-
gency Communications Suitcase (ECS) and the Coordination Point Communications
Equipment (CPCE). The ECS offered GSM/GPRS and WLAN and was connected
to the disaster-safe area though Inmarsat-BGAN networks [Estrem 263]. Inmarsat
is a British satellite telecommunications company that operates a satellite network.
The CPCE offered GSM/GPRS, WLAN and TETRA as was connected through ei-
ther proprietary VSAT or UMTS networks if available. This needed more time to
be deployed but had more coverage and robustness (Estrem and Werner 2010, 262).
WLAN and TETRA are more advantageous over GSM because they are still avail-
able when there is no external connectivity while GSM requires infrastructure with
external connectivity.

The operation of the system begins in the disaster area with the commu-
nications equipment (ECS or CPCE) being deployed and positioned for maximum

coverage. This is in conjunction with the end devices being provided to the rescue

15

Disaster & Disaster-Safe
Area T Area
- e-Triage Secure
Area
= \ - . Dabasa
\ ..‘ [0]
& iR
/ Satelita ()3
@ E round, Negtwork

s)

§ BGAN
/ WLAN AP Database

Router

; ECS Server Web

Figure 2.1. e-Triage system overview. Source: Estrem and Werner 2010

()

teams. The end devices communicate to the ECS or CPCE which then transmits the
data via satellite to an offsite location which distributes the information to hospitals.

Overall Estrem and Werner (2010) presented a robust and useful system for
medical personnel to more effectively register victims in disaster areas. The system
demonstrated the importance of satellite technology in infrastructure-free environ-
ments. Esteem and Werner noted that the integration of satellites with terrestrial
technologies is necessary to organize the re-establishment of a telecommunication

infrastructure in a post-disaster situation (Estrem and Werner 2010, 269).

2.3 Emergency Communication System Based on IP and Airship
Another solution to disaster relief emergency communication was presented in by Huang,
Yu, and Hu (2010) that consisted of a WLAN enabled airship as shown in figure 2.2.
This system was capable of providing real-time audio and video services over Wi-Fi.
Characteristics of this system included high bandwidth, large-scale coverage, rapid
and flexible deployment, and certain immunity to most disasters due to flying at high

altitudes (Huang, Yu, and Hu 2010, 1008).

16

For this system, a remote controlled airship (a blimp) was launched and used
as a relay or wireless bridge. This was a low altitude airship that cruised at approx-
imately 400m (Huang, Yu, and Hu 2010, 1009). The airship was acting as a bridge
between a transmitter source and a mobile monitoring car. For testing, the airship
was equipped with an outdoor carrier-grade wireless bridge, a power amplifier with
2 watts of output power, and an omnidirectional antenna (Huang, Yu, and Hu 2010,
1009). The airship antenna was mounted to the bottom of the airship. The wire-
less bridge itself operated in the 2.3-2.4 GHZ frequency band, utilized Orthogonal
Frequency Division Multiplexing (OFDM) and supported point-to-point and point-
multipoint links (Huang, Yu, and Hu 2010, 1009).

Remote-controlled Airship

s @) s

Wi-Fi

Figure 2.2. Airship communication system. Source: Huang, Yu, and Hu 2010

On the ground, another wireless bridge of similar specifications with a direc-
tional antenna was mounted on top of a building and connected to a local Wi-Fi
network. Also on the ground was a vehicle that was equipped with monitoring and
measurement equipment, another wireless bridge with a 2 watt amplifier, a broadband

directional antenna, and access to global positioning system (GPS).

17

Huang, Yu, and Hu (2010) concluded that this type of system is very feasible.
The main issue that was discovered was the fact that it was difficult to keep the airship
stationary. This along with the use of directional antennas created communication

issues that increased with distance.

2.4 Feasibility

The two aforementioned papers offer some intriguing solutions to the problem of in-
frastructure independent communication. The solution offered by Estrem and Werner
(2010) for use with the e-Triage system comes built in with options for a number of
communication protocols for use in the disaster area. These protocols all feed to a
central satellite link which then sends the data off-site. One of the drawbacks of
this system stems from it being a very specialized system designed for a specific ap-
plication in disaster relief, dealing with medical personnel cataloging victims. The
solution is tied to end devices which means that interfacing with the system from
any other communication device would be difficult. The e-Triage system is also more
focused on transmitting data one way into a database than with real time full duplex
communication.

Huang, Yu, and Hu (2010)’s work falls more in line with the proposed UAV
communications platform. Huang, Yu, and Hu (2010) essentially creates a roving
Wi-Fi network using an airship. While going to the air is an improvement over the
proposal by Estrem and Werner (2010), this solution falls short because it has no
provisions for load balancing and does not scale. The airship acts as a stationary
Wi-Fi repeater in the sky whose position greatly affects signal strength for both the
transmitter and receiver. Also as mentioned in the paper, maintaining a fixed position
with an airship proved to be an issue since the use of directional antenna meant that

the position of the airship was an important factor in maintaining connectivity.

18

The proposed UAV communications platform addresses the outlined short-
falls of the aforementioned solutions. This UAV system is simply a communications
platform. Unlike the works by Huang, Yu, and Hu (2010) and Estrem and Werner
(2010), this system leaves the choice of protocol to the operator meaning that it can
be used for almost any application. Since this system is based around quadrotor
UAVs, positioning and load balancing is as trivial as modifying the control algorithm
based on the protocol of choice. Unlike the airship solution, these UAVs are able to
hold a position accurately and can quickly move to respond to changing variables.
Lastly, the UAV platform proposed in this work scales very easily because the control

algorithm can seamlessly add or remove UAVs to the system on the fly.

Chapter 3

PROPOSED UAV COMMUNICATION SYSTEM

The UAV communication platform as a whole contains three distinct layers: the hard-
ware layer, the application layer, and finally the presentation layer as shown in fig-
ure 3.1. Between these three layers are two transport layers that utilize the MAVLink
and WebSockets protocols. The hardware layer consists of the actual UAV, autopilot,
and all associated hardware. The application layer consists of the control logic and

algorithm. Finally, the presentation layer consists of the user-facing interface.

Presentation -
Layer [HTML Interface / Angular.js
A

Transport

Layer WebSockets

—A—

Application

Layer Python Backend

—_——
>

Transport)

Layer MAVLink
Hardware

Layer Pixhawk / ArduCopter

Figure 3.1. System Overview

3.1 Hardware
One of the important points to note about this work is that, barring a few compat-
ibility criteria, the hardware is to be viewed as a black box. The hardware simply
has to be compatible with the standard MAVLink protocol message library and have
a working GPS. Compatibility with MAVLink in this case also means that the hard-

ware has the standard sensors required in a UAV including an inertial measurement

19

20

unit (IMU), compass, and basic voltage monitoring. This hardware includes the ac-
tual UAV and any communication equipment that will be utilized for the required
application.

The hardware layer of this system is the physical platform upon which a com-
munications network would be built. The primary hardware used for this system
consists of identical quadrotor UAVs assembled using custom parts from various man-
ufactures, such as 3D Robotics, as opposed to being bought as a single product. In
addition, they were assembled to be as minimalistic as possible, having only compo-
nents and features essential for safe operation and flight. Each UAV was configured in
a standard X-frame quadcopter design shown in figure 3.2. This type of configuration
features two sets of brushless DC motors with counter-rotating propellers for a total of
four motors. The fully assembled hardware for each UAV consisted of, in addition to
the frame: a Pixhawk autopilot, 915 MHz telemetry radios by 3D Robotics (3DR), an

RC receiver for manual control, a GPS unit by 3DR, and power monitoring circuitry.

