View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

MISSOURI
Missouri University of Science and Technology
& Scholars' Mine
Engineering Management and Systems Engineering Management and Systems
Engineering Faculty Research & Creative Works Engineering
01 Jan 1991

An Empirical Analysis of Backpropagation Error Surface Initiation
for Injection Molding Process Control

Alice E. Smith
Elaine R. Raterman

Cihan H. Dagli
Missouri University of Science and Technology, dagli@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork

b Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation

A. E. Smith et al., "An Empirical Analysis of Backpropagation Error Surface Initiation for Injection Molding
Process Control," Proceedings of the 1991 IEEE International Conference on Systems, Man, and
Cybernetics, 1991. 'Decision Aiding for Complex Systems’, Institute of Electrical and Electronics Engineers
(IEEE), Jan 1991.

The definitive version is available at https://doi.org/10.1109/ICSMC.1991.169905

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by
an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

https://core.ac.uk/display/229163711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICSMC.1991.169905
mailto:scholarsmine@mst.edu

An Empirical Analrs_is of Backpropagation Error Surface Initiation for
njec

tion Molding

rocess Control

Alice E. Smith
Department of Industrial Engineering
University of Pittsburgh
1031 Benedum Hall
Pittsburgh, PA 15261

Cihan H. Dagli
and Elaine R. Raterman
Department of Engineering Management
University of Missouri - Rolla
Rolla, MO 65401

Abstract - Backpropagation neural networks
train by adjusting initially random interconnecting
weights according to the steepest local error
surface gradient. This paper examines the
practical implications of the arbitrary starting
point on the error landscape on the ensuing
trained network. The effects on network
convergence and performance are tested
empirically, varying parameters such as network
size, training rate, transfer function and data
representation. The data used is live process
control data from an injection molding plant.

I. INTRODUCTION

Multi-layer perceptrons with non-linear
transfer functions trained by backpropagation are
the most popular form of neural networks today.
They are applicable to a wide range of problems
and are readily available in software simulation.
The backpropagation training algorithm, fully
described in Rumelhart et al., works by adjusting
the weights connecting neurons to move in the
direction of greatest error reduction [4]. The
network after training should consist of weights
which are optimized to produce the smallest output
error possible over the training set.

Theoretically the weight change should be done
in infinitely small increments after the presentation
of the complete training set. In real applications,
weights are normally adjusted after the
presentation of each input vector and move along
the error surface in steps of fixed or variable size.
The starting point on the error landscape is almost
always arbitrary, with all variable weights set to
random values between -1 and +1.

1529

There are several noted problems with
backpropagation which stem from this arbitrary
initial weight state and the method of updating
weights. First, since backpropagation only moves
downward on the error surface, flat or upward
sloping areas result in entrapment. Second,
depending on the starting point on the error
surface, a network may or may not encounter these
kinds of areas during training. Third, the step size
down the error surface gradient is not optimized,
and may in fact cause the network to overshoot
the absolute minimum of the error topology.

These problems are generally known, yet most
applications of backpropagation do not address
them explicitly. The purpose of the research
presented in this paper is to determine empirically
whether these relatively ignored problems have a
significant effect on the training and operation of
most networks. A real process control data set is
used as the basis for this pattern classification task.

II. BACKPROPAGATION AND ITS ERROR SURFACE
A. Characteristics of the Error Surface

Backpropagation works by calculating an
output error during training, which is the
difference between the actual output and the
desired (teacher) output. Weights are adjusted in
proportion to the gradient (slope) at that point on
the error surface. The training rate, n, along with
the gradient determine the actual step size along
the error landscape, as shown in Fig. 1. Steep
areas will result in large steps while flat areas
result in small steps in respect to the direction of
decreasing error. In an ideal situation, the training
rate would increase in flat areas to encourage

ISSN# 0-7803-0233-8/91 $1.0001991 IEEE

movement across such regions, but be smaller in
steep areas so overshoot cannot occur.

However, in practice the error topology of a
backpropagation network to be trained is largely
unknown. Previous research has indicated that in
general the error landscape consists of flat areas
and troughs with little slope, impairing the search
of the best direction in which to move the weights
[2]. For networks with linear transfer functions
only, it has been proven that no local minima
exist, although saddle points may be present [1].
The more commonly used networks with non-
linear, usually sigmoidal, transfer functions can
encounter local minima [2]. Both local minima and
flat areas can cause a network to settle on weights
which are non-optimal, as shown in Fig. 2.

Due to the nature of the error landscape, even
nearing an absolute minimum (there are many
because of the many different weight combinations
available to a network) may not guarantee success.
The training rate, not infinitesimally small, may
cause an overshoot as shown in Fig. 2. Reducing
the rate unnecessarily, however, will create
inefficient training.

n (training rate)
-

step

gradieRt size

Fig. 1. Components of movement along the error surface during
backpropagation training.