Figure 3.2. Assembled UAVs

21

3.1.1 Autopilot
The primary controller of each UAV was the Pixhawk autopilot system. This autopi-
lot module, shown in figure 3.3, offers a complete flight stack running on powerful
hardware. Partial specifications for the Pixhawk autopilot include a 32-bit ARM Cor-
tex M4 processor equipped with a 32-bit STM32F103 fail-safe co-processor, a 3-axis
16-bit gyroscope, a 3-axis 14-bit accelerometer and magnetometer, a barometer, and
a number of other redundant sensors and systems (Pizhawk Autopilot System 2015).
In addition to these sensors, the Pixhawk also provides a number of ports, buses,
and inputs / outputs. Running on top of the Pixhawk hardware is the open source
ArduCopter flight controller (ArduPilot 2015). The ArduCopter flight controller was
used because it is one of the most mature open source flight controllers and has a

very active community.

Figure 3.3. 3DR Autopilot

In addition to the standard stabilization and manual controls found in most
flight control software, ArduCopter also has a number of very useful autonomous

features which make it ideal for this specific application. ArduCopter works primarily

22

through the use of modes. Modes, as the name suggest, put the flight controller into
a number of predetermined operating conditions. The “Altitude Hold” mode, for
example, allows the UAV to hold its current altitude regardless of external forces or
manual inputs. ArduCopter has a number of important modes which are utilized in
this system such as, Loiter, which allows the UAV to hold its position using GPS
and altitude data, and Return to Launch (RTL), which recalls the UAV to its launch
coordinates and either hovers at a predetermined altitude or lands. ArduCopter also
allows the UAV to take off and land autonomously. All these features, including
the extremely thorough documentation, made ArduCopter the ideal flight control

software to use in this system.

3.1.2 Telemetry
MAVLink is a very lightweight header protocol first released by Lorenz Meier in
2009 (MAVLink Micro Air Vehicle Communication Protocol - QGroundControl GCS
2015). MAVLink is the most used protocol among the open source UAV community.
This protocol has only 8 bytes overhead per packet and comes with built-in packet-
drop detection. The low overhead makes it quite idea for User Datagram Protocol
(UDP) and UART /radio communication (Meier et al. 2011, 2994). The MAVLink
protocol utilizes an XML-based common message library which can be compiled to
other languages in order to facilitate compatibility among multiple platforms. While
MAVLink does have a standard message library primarily distributed as a header-only
C library, custom messages can be implemented through XML using a generator. The
MAVLink protocol is licensed under LGPL, meaning it can be used royalty-free in
both open and closed source applications. Radio telemetry operated in the 915 MHz
ISM band through radio pairs developed by 3DR. These radios, shown in figure 3.4
have been specially developed for use with drones, both land and air-based, and come

already optimized for handling MAVLink packets. These 3DR radios also utilize open

23

Figure 3.4. 3DR Telemetry Radio

source firmware and are open to modification. Each UAV was equipped with one of
these radios which was then paired to another radio connected to the ground station.
A number of factors guided the selection of a suitable system for radio telemetry,
mainly regarding the handling of cross-radio interference and packet loss detection.
The fact that MAVLink, as earlier mentioned, has built-in error checking alleviated
the concern about packet loss, which left interference as the main consideration.
These radios utilize frequency hopping spread spectrum (FHSS) as well as adaptive
time division multiplexing (TDM), allowing for full duplex communication. This
also allows for each radio set to transmit only to its paired counterpart within the
915 MHz range, giving up to 50 available channels in this industrial, scientific, and
medical (ISM) band. While operating on a particular frequency within the band, the
radios utilize Gaussian frequency-shift keying (GFSK) (ArduPilot 2015). While the
firmware on the radios supports a multi-point setup (a many-to-one configuration)
using individual radios allowed for more bandwidth for each UAV.

Since this system was developed around a central processing hub, the main
limitation is that each UAV needs to be within radio range of the ground station,
or receiving antenna, as opposed to a more traditional mesh network which requires

each node to only be within range of another node. The primary implication of this

24

scenario is that the transmitting power of the radio has to be significant for long
operating distances. Adjusting for range with the 3DR radios was a simple matter of
configuring the duty cycle, data rate, and power level, which can range from 1dBm
to 20dBm (ArduPilot 2015). Adjusting these parameters can allow for a range of a

few kilometers without major hardware changes.

3.1.3 GPS
Since this is an outdoor system, having a reliable GPS was crucial; the system fully
relied on GPS for localization. The 3DR ublox LEA-6H GPS module, displayed in
figure 3.5, was used in this application. This GPS module, with a built-in compass,
provides a fast high performance GPS with fairly high accuracy for a civilian system,

which is especially useful for position-hold situations. A few important features of

Figure 3.5. 3DR GPS Module

this GPS are that it utilizes an active ceramic patch antenna, has a backup battery,
extremely fast warm starts, and operates at a 5Hz refresh rate. Finally, this GPS
module has an accuracy of 2.5m Circular Error Probability - meaning that it will be
within a 2.5m radius of the true measurement at least 50% of the time (U-blox 2012,

2).

25

3.2 Software

The most important part of this system is the software-based control application.
Portability and fast deployment are the overarching design ideas for this system.
This implies that the operating software needs to be able to run on a multiple of
platforms with minimal setup and compatibility issues. With that idea in mind, the
traditional approach to such a problem had to be abandoned and re-imagined in a
more tactical sense. Typically, this type of system would be implemented using a
compiled language such as C or C++ due to their fast nature and overall time-tested
reliability. The issue with using such a language, though, is that it is very system-
dependent, not very cross-platform, and quite cumbersome to quickly modify due to it
being a compiled language. Depending on which system they are running, compiled
languages can also have very difficult to resolve dependency issues. These factors
contributed to the shift of focus unto an interpreted language such as Perl or Python,
from which Python was chosen as the primary language of choice for the system.

Python is an interactive object-oriented language that provides high-level data
structures including lists and associative arrays (referred to as dictionaries), modules,
classes, automatic memory management, and a host of other features (Sanner 1999,
3). One of the biggest draws to Python was that it features an extremely simple and
friendly syntax. The primary factor for the choice of Python for the system, though,
was that it can run on almost any modern computer, regardless of the operating

system.

3.2.1 Python Application
The Python control application, also referred to as the server in this system, utilized
a number of Python libraries (called packages). The most important package used in
the development of the application was the pymavlink package. This package han-

dled the very important task of implementing the MAVLink protocol in the Python

26

environment. Having this package allowed for the control application to communi-
cate fully with the hardware through the serial port and the 3DR telemetry radios.
The MAVProxy package, developed by Andrew Tridgell, was also important to the
development of this application (MAVProzy 2015). MAVProxy provided very useful
functions that assisted with interfacing the control application with the UAVs more
efficiently.

The control application has three parallel main threads. The first thread is a
hardware communication thread that listens for data coming from all the connected
UAVs and sends commands to them as initiated by the operator or the control algo-
rithm. Once a UAV is connected to the system by the operator, an instance of the
Drone() class is instantiated and at the same time stored in a global drones list. This
class encapsulates all the required data and also prepares a packet of that data ready
to be sent to the HTML user interface (UI). This packet includes information such

as GPS coordinates, altitude, estimated distances, and mode as shown:

def packet(self):
obj = {}
obj["id"] = self.id
obj["gps"] = [self.lat, self.lon]
obj["gps_fix"] = "No GPS Fix" if self.fix_type != 3 else "GPS Fix"
obj["sats"] = self.satellites_visible
obj["home"] = self.home
obj["alt"] = self.alt
obj["alt2"] = self.config_alt
obj["mode"] = self.flightmode
obj["armed"] = "Disarmed" if self.isArmed is False else "Armed"
obj["dest"] = self.destination
obj["dist_to_home"] = self.dist_to_home
obj["dist_to_dest"] = self.dist_to_dest
obj["voltage"] = self.battery_voltage
obj["waypoint"] = self.last_waypoint
obj["batt"] = self.battery_remaining
obj["port"] = self.port
obj["state"] = self.state
obj["1link"] = "Link" if self.link_error is False else "Link Error"
return obj

27

The Drone() class also subclasses the Commands() class which houses, as
methods, all the system commands that are sent to the UAVs.

Within each command method is an implementation of the MAVLink protocol
through pymavlink. Included in the command set are the three essential commands

takeoff(), goto(), and land(), with the takeoff() and goto() commands shown below:

def takeoff(self):
self .mode("Stabilize")
"""Take off to the provided altitude"""
alt = self.module.config_ alt
if alt is not None:
altitude = float(alt)
self .master.mav.command_long_send(self.master.target_systen,
self .master.target_component,
mavutil.mavlink.MAV_CMD_NAV_TAKEQOFF,
0, 0, 0, 0, 0, 0, O,
altitude)
logging.debug("Taking Off...")

def goto(self, 1):
if 1.is_relative:
frame = mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT
else:
frame = mavutil.mavlink.MAV_FRAME_GLOBAL
self .master.mav.mission_item_send(self.master.target_system,
self .master.target_component,
0,
frame,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT,
2, 0, 0, 0, 0, O,
l.lat, 1.lon, 1l.alt)

The second thread of the control application listens for commands from the
HTML interface. Two Python packages were used for this communication. The first
package was called Flask, and serves the important purpose of exposing the control
application as a server over the HT'TP protocol. The second Python package utilized
was the Flask-SocketlO package. Flask-SocketlO worked in tandem with Flask to

enable the control application to use WebSockets. This allowed the application to

be accessible through a standard URL and thus could be accessed via WebSockets

28

— allowing for real-time full-duplex communication between the control application
and the HTML interface (Bupe, Haddad, and Rios-Gutierrez 2015, 4). The third
and central thread of the control application was the main loop thread that handled
the autonomous deployment and positioning of all the UAVs. Within this thread
was another loop that ran at 1Hz. The main thread ran the primary control loop,
illustrated in figure 3.6a. This loop handled all the administrative tasks and ran
various system checks and tests. Within this loop was the second periodic loop,
illustrated in figure 3.6b and shown below, whose purpose was to calculate the desired

positions of the UAVs based on the number of connected UAVs and the system center.

def periodic_tasks(drones):
"""Periodic tasks"""
global center
if center is not None:
if cluster_period.trigger(): # calculates destinations
swarm.clusters(separation, center, drones)

if heartbeat_send.trigger():
for n in drones:
n.commands.send_heartbeat ()

if heartbeat_check_period.trigger():
for n in drones:
n.check_link()

if sendPeriod.trigger():
packet = []
for n in dronmes:
packet.append (n.packet())
socketio.emit(’status’, {’data’: packet})

This loop also handled sending heartbeat messages to the connected UAVs
and checking link status.

Autonomous control of the system was achieved primarily by the use of a finite-
state machine (FSM). Using an FSM allowed for the control of the entire system

to be broken down into smaller and more manageable states, which simplified the

Check for Connected
Drones

!

Verify Serial Connections

!

Verify Current State

!

N— Run Period Tasks

(a) Drone Control Loop

Figure 3.6. Main Control Loops

29

— Calculate Positions

!

Send Heartbeat

!

Check Link Status

!

_—1 Send Packet to Frontend

(b) Periodic Control Loop

overall codebase and made it more modular. Each connected UAV resulted in the

instantiation of an FSM, which worked independently from the other FSMs. All the

FSMs were monitored by a central process that then controlled the fleet based on the

states of all the FSMs. The FSM was implemented in the Python application in an

object-oriented manner using classes and objects as shown in figure 3.7.

SwarmFSM() State()
goto()
State interface takeOff()
land()
hold()
LandedState() TroubleState() OperationState() ConfigState()] [AscentState()] [DescentState()
goto() goto() goto() goto() goto() goto()
takeOff() takeOff() takeOff() takeOff() takeOff() takeOff()
land() land() land() land() land() land()
hold() hold() hold() hold() hold() hold()

Figure 3.7. Finite-state Machine Implementation

On a high level, an FSM allows an object to alter its behavior when it’s internal

state changes. The object will then appear to change its class (Gamma et al. 1994,

338). The control FSM contained a total of six states:

e Landed

30

Trouble

Operation

Configuration

Ascent

Descent

These states encompass all the operating conditions of the system. Each one
of these states is represented by a unique class which inherits properties from a main
state class. Because of that, these state classes all share the same methods even
though the behavior of the methods is unique for each class. The class names are
LandedState(), TroubleState(), OperationState(), ConfigState(), AscentState(), and
DescentState(). Each of these classes has four common methods: goto(), takeOff(),
land(), and hold(). Depending on the containing class, each one of these methods
performs a different task in accordance with the state diagram in 3.8. For example
calling the takeOff() method while in the LandedState() class will cause the UAV to
begin the takeoff sequence and then transition the FSM to the Ascent state. On the
other hand, a call to the same takeOff() method while in the OperationState() class
will not have any effect since the UAV is already in the air and does not need to take

off — no transition happens in this case.

Finite-State Machine Class

The main controlling class for the FSM is called SwarmFSM. The SwarmFSM class
does all the heavy lifting in regard to the operation of the FSM. This class is initiated
with instance variables that are actually objects of the corresponding state classes as

shown:

def __init__(self, drone):
State Machine Variables
self.landedState = LandedState(self, drone)

self.troubleState = TroubleState(self, drone)

31

Fail-safe

Completed

Completed

Figure 3.8. State Diagram

self.operationState = OperationState(self, drone)
self.configState = ConfigState(self, dromne)
self.ascentState = AscentState(self, drone)
self.descentState = DescentState(self, drone)

self.state = self.landedState # Initial State

The SwarmFSM() class includes an important instance variable called state
which represents the current state of the FSM and holds an object of the currently
active state class.