B. Improving Gradient Descent

Research has attacked several avenues to
improve gradient descent. One method has been to
alter the descent method itself. Besides the
generally adopted momentum or smoothing term
[7], which takes into account past weight changes
on present ones, an acceleration term from the
second derivative has speeded descent when a
minimum is near [6]. Altering the sigmoid transfer

function to ensure that values near 0 and 1 do not
occur has also speeded training by eliminating
extremely small weight updates [11]. Since the
descent algorithm is designed for descent only,
escape from local minima could be a desirable
property. This can been accomplished through
stochastic techniques which allow movement in
directions other than the steepest descent [3, 10].

saddle
‘point

overshooit

local !

minimum

Fig. 2. A two dimensional interpretation of problems with error
surface descent.

The training rate (n), since it influences step
size, is also subject to improvement. As
mentioned earlier, a static step size can cause both
inefficiency and non-optimization. Recalculating
n during each training cycle ensures that overshoot
will not occur [8], but complicates the search.

Finally, perhaps the most desired improvement
would be to select initial weights so that they
facilitate training. This approach has been done
with a Gaussian transfer function where a portion
of the training set is first characterized by cluster
analysis [9]. Another paper describes how
optimum weights can be found using a different
error function for each layer based on errors
output in subsequent layers [5].

III. RESEARCH OF ERROR SURFACE INITIATION
SENSITIVITY

A. The Process Control Problem

The application chosen for empirical analysis is
process control of an injection molding operation.
The manufacturer makes various diameters and
lengths of brake linings. The data used consists of
88 samples of one product over a period of six

1530

months. The process parameters measured
included 16 independent variables, of which 13
were used for analysis. The output variable of
interest was the mean outer diameter of the
product. This application involves training a
network to recognize that input variable values
have certain relationships with the quality of the
product produced, as measured by outer diameter.
It is a classification/prediction problem.

Data was normalized to values between 0 and 1
for all inputs. Output was similarly normalized
and then translated back to correct scale. A
software simulation of the standard
backpropagation algorithm as found in [4], except
for the addition of a smoothing term during
training, was used.

B. Sensitivity to Error Landscape Initiation Point

The first studies concentrated on how sensitive
the networks were to where they begun on the
error landscape. This sensitivity was measured in
terms of number of epochs (training set cycles) to
convergence within 10% for all training pairs and
in terms of root mean square error (RMSE) for
classification of a test set. The training set and
the test set both totalled 44 samples, and were
identical for all networks. A group of 10 networks
of each configuration were trained and tested, all
equivalent except for their error surface initiation
point, which was completely arbitrary.

The first networks were trained to output the
mean outer diameter as a continuously valued
function while the second group used a binary
representation, i.e. the output learned was a 1 for
means beyond a 1 standard deviation limit about
the diameter specification and a 0 for diameters
within the 1 standard deviation limit. This second
series of networks corresponded to a control chart
formulation.

The continuous output group of networks had
two hidden layers of 13 neurons each. Two
network configurations were tried for the binary
output; a one hidden layer with 13 neurons and a
two hidden layer with 13 neurons in each layer.
The sigmoid transfer function was altered between
one ranging from 0 to 1 to one ranging from -0.5
to +0.5.

Table I shows the mean epochs to convergence,
the coefficient of variation of epochs, the mean of
the root mean square error of the trained
networks, and the coefficient of variation of root
mean square error for 10 networks of each kind.
Coefficient of wvariation (C.V.) is the standard

deviation of the sample divided by the mean and
multiplied by 100 to form a percent. This measure
of dispersion can be used regardless of the
magnitude of the variables involved.

TABLE I
NETWORK VARIANCE IN RESPONSE TO ERROR SURFACE
INITIATION

Output Hidden Sigmoid Mean C.V. Mean C.V.

Type Layers Epochs Epochs RMSE RMSE
Continuous 2 Otol 2712 17.37% .0035 6.91%
Binary 1 O0tol * * 3563 4.94%
Binary 2 Otol 2475 39.73% .3503 3.41%
Binary 2 -.5to0.5 1775 31.32% .3495 3.46%

* No networks converged.

Table I shows that while convergence is quite
dependent on where the network initially begins,
performance as measured by RMS error of the test
set is very stable, though not identical. The binary
outputs were more uniform in performance, as
expected, since classification of inputs into one of
two categories is a much simpler problem than
returning a continuously valued output. Binary
classification errors were fewer, but where errors
occurred, they missed by a large margin, hence the
greater RMS error. None of the networks had
precisely the same performance on the test set,
although they followed the same trends. Fig. 3
shows the outputs of 10 continuous networks over
the test set, while Fig. 4 shows the same for 10
binary networks. For practical purposes, the
networks performed the same.