The SwarmFSM() class also holds a number of important getter and setter
methods. The purpose of these methods is to handle getting and setting states in the
main FSM class from the state classes. Each state in the FSM has a corresponding
getter method, such as getLandedState(), which returns the corresponding instance
variable and thus the state object. There is only one setter method, setState(), which
receives a state object and then assigns that state object to the state instance variable,

thus changing the state of the FSM. The getter and setter methods are called only

V)

32

from the state classes. For example, changing the state of the FSM to the Ascent
state would be achieved by calling the setState() method with the getAscentState()

method as an argument, such as:

def takeOff (self):
self.drone.commands.takeoff ()
self.fsm.setState(self.fsm.getAscentState())

Clustering
The positioning algorithm is based on the traditional cellular reuse concept that uti-
lizes hexagonal cells in a honeycomb patter. This cellular concept was first introduced
by V.H. MacDonald in 1979 (MacDonald 1979). What MacDonald and his team at
Bell Systems sought to accomplish was figuring out a means of more effectively using
the allocated bandwidth and spectrum to handle a larger subscriber base and overall
improve the quality of service to customers using the limited available resources. The
solution to this issue was to arrange cellular base stations in a honeycombed hexagon
pattern, such that frequencies could be reused in an effective and more predictable
manner by making sure that no two adjacent cells use the same frequencies. The
hexagon was used as a base shape because in terms of coverage, it costs less than
triangular or square cells due to the hexagon having a larger area when the shapes
all have the same center-to-vertex distance (MacDonald 1979, 20).

There are a number of equations that govern this cellular concept, with the

first being the determination of the cluster size, N. The cluster size is defined as

N =4 +ij+ 5 (3.1)

with ¢ moving along any chain of hexagons and j moving along any chain of
hexagons at an angle 60 degrees counter-clockwise to 7. As shown in figure 3.9b and

using 3.1, N =7 when i = 2 and j = 1.

33

(a) Hexagonal Cell (b) Cell layout with cluster size N =7

Figure 3.9. Cellular Concept

Normalized to the size of each hexagon, the reuse distance, which is the shortest

distance the same frequency can be used, is illustrated in figure 3.9 and is defined by:

D =+V3NR (3.2)

Using Eq. 3.2 the radius of each cluster can be defined as:

Re = \% (3.3)

This concept is the principle idea behind how the positioning algorithm works
since this application is a platform for a communications system. Initially, the algo-
rithm begins by receiving a list of all the currently active UAVs in the system, the
operating center point of the system, and the radius of each cell as variables. The
system then calculates the locations for the superposed of each cluster of 7 by calcu-
lating corner points on a hexagon in a clockwise fashion around the system center,

increasing the radius after 6 iterations. These points are based on the total number

34

of UAVs in operation. After calculating these points, each of the nodes then becomes

the center of another cluster of 7.

Figure 3.10. UAV formation with N =7

The actual calculation of the position is achieved by extrapolating the new
coordinated based on the current point, distance to travel, and bearing, as shown in
Eq. 3.4 and Eq. 3.5 where ¢ is the latitude, A is the longitude, 6 is the bearing, and
0 is angular distance calculated by % with d being the distance to travel and R the

radius of the earth:

@9 = arcsin (sin(pq) cos(d) + cos(py) sin(d) cos(6)) (3.4)

Ao = A\ + arctan 2(sin(#) sin(6) cos(p1), cos(d) — sin(¢q) sin(p2) (3.5)
These two equations were implemented in Python as:

1 def gps_newpos(lat, lon, bearing, distance):
2 ??2extrapolate latitude/longitude given a heading and distance

10

11

12

13

14

35

thanks to http://www.movable-type.co.uk/scripts/latlong.html

)23

latl = math.radians(lat)
lonl = math.radians(lon)
brng = math.radians(bearing)

dr = distance/radius_of_earth

lat2 = math.asin(math.sin(latl)*math.cos(dr) +
math.cos(latl)*math.sin(dr)*math.cos(brng))
lon2 = lonl + math.atan2(math.sin(brng)*math.sin(dr)+*math.cos(latl),

math.cos(dr)-math.sin(latl)*math.sin(lat2))
return (math.degrees(lat2), wrap_valid_longitude(math.degrees(lon2)))

By simply repeating this process, an infinite number of nodes can be generated
by the algorithm that conforms to this hexagonal pattern. If a UAV drops out of the
system, the pattern is simply shifted by one at the point closest to where the UAV
dropped out. Adding a UAV to the system sends the UAV to the next available
position in the system. Each UAV is assigned a unique incremental numeric node ID
when connected to the system which the algorithm uses for identifying the UAV in
the pattern. By changing the ID of interest, the entire system can move and rearrange
itself dynamically. If, for instance, a UAV at a particular node ID has a low battery,
the UAV would be recalled and a different UAV would be assigned to its node ID
position, thus replacing it in the system. The algorithm can also shift all the node

IDs by one, moving all the affected UAVs together as a system.

3.2.2 User Interface
The Ul for the system was developed as a web browser-based system utilizing JavaScript
as a programming language, Hypertext Markup Language (HTML) as a markup lan-
guage, and Cascading Style Sheets (CSS) as a descriptive/stylistic language. These
three languages and descriptors comprise the three main parts of any web applica-

tion: the functional logic layer (JavaScript), the visual markup/presentation layer

(HTML), and the styling/aesthetic layer (CSS).

36

The HTML code was used for laying out the visual structure of the interface.
HTML consists of various elements called tags which feature words enclosed in angle
brackets, usually appearing in pairs. The text appearing between these tag pairs is
then interpreted by the browser based on the meaning of those tags. A paragraph
of text, for example, would be enclosed within a starting tag <p> and then finished
with a closing tag of </p>. Closing tags are always have a back slash. These tags
are never actually displayed on a webpage — the browser just uses them to formulate
the content on the webpage. In the development of this system, HTML was used to
mark out the areas of the interface that displayed the map, the individual controls
for each UAV, as well as the system-wide controls and overrides.

A CSS script was used to handle the styling of all the HTML elements on the
page. CSS provides an important separation between the content, HTML, of the web
page and the formatting. At its core, CSS is simply a list of rules that govern how
all the HTML elements are styled on a web page. A typical rule for the <body> tag
looks like:

body {
font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;
font-size: 14px;
line-height: 1.42857143;
color: #333333;
background-color: #ffffff;

This rule does a number of things. First, it targets the body element which
represents the entire web page. The second line sets the fonts used on the page. The
third line sets the size of the font on the page. The fourth line dictates the line-height,
or the space the between lines, of the page. The fifth line sets the color of the text
on the page using a hexadecimal value. The final line sets the background color of
the page, once again using a hexadecimal value. By creating more rules like this, the

entire page can be easily styled independent of the actual text content on the page.

37

The logic behind the UI was handled by the JavaScript programming language.
Unlike HTML and CSS, JavaScript is a dynamic language, as opposed to a compiled
language, and thus executes at runtime. The JavaScript for the Ul had the tasks
of receiving information from the Python application, handling all events from the
HTML frontend, updating the map, and finally sending commands back to the Python
application. A JavaScript library called AngularJS was used to help dynamically load
content in the HTML frontend with the incoming data from the Python application.
The AngularJS code listened for any incoming data and upon receiving new data
would update the content on the HIT'ML frontend without reloading the page. This
provided for the real-time display of data. Communication between the JavaScript
script and the Python application was facilitated by WebSockets.

Communication over the World Wide Web, or simply the web, most com-
monly relies on the Hypertext Transfer Protocol (HTTP). HTTP by definition is
an application-level protocol for distributed, collaborative, hypermedia information
systems (W3 2015). This protocol has been one of the well-recognized protocols on
the web due to the fact that it begins every uniform resource locator (URL), such as
in http://www.google.com. HTTP has been extremely effective in most usage sce-
narios on the web with the exception of real time full-duplex communication, which
is needed in applications such as real-time data feeds, group communication, and
teleconferencing (Rakhunde 2014, 15). In fact, HT'TP was not designed for real-time
full-duplex communication due to the limited technological applications at the time
the standard was created (Pimentel and Nickerson 2012, 45). Until recently, there
were two popular ways of having real-time or near real-time HTTP communication:
HTTP polling and HTTP long polling.

HTTP polling can best be described as a “call and response” in which one side
initiates communication and the other side responds. This communication happens at

aregular time interval A called the polling interval (Pimentel and Nickerson 2012, 46).

38

The workflow then becomes the client sending a request to the server for information
and the server responding with the information if it exists or returning an empty
request otherwise. Sometimes the server can be set to not respond if there is no
new data. The main issue with this technique is that it initiates a large number
of requests regardless of whether there is data. If the polling interval, A | is really
small, this process can generate such a large amount of traffic that it would slow down
communication for other parts of the application, and lead to increased latency. Long
polling comes as a solution to the aforementioned issues with polling. In long polling,
the server does not return anything if there is no new data on the server. Instead, the
server simply keeps the connection open until it gets new data to send to the client;
the server usually also has a timeout period after which it closes the connection. This
technique greatly reduces the number of requests as compared to the interval-based

polling technique.

HTML5 WebSockets

The HTML5 WebSockets protocol has emerged as the clear solution to the lack of real-
time full-duplex communication. This protocol allows for fast real-time full duplex
communication over the web on a single socket. WebSockets has been standardized
by the Word Wide Web Consortium (W3C) as well as the Internet Engineering Task
Force (IETF) and is supported by all the major web browsers including Chrome, Fire-
fox, Safari, and Opera (Rakhunde 2014, 15). Communicating over WebSockets con-
sists of two parts: the handshake and then the transfer of data. The most important
event to happen during the handshake is that the server upgrades the connection from
the HTTP protocol to the WebSockets protocol. After the handshake is complete,
data then begins to flow in full-duplex using either text or binary frames (Rakhunde

2014, 16). As shown in figure 3.11, the WebSockets protocol is significantly more

39

efficient than HTTP Polling. This protocol greatly simplifies real-time full-duplex

communication in a web browser.

700,000,000

600,000,000

B Polling A
B Web Sockets

500,000,000

400,000,000

Bits per second

300,000,000

200,000,000

100,000,000

o — -

Use Case A Use Case B Use Case C
B 6,968,000 M 69,680,000 M 696,800,000
® 16,000 = 160,000 ® 1,600,000

Figure 3.11. HTTP Polling vs WebSockets Bandwidth usage. Source: Lubbers, Albers, and
Salim 2011

3.3 System Operation
The process control for the system begins with standard pre-arm hardware checks.
This consists of checking the UAVs for any loose wires, broken or cracked frames and
propellers, and insuring that the batteries are properly secured. Upon completion
of these checks, a physical safety switch must be engaged before the UAV can arm.
This safety is built in the Pixhawk autopilot to ensure that the UAV has been phys-
ically attended to before flight. On the software-side, pre-arm checks are conducted
automatically and include ensuring that a good GPS lock is acquired, all electronic
speed controllers (ESCs) are calibrated, and all essential sensors are functional and
calibrated. Most of these checks happen as part of the ArduCopter flight control

software and can be configured to be checked automatically.

40

3.3.1 Launch Sequence

The launch command for the system can only be initiated from the interface after
the required configuration parameters have been set and verified. The configuration
parameters that are set from the control interface are the central operating coordi-
nates for the system, the GPS fence radius, the GPS height ceiling, the separation
distance between the UAVs in the formation (hexagonal cell radius), and the oper-
ating altitude as depicted in figure 3.12. Once the configuration parameters are set
then each connected UAV is then ready and added to the master UAV list for use in
the swarming formation.

—
18— LY

SWARM CONTROL #*Config | B Launch oRIGNEL

[N Configuration
Armed GPSFix ALT: 21.6m / <]
Loiter Operation DIST:
94% 1.6V CcoM1
DEST: 32.4042886, -81.7892413

Diearm Op. Height (m) Ceiling Height (m) Fence Radius (m) Sim. Number
50 500 7

Center (lat) Center (lon) Separation Distance (m)

32.4042886 -81.7892413 400

Armed GPS Fix ALT; 19.6m
Loiter Operation

95% 113V f Set Config

DEST: 32.4078819, -81.7892413

Armed GPS Fix ALT: 21.2m
Loiter ‘Operation DIST:

96% 15V COM3
DEST: 32.4066852, —81.7855554

Armed GPS Fix ALT: 19.5m
Loiter Operation DIST:

98% 114V COM4
DEST: 32.4024919, -81.7855556

Armed GPSFix ALT: 19.9m
Loiter Operation DIST:
99% 105V COM5

; / P =3
Map data 2015 Google Imagery ©2075, DigitalGlobe, US. Geological Survey, USDA Farm Service Agency | Terms of Use | Report amap ermor

Figure 3.12. Configuration Parameters

Upon launch, each UAV will fly straight up to its configuration altitude as
shown in figure 3.13b. The configuration altitude is a height unique to each UAV
that is used whenever the UAV has to travel from one position to another and is au-
tomatically assigned by the system. Since the height is unique and the UAVs travel

laterally, there is no risk of collision when the UAVs are in the air. Upon reach-

41

Front View Front View Top View
1 2 2
(a) UAVs ready for launch. (b) UAVs at configuration alti-(c¢) UAVs at configuration alti-
tudes. tudes.
Top View
3

P

< X

P

< K

P

(d) UAVs in final formation.

Figure 3.13. UAV launch sequence and configuration procedure.

42

ing the configuration altitude each UAV then travels to its destination coordinate,
maintaining the configuration altitude shown in figure 3.13d. Once each UAV is at
its destination coordinate, it will then settle to the global operating altitude for the
system and remain there until otherwise commanded. For any time that a UAV in
the system needs to change its position, it first climbs or descends to its configuration

altitude before traveling to the new destination in order to avoid collisions.

3.3.2 Fail-safes
The system has been developed to incorporate a number of redundant fail-safes that
are loaded to each UAV upon initiation. Most of these fail-safes are already built in

the ArduCopter flight control software. Included fail-safe triggers are:

e Radio telemetry loss

GPS signal loss

Low battery

Height ceiling breach

GPS fence radius breach

The radio telemetry loss fail-safe is activated when the UAV does not receive
a heartbeat packet from the groundstation for a set period of time. The battery
fail-safe is triggered when the current and voltage sensors connected to the battery
measure and estimate the remaining power to be below a set threshold. The GPS
fail-safe simply checks if the current position is within a specified circle. With the
exception of the GPS fail-safe, when these fail-safes are triggered they will recall the
UAV back to its launch coordinates and land for evaluation. The loss of GPS, though,
will trigger a wait period to try to regain a GPS lock and then will force the UAV to

land if a GPS lock cannot be acquired.