0.56
0.55
0.54
0.53
0.52

- - Ne]

Test Set

Fig. 3. Output of 10 continuous networks for the test set.

1531

- N -Ne]

Test Set

Fig. 4. Output of 10 binary networks for the test set.
The training rate affects how a network
converges as discussed earlier. The two hidden
layer network with continuous outputs and a
sigmoid from 0 to 1 was tested with both a smaller
and a larger training rate than used above, in
conjunction with a smoothing rate of 09. A
smaller training rate would be expected to lessen
the sensitivity to error surface initiation in terms
of performance since it more closely follows the
surface. Conversely, convergence epochs would be
expected to more sensitive with a small training
rate since movement is slowed.

Table II shows the results for the network above
compared with the two other training rates. The
training rates of 0.5 and 2.0 resulted in greater
epochs and greater variability in epochs. They did
not result in significantly better performance or
lesser variability in performance. The large
coefficient of variance for convergence of the
networks with n = 2 was primarily due to one
network which finally converged after 19220
epochs. Note that both altered training rates
resulted in one network which would not converge
to within 10%, but still performed well.

TABLE II
NETWORK VARIANCE IN RESPONSE TO LEARNING RATE

Training Mean C.V. Mean C.V.

Rate Epochs Epochs RMSE RMSE
n=1 2712 17.37% .0035 6.91%
n=205 5728* 36.78%* .0038 9.02%
n=2 3974* 145.36%* .0034 4.91%

* For 9 networks which converged.

The results indicate that training rate will affect
epochs to convergence, but will have little impact
on the network’s ability to perform. These
training rates are not extreme values, however, and
are tempered by the smoothing factor.

C. Weight Matrices

While performance was similar, the networks
created during training were quite different.
Weights from the first 10 continuous networks
above were assembled and analyzed statistically.
Weights which connected the input neurons to the
first hidden layer neurons were one group, weights
from the first hidden neuron layer to the second
were another group, and weights from the second
hidden layer to the output neuron were the third
group. The first two groups totalled 182 weights
each while the last had 14 weights (including the
bias to each neuron). The statistical tests
performed were a parametric one way analysis of
variance (ANOVA) and a non-parametric one way
ANOVA (the Kruskal-Wallis test). ANOVA is
designed to test whether samples have different
central tendencies. While it is not surprising that
individual weights from different networks are
different, it might be expected that collectively the
weight matrices would be similar.

Table III shows the results of analysis for each
of the three weight matrices from the 10 networks.
Statistically, the two hidden layer weight matrices
are different in both location and dispersion, while
the output layer weights are not statistically
different.

TABLE III
STATISTICAL TESTS FOR THREE WEIGHT MATRICES
FROM 10 NETWORKS

Weight F P Chi Square P Kruskal P

Matrix Test Value Equal Variance Value Wallis Value
Hid. 1 2.63 .0051 76.84 .0000 16.27 .0615
Hid. 2 3.78 .0001 145.29 .0000 30.93 .0003
Output 1.17 .3197 10.35 .3230 11.23 .2604

The weight matrices differences are shown
pictorially in Fig. 5 where the 25th, 50th and 75th
percentiles of each weight matrix are calculated
for each of the 10 networks. These graphs show
that there is quite a bit of variability in weight
values among networks which differ only by their
initiation point on the error landscape.

1532

- Ta - =

v e —~a <

~— o - =

wec —o <

—-—>a - =

wme —o <

50th Percentile

4 25th Percentile

e

A. First hidden layer matrix.

75th Per

+ + t + + t + +

50th Percentile

25th Percentile

B. Second hidden layer matrix.

J5th Percentile

2N\

50ih Percentile

25th Percentile

C. Output layer matrix.

Fig. 5. Percentiles of weight matrices for 10 networks.

1533

D. Choosing Initial Weights

As mentioned earlier, perhaps the best strategy
that could be adopted before training a network is
to intelligently select weights. In a practical sense,
since the combinations of weight values which lead
to similar network performance quickly reaches
combinatorial explosion, even a priori knowledge
of the problem would not be helpful. We decided
to concentrate efforts for initial weight selection
on the distribution of the weights rather than their
actual values.

The continuous and binary outputs described in
the preceding section had randomized beginning
weights ranging from -1 to +1. In this section
they all begin by alternating -0.5 and +0.5. Initial
weights were increasingly randomized by adding a
random amount to each weight with a Gaussian
distribution and a standard deviation beginning at
0.1 and increasing in steps of 0.1 up to 0.9.