Chapter 4

RESULTS

4.1 System Performance
Software performance was the primary concern when dealing with the Python pro-
gramming language since it is one of the slower programming languages, especially
when compared to compiled languages such as C and C++. Since Python supports
CPU threading, that technique was utilized in optimizing the performance of the sys-
tem. The initial approach to dealing with the multiple UAVs connected to the same
host was to create a new thread (thread of execution) for each connected UAV. This
would effectively solve the issue of trying to multiplex serial connections. In essence,
each new object of the Drone() class is created in a separate thread. Testing this
approach on a 24-core HP Z820 workstation showed no drop in performance nor any
increase in CPU usage. On the other hand, running the same application on a lap-
top with limited resources started showing signs of degraded performance and a very
noticeable increase in CPU usage over time as more threads were created; this lead
to the abandonment of the individual threading idea. The more optimized approach
was to use a total of only four threads for the entire system, representing the top level
responsibilities of the application. The first and main thread handled all interactions
between the HTML interface and the Python application. The second thread handled
all the miscellaneous tasks and system checks that monitored the application. The
third thread’s responsibility was to handle the FSM that autonomously controlled
the system. The fourth and final thread handled all the interactions with the UAVs;,

including sending commands and receiving data from the telemetry radios.

43

44

4.2 User Interface
The user interface, illustrated in figure 4.1, was a very efficient way of managing
multiple UAVs. Built into the system was a simulator that was able to show the final
position of any number of UAVs based on a coordinate of the central location.

P —
18 re—— LY

SWARM CONTROL £+ Config | P Launch EoRLNEN

ADD DRONE

Figure 4.1. HTML User Interface

Included in the HTML interface were individual controls for each UAV as well
as the buttons to start the launch sequence. The interface is made up of three main
parts: the header, the sidebar, and the map area. The header, located at the top,
contains the system-wide controls and configuration options. These controls include
buttons for setting the system configurations, running a simulation, launching the
UAVs, and recalling the UAVs. The sidebar displays a list of all connected UAVs with
important status information about each UAV such as altitudes and battery levels.
In addition, the sidebar controls allow for the mode of each UAV to be changed as

well as arming and disarming the UAV. The map area displays the UAVs as icons on

45

the map and allows the position of any UAV to be adjusted by simply dragging and
dropping it on the map.

The process of adding a new UAV to the system simple consisted of connecting
the telemetry radio to a USB port on the computer and then selecting the new device
in the dropdown menu as shown in figure 4.1. This menu automatically generates a
list of all the occupied serial ports on the computer and updates the list upon clicking
of the refresh button. The main area of the interface is occupied by a map overlaid
with an icon of each connected UAV. Each of these UAVs can be manually positioned
by dragging its icon and dropping it to a new position. Initiating the launch sequence

is just a matter of clicking the Launch button as shown in figure 4.1.

4.3 Simulator
A simulator was created to test the positioning algorithm as well as how the system
responded to changes in the system center. The simulator was created as a part of
the Python application codebase and was activated using the user interface. With
the simulator active, the Python application ran as normal except for the fact that
no physical UAVs were connected. All the UAV sensor data was seeded by random
number generators which gave values within the acceptable range for each data type.
The simulator responded normally to changes in these values and triggered fail-safes
as normal. The finite-state machine was not initiated during the simulator run. With
the simulator, it was possible to see exactly how the system would behave over an
area and as such allow for the proper area of coverage to be determined. For example,
running the simulator with a single UAV resulted in the UAV being centered around
the system operating point, as shown in figure 4.2. Adding three more UAVs to the
system as shown in figure 4.3 resulted in four UAVs following the hexagonal pattern.

The seven UAVs, shown in figure 4.4, resulted in a full hexagon with a central UAV.

46

Finally, figure 4.5 demonstrates how the algorithm creates hexagons in a clockwise
manner centering around the system center.

p————
8 8 & swarm control A=

SWARM CONTROL £ Config = B Launch [NolSLME

Armed GPS Fix ALT: 21.4m
Loiter Operation DIST:
94% 113V ‘CoM1
DEST: 32.4054843, —81.7900138

&l

s - 5. / ,
WGoogle . i Map data €2015 Google imagery £2015, DigitalGlobe, U.S. Geological Survey, USDA Farm Servica Agency | Terms of Use | Report a map error

Figure 4.2. Simulation output for one UAV

4.4 Remote Access
The remote access feature of this system was tested by setting up a web-accessible
HTTP tunnel to the Python application running on the system. This was achieved
by using a command line program called ngrok. ngrok works by opening up the
local server (Python application) on a specified port to one of its servers and then
generates a URL that can be accessed from anywhere in the world. As shown in
figure 4.6, the system was able to successfully connect to the application running
on another computer through the web tunnel. The main issue with remote access
is latency but since this system is fairly autonomous and can operate for significant

periods of time without input, latency was not an issue. The autopilot handles flight

47

Y - oo Ay [ves
C A | [localhost:63342/static/index.htm wH OB =

SWARM CONTROL £ Config | B Launch NOHIVELCY

Armed GPS Fix ALT: 20.4m
Loiter Operation DIST:
97% 101V CcoM1
DEST: 32.4054843, -81.7900138

Armed GPS Fix ALT: 20.2m
Loiter Operation DIST:

93% 11.4V comz2
DEST: 32.4077301, -81.7900138

Golf Park

Disarm

Armed GPS Fix ALT: 21.8m
Loiter Operation DIST:

97% 111V CcoM3
DEST: 32.4066072, -81.7877101

Armed GPS Fix
Loiter Operation
95% 106V
DEST: 32.4043614,

ADD DRONE

~ .
Map data 2075 Gooale imacery 2015 . DiaitalGlobe. U.S. Geoloaical Survev, USDA Farm Service Acency | Terms of Use | Recorta mao error

SWARM CONTROL #¥Config | P Launch NCERNES

Armed GPSFix ALT:193m
Loiter Operation DIST:
90% 115V CoM1
DEST: 32.4054843, 1.7900138

Armed GPSFix ALT: 19.8m
Loiter Operation DIST:
91% 12v Ccom2
DEST: 32.4077301, -81.7900138

Armed GPSFix ALT:193m
Loiter Operation DIST:

96% 106V comMm3

DEST: 32.4066072, —81.7877101

Armed GPS Fix ALT: 20.1m
Loiter Operation DIST:
94% 119V CcoM4
DEST: 32.4043614, -81.7877102

- -

Armed GPS Fix ALT:19.1m
Loiter Operation DIST:
97% 104V COM5

Map data 2015 Google imagery 2015 , DigialGlobe, U.S.

Figure 4.4. Simulation output for seven UAVs

@ S8 = swvarm Control x \ |V°“

C A [1 localhost:63342/static/index.html % % © =

SWARM CONTROL fconfig |] ©simulate

Armed GPSFix ALT: 20.9m
Loiter Operation DIST:

1 93% 115V com1
DEST: 32.4054843, —81.7900138

e D e
Armed GPS Fix ALT:19.2m

Loiter Operation DIST:
91% 1.2v com2

DEST: 32.4077301, —81.7900138

Armed GPS Fix ALT: 20.8m
Loiter Operation DIST:
94% 102V comMm3

DEST: 32.40866072, —81.7877101
- -
Armmed GPSFix ALT: 19.6m

Loiter Operation DIST:
98% 102V com4

DEST: 32.4043614, —81.7877102
D -

Armed GPSFix ALT: 20.3m
Loiter Operaton DIST:
97% 112V COMS5 Zoogle

Figure 4.5. Simulation output for seventeen UAVs

and the fail-safes ensure that the system operates properly even without constant
input.