Table IV shows the results of these networks for
various strategies. None of the networks with no
noise in the weights of -0.5 or +0.5 converged. It
can be seen by comparing Table I and Table IV
that this scheme resulted in increased dispersion in
both convergence and, especially, performance.

TABLE IV
NETWORK VARIANCE IN RESPONSE TO WEIGHT
RANDOMIZATION
Output Hidden Sigmoid Mean C.V. Mean C.V.
Type Layers Epochs Epochs RMSE RMSE
Continuous 2 Otol 4483* 29.79% .0041 22.41%
Binary 2 0tol 4651* 60.68% .3533 7.41%
Binary 2 -5t0.5 2278* 38.31% .3560 6.11%

* For the 9 networks which converged.

Fig. 6 shows the output of 10 binary networks.
Comparing this to Fig. 4 shows that the output of
these networks which differed in distribution of
initial weights were more divergent than those
from an identical distribution.

Fig. 7 shows how the RMSE of the output
changes as the initial weights become more random
for the continuously valued outputs, while Fig. 8
shows the same for the two binary valued output
strategies. It is clear in the continuous network
that some randomness in the initial weights
improves final network performance. For the
binary networks, randomness may not assist
performance, but it does not hinder performance.

(0] i
u
t
0.5
P
u
t
0
Test Set
Fig. 6. Output of 10 binary networks with differing initial

weight noise.

0.006

0.005

0.004

mnsX

0.003

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Standard Deviation of Weight
Noise

Fig. 7. RMSE of test set as initial weights are more random for

continuous outputs.

04 A

Sigmoid (-5 to +.5)

mn X

Sigmoid (0 to 1) 7

0.3

0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 09

Standard Deviation of Weight
Noise

Fig. 8. RMSE of test set as initial weights are more random for

two binary output formulations.
IV. CONCLUSIONS
Error landscape is an area of neural networks

which is largely wuncharted. For industrial
implementation the important aspect is whether the

beginning arbitrary weights significantly impact a
typical network’s ability to converge and to
perform after training. For this pattern
classification task, although weights derived are
quite different and convergence epochs can also
differ substantially, performance is relatively
insensitive. However, performance is not
equivalent among networks, empirically supporting
the concept that most backpropagation error
surfaces contain large, flat troughs near the
bottom. Networks train to somewhere on the flat
region, but not to its absolute gully. We are
continuing exploration in the areas of sensitivity to
network parameter changes and statistical
characterization of weight matrices.

REFERENCES

[1] P. Baldi and K. Hornik, "Neural networks and principal
component analysis: learning from examples without local
minima," Neural Networks, vol. 2, pp. 53-58, 1989.

[2] R. Hecht-Nielsen, "Theory of the backpropagation neural
network,” Proceedings of the International Joint Conference on
Neural Networks, pp. 1-593-1-605, 1989.

[8} D. Ingman and Y. Merlis, "Local minima escape using
thermodynamic properties of neural networks," Neural Networks,
vol. 4, pp. 395-404, 1991.

{4] D. Rumelhart, J. McClelland, and the PDP Research Group,
Parallel Explorations in the
Microstructure of Cognition. Cambridge, MA: MIT Press, 1986.

[5] P. Saratchandran, "Dynamic programming approach to

Distributed Processing:

optimal weight selection in multilayer neural networks,” IEEE
Transactions on Neural Networks, vol. 2, no. 4, pp. 465-467,
1991.

{6 W. Simon and J. Carter,

equations from the minimization of recursive error,” Proceedings

"Back propagation learning

of the IEEE International Conference on Systems Engineering,
pp. 155-160, 1989,

[7) P. Wasserman, Neural Computing:
New York: Van Nostrand Reinhold, 1989.
[8] M. Weir, "A method for self-determination of adaptive
learning rates in back propagation,” Neural Networks, vol. 4, pp.
371-379, 1991.

[9] N. Weymaere and J. Martens, "A fast and robust learning

Theory and Practice.

algorithm for feedforward neural networks,” Neural Networks, vol.
4, pp. 361-369, 1991.

[10] R. Williams, On the use of backpropagation in associative
reinforcement learning," Proceedings of the International Joint
Conference on Neural Networks, pp. I-263-1-270, 1988.

[11] K. Yamada, H. Kami, J. Tsukumo, and T. Temma,
"Handwritten numeral recognition by multi-layered neural
network with improved learning algorithm,” Proceedings of the
International Joint Conference on Neural Networks, pp. II-259-

11-266, 1989.

1534

	An Empirical Analysis of Backpropagation Error Surface Initiation for Injection Molding Process Control
	Recommended Citation

	An empirical analysis of backpropagation error surface initiation for injection molding process control