4 MINGW32:/c/xampp/htdocs & e

bal.ngrok.com
2abal.ngrok.

itching Protocols

ching Protocols

ching Protocols

ching Protocols

he

Figure 4.6. System control via HTTP

49

4.5 Hardware Performance
The system underwent limited hardware tests due to autonomous UAV flight re-
strictions instituted by the FAA during the course of this research. The UAVs were
declared flight-worthy only after undergoing a thorough tuning of the autopilot PID
and attitude controllers. Tuning was performed indoors on a custom tuning rig. The
UAV was attached to the tuning rig at four points using Paracord as shown in fig-

ure 4.7. This allowed the UAV to fly up to a height of approximately 4 feet. The

Figure 4.7. UAV flying in PID tuning harness

positioning of the Paracord was such that the UAV could not turn at more than a
20 degree angle in any axis, thus preventing the blades from hitting the cords. Using

4500m Ah batteries, flight time was measured to have an upper limit of 20 minutes.

4.5.1 Telemetry
Since each UAV had a corresponding telemetry radio that had to be connected to a
computer, hardware was designed to better facilitate this process. A harness to hold

multiple radios was designed in SolidWorks and then fabricated using a 3D printer.

20

This harness allowed the telemetry radios to be neatly arranged near the computer
and made cable management easier. There was no noticeable drop in performance
due to the class proximity of the radios to each other. From the harness, the radios

were connected to a USB hub, which then fed to the computer with a single cable.

4.5.2 GPS
The GPS reliance of this system limits its operating conditions to outdoor settings
with at most moderate cloud coverage. This actually is not much of a detracting fac-
tor because operating multirotor UAVs in potentially rainy conditions makes them
susceptible to lightning and water damage. With moderate cloud coverage, 13 satel-
lites on average were visible to the GPS module. In the case of signal loss due to
a low number of satellites, the GPS module was always able to reconnect with a 4

second window. GPS accuracy was generally within a 4 to 5 meter radius.

4.6 The State of UAVs in the United States and the FAA

With the uptick of UAV usage in the United States during the last two years, there
has been a great deal of concern from the FAA regarding safety to the national
airspace system (NAS). This sudden advance in technology and the prevalence of
UAVs capable of reaching high altitudes forced the FAA to take a very strong stance
against anything but hobby use of UAVs. There are currently three different types
of UAV operations classified by the FAA: Civil, Public, and Model; the first two of
which require certification and authorization (Unmanned Aircraft Systems 2015).

Aside from recreational use, the operation of UAVs is currently very limited
by the FAA in the United States. The FAA on February 15, 2015 released a proposal
for new rules governing small unmanned aircraft systems (UAS). This covers UAS
under 55 pounds. The proposed rules would limit flight to daylight and line-of-sight
operations only (Dorr and Duquette 2015). The operator must be at least 17 years

old, pass an aeronautical knowledge test and finally obtain an FAA UAS operator

o1

certificate. Maintaining this certification will require passing the knowledge test every

24 months. Dorr and Duquette (2015) outlines more requirements as:

A small UAS operator must always see and avoid manned aircraft.
If there is a risk of collision, the UAS operator must be the first
to maneuver away.

The operator must discontinue the flight when continuing would
pose a hazard to other aircraft, people or property.

A small UAS operator must assess weather conditions, airspace
restrictions and the location of people to lessen risks if he or she
loses control of the UAS.

A small UAS may not fly over people, except those directly in-
volved with the flight.

Flights should be limited to 500 feet altitude and no faster than
100 mph.

Operators must stay out of airport flight paths and restricted
airspace areas, and obey any FAA Temporary Flight Restrictions
(TFRs).

The FAA is also considering creating a new class of micro UAS that weigh less
than 4.4lbs and travel less than 35mph. This class would have more lenient rules. It
is important to note that these are only proposals. Aside from recreational use, the
operation of UAVs is currently very limited by the FAA in the United States. The
rules and exact requirements for licensure are still very vague at the moment and the
fact that acquiring exemptions requires having a private pilot license greatly limits
entry to this field. This fact is also causing innovators and companies to move their
drone work outside the United States. Google, and Amazon, has actually moved
some of the development of its drone program overseas — with Google testing their
drone delivery in Australia (America’s clumsy requlation of drones stirs up frustration,
confusion. 2014). The new proposed rules will hopefully allow for greater innovation

in the field of unmanned aircraft systems.

Chapter 5

CONCLUSION

In this work, a feasible platform for quick deployment and operation of a temporary
emergency relief communications network has been proposed. The platform outlined
in this work represents the unity of three otherwise individually functioning systems
into one coherent platform that is both simple and safe in operation. Open source
hardware and software has been utilized in the creation of this system, making it
is easily reproducible and accessible. With the current popularity of UAVs and the
continuing advancements in UAV technology, this type of system will continue to be a
valuable and important asset in emergency response situations. The threat of major
disasters is ever present and having a system such as this is an effective way of ensuring
that emergency personnel have an easy, fast, and adaptable way of communicating in

disaster situations.

5.1 FUTURE WORK

Upon full approval from the FAA to autonomously operate a swarm of UAVs, the first
step will be to fully operate the system at varying heights and distances. While all
the hardware and software have been verified and the system tested using a simulator,
it still requires outdoor testing to verify the functionality of all the fail-safes.

Another point of improvement for this system will be making the algorithm
decentralized. Currently all the control logic comes from a central point, which is
the ground control computer. This type of control scheme limits the total operating
range of the system due to each radio having to be within range of the ground control
station. Making this change would require adding a radio to the UAV that supports
the traditional mesh network. This would then allow the UAVs to communicate

with each other. The control algorithm would then have to be integrated into the

52

23

ArduCopter flight control software. The current design of the control algorithm is
such that this implementation would not require any significant changes to core logic,
other than porting from one language to another.

The system will also need to be able to change the swarming algorithm pat-
tern on the fly. This can be accomplished by surveying more coverage algorithms
besides the cellular concept and then implementing those as options in the Python
application. An option can then be added to the HTML interface for choosing the
swarming algorithm to be used before launching.

Finally, work will have to be done to mitigate the effects of the limited battery
life of multirotor UAVs. One solution that can be very easily implemented into this
system is to have an automated battery changing system in which the UAV lands
autonomously on a platform and then a battery changing mechanism switches the
almost depleted battery with a full one. This would allow the system to function
for an extended amount of time as long as the batteries can be recharged at an

appropriate pace.

BIBLIOGRAPHY

Adams, Matthew. 2015. Sun Outages. Accessed March 10, 2015. http:// www .
orbitelcom.com/2015/02 /sun-outages/.

America’s clumsy requlation of drones stirs up frustration, confusion. 2014. Washing-
ton D.C., December. http://www.washingtonpost.com /blogs /innovations /
wp/2014/12/09/americas- clumsy-regulation- of-drones-stirs- up- frustration-
confusion/.

ArduPilot. 2015. Using the 3DR Radio for Telemetry with APM and PX}. Accessed
January 20, 2015. http://copter.ardupilot.com /wiki/common-using-the-3dr-
radio-for-telemetry-with-apm-and-px4/.

Bupe, Paul, Rami Haddad, and Fernando Rios-Gutierrez. 2015. Relief and Emer-
gency Communication Network Based on an Autonomous Decentralized UAV
Clustering Network. In Southeastcon, 2015 proceedings of ieee, 8. IEEE.

Crowlely, John, and Jennifer Chan. 2011. United Nations Foundation - Disaster Re-
lief 2.0: The Future of Information Sharing in Humanitarian Emergencies.
Accessed February 15, 2015. http:/ /www . unfoundation . org / news- and -
media/publications-and-speeches/disaster-relief-2-report.html.

Dorr, Les, and Alison Duquette. 2015. DOT and FAA Propose New Rules for Small
Unmanned Aircraft Systems. Accessed March 15, 2015. http://www.faa.gov/
news/fact%5C_sheets/news%5C story.cfm?newsld=18297.

Estrem, Angels Via, and Markus Werner. 2010. Portable satellite backhauling solution
for emergency communications. In 2010 5th advanced satellite multimedia sys-
tems conference and the 11th signal processing for space communications work-
shop, 262-269. IEEE, September. doi:10.1109 /ASMS-SPSC.2010.5586923.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=>5586923.

FEMA. 2015. Disaster Emergency Communications Division — FEMA.gov. Accessed
February 14, 2015. https://www.fema.gov/disaster-emergency-communications-
division.

Fultron. 2007. WHY SATELLITE COMMUNICATIONS ARE AN ESSENTIAL TOOL
FOR EMERGENCY MANAGEMENT AND DISASTER RECOVERY. Ac-
cessed February 15, 2015. http://www.futron.com/upload /wysiwyg/Resources/
Whitepapers / Why % 5C _Satellite % 5C_Communications % 5C_Essential % 5C _
Tool%5C_1105.pdf.

o4

5}

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Pearson Education.
http:/ /books. google.com /books / about / Design % 5C_Patterns . html 7 id =
60HuKQe3TjQC%5C&pgis=1.

Gao, Yuan. 2013. What Makes The Quadcopter Design So Great For Small Drones? -
Forbes. Accessed March 12, 2015. http://www.forbes.com /sites/quora,/2013/
12/23 /what-makes-the-quadcopter-design-so-great-for-small-drones/ .

Gyou, Beom Kim, Kien Nguyen Trung, Agus Budiyono, Keun Park Jung, Joon
Yoon Kwang, and Jinok Shin. 2013. Design and Development of a Class of
Rotorcraft-based UAV. International Journal of Advanced Robotic Systems
10:1-9. doi:10.5772/54885.

Harris CapRock. 2014. High Throughput Satellite Communications Systems: MEQO vs.
LEO vs. GEO. Accessed March 8, 2015. http://www.harriscaprock.com/blog/
p=068.

p

Huang, Ming, Jiang Yu, and Jingsong Hu. 2010. A pilot emergency communication
system based on IP and airship. In Proceedings of the 9th international sympo-
stum on antennas, propagation and em theory, 1008-1011. IEEE, November.
doi:10.1109/ISAPE.2010.5696645. http://ieeexplore.icee.org/Ilpdocs/epic03/
wrapper.htm?arnumber=5696645.

Intelsat. 2015. Satellite Sun Interference. Accessed March 10, 2015. http://www.
intelsat.com/tools-resources/satellite-basics /satellite-sun-interference/.

Lubbers, Peter, Brian Albers, and Frank Salim. 2011. Pro HTMLS5 Programming. 352.
Apress. http://apress.jensimmons.com/v5/pro-html5-programming /ch7.html.

MacDonald, Verne H. 1979. Advanced Mobile Phone Service: the Cellular Concept.
Bell Syst Tech J 58, no. 1 (January): 15-41. doi:10.1002 /j.1538-7305.
1979.tb02209.x. http://www.scopus.com /inward /record.url7eid =2-s2.0-
0018294080%5C& partnerID=40%5C&md5=6e9661e7b1af38¢4a833bb7ff6cd2ech.

MAVLink Micro Air Vehicle Communication Protocol - QQGroundControl GCS. 2015.
Accessed January 20. http://qgroundcontrol.org/mavlink/start.

MAVProzy. 2015. Accessed January 21. http://tridge.github.io/MAVProxy/.

Meier, Lorenz, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. 2011.
PIXHAWK: A system for autonomous flight using onboard computer vision.
In 2011 veee international conference on robotics and automation, 2992-2997.
IEEE, May. doi:10.1109 /ICRA .2011.5980229. http://ieeexplore.ieee.org/
Ipdocs/epic03/wrapper.htm?arnumber=5980229.

26

Miller, Robert. 2006. Hurricane Katrina: Communications & Infrastructure Impacts.
Technical report. DTIC Document.

Noam, Eli. 2004. What the World Trade Center Attack has Shown us About our
Communications Networks. Chap. 20 in Global economy and digital society.
Amsterdam; Boston.

Pimentel, Victoria, and Bradford G. Nickerson. 2012. Communicating and Displaying
Real-Time Data with WebSocket. IEEE Internet Computing 16, no. 4 (July):
45-53. doi:10.1109/MIC.2012.64. http://ieeexplore.ieee.org/Ipdocs/epic03/
wrapper.htm?arnumber=6197172.

Pizhawk Autopilot System. 2015. Accessed January 20. http://3drobotics.com /
pixhawk-autopilot-system/.

Rakhunde, Shruti M. 2014. Real Time Data Communication over Full Duplex Net-
work Using Websocket. IOSR Journal of Computer Science 5:15-19. http:
//iosrjournals.org/iosr-jce/papers/ICAET-2014 /volume-5/3.pdf 7id=7557.

Richtel, Matt. 2009. Inauguration Crowd Will Test Cellphone Networks, January.

http: //www.nytimes.com/2009,/01/19/technology /19cell.html?pagewanted =
all.

Sanner, M F. 1999. Python: a programming language for software integration and
development. Journal of molecular graphics € modelling 17, no. 1 (February):

57-61. http://www.ncbi.nlm.nih.gov/pubmed/10660911.

Sim. 2009. DCS: Black Shark and Coaxial Rotor Aerodynamics — SimHGQ. Accessed
March 12, 2015. http://www.simhq.com/%5C _air13/air%5C_427a.html.

The federal response to Hurricane Katrina : lessons learned. 2006. [Washington D.C.:
White House.

U-blox. 2012. "u-blox 6 GPS, QZSS, GLONASS and Galileo modules”.
Unmanned Aircraft Systems. 2015. Accessed January 22. https://www.faa.gov/uas/.

W3. 2015. Hypertext Transfer Protocol — HTTP/1.1. Accessed January 30. http:
//www.w3.org/Protocols/rfc2616 /rfc2616.html.

	Ultra-Fast, Autonomous, Reconfigurable Communication System
	Recommended Citation

	tmp.1429064963.pdf.Hf5wM

