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Short-Term Generation Asset Valuation

Chung-Li Tseng, Graydon Barz

Department of Civil Engineering, University of Maryland, College Park, MD 20742, USA

Department of EES & OR, Stanford University, Stanford, CA 94305, USA

chungli@eng.umd.edu, gbarz@leland.stanford.edu

Abstract

In this paper we present a method for valuing a power
plant over a short-term period using Monte Carlo sim-
ulation. The power plant valuation problem is formu-
lated as a multi-stage stochastic problem. We assume
there are hourly markets for both electricity and the
fuel used by the generator, and their prices follow some
Ito processes. At each hour, the power plant opera-
tor must decide to run or not to run the unit so as to
maximize expected pro�t. A certain lead time for com-
mitment decision is necessary to start up a unit. The
commitment decision, once made, is subject to physi-
cal constraints such as minimum uptime and downtime
constraints. The generator's startup cost is also taken
into account in our model. In this paper, the Monte
Carlo method is employed not only in forward-moving
simulation, but also backward-moving recursion of dy-
namic programming. We demonstrate through numer-
ical tests how the physical constraints a�ect a power
plant value.

1. Introduction

With deregulation of the electricity industry a
global trend, utilities and power generators must ad-
just the new risks of volatile spot prices, which are
accompanying the competitive marketplace. Because
they are no longer able to rely on embedded cost re-
covery regulation, they must fundamentally change
the way they view power plant operation. For ex-
ample, the deterministic and cost-based unit commit-
ment problem (e.g. [10]) that schedules power plants
to satisfy demand should be replaced, in our opinion,
by an optimization problem which, at least, is price-
based and takes account of price stochastics. Solving
such an optimization problem not only yields optimal
commitment decision, on the other hand, reveals the
power plant value over the operating period.
Recently the power plant valuation problem has

been tackled using �nancial option theory [2, 4, 5]. A
power plant, associated with its heat rate, converts a
particular fuel to electricity. This conversion involves
two commodities with di�erent market prices. There-
fore, owning a power plant can be regarded as holding
call options of spark spreads, de�ned as the electric-
ity price less the product of the heat rate associated
the generator and the fuel price. When the electricity
price is high but the fuel price is low such that their
ratio is greater than the unit's heat rate, the power
plant should run to capture pro�t due to the price
spread, and vice versa. (Since the power plant pro�ts
more, when the spread is greater, it is a call option
in this sense.) Similar price spread concepts have also
been applied to other industries such as oil re�ning
(e.g. [8]).

While using option theory to value a power plant
is a novel approach, such an approach overlooks the
operational constraints of a power plant. These con-
straints include the startup time and the minimum up-
time and downtime constraints. Using �nancial option
theory to value a power plant implicitly assumes (i) no
startup time, i.e., a unit can be started up immediately
when favorable prices are observed; (ii) no minimum
up/down time constraints, i.e., an on-line unit can be
turned down whenever the prices become unfavorable.
These assumptions always result in a nonnegative pay-
o� for operating a power plant, suggesting the oper-
ator faces no risk of loss. This, unfortunately, is not
the case. We shall show in this paper that big risks
may be overlooked if these physical constraints are not
considered.

In this paper, we formulate the power plant val-
uation problem as a multi-stage stochastic problem.
Over a short-term period, the operator must decide
when to run the generator so as to maximize expected
pro�t. The commitment decision must be made be-
fore the uncertain prices are revealed. Once the com-
mitment decision is made, plant operation is subject
to physical constraints such as minimum uptime and
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downtime constraints. That is, an on-line unit cannot
be turned back down even if market prices become
unfavorable before the minimum uptime constraint is
ful�lled. Similarly, an o�-line unit cannot be turned
back on before the minimum downtime constraint is
ful�lled. Moreover, in our model, a startup cost associ-
ated with turning on a unit is also taken into account.
The major uncertainties considered in this paper are

the prices for electricity and the fuel consumed by the
generator. We assume there are hourly markets for
both electricity and fuel and their prices follow some
Ito processes. Although the valuation method pre-
sented in this paper can be applied to general Ito price
processes, we focus on the ones characterized by mean
reversion and lognormally distributed, seasonal prices.
We use Monte Carlo simulation to solve this multi-
stage stochastic problem. The Monte Carlo method is
employed not only in forward-moving simulation, but
also backward-moving recursion of dynamic program-
ming.
This paper is organized as follows. In Section 2,

physical constraints of a power plant are described and
formulated. In Section 3, we review the approach for
valuing a power plant using �nancial option theory.
We formulate the power plant valuation problem as
a multi-stage stochastic problem and propose solution
procedure using simulation in Section 4. In Section 5,
we present numerical results. This paper concludes in
Section 6.

2. Physical constraints for a

power plant

In this paper we focus mainly on fossil or natural
gas-fueled steam units. For steam units the dynamics
of unit operation are relatively complex. For these
units the time required to start up the generator and
the cost associated with startup depend on how long
the units have been down. This occurs because the
water in its boiler must be heated before generation
of power can occur. The longer the generator is down,
the more heat is lost from its boiler and the longer the
time and the greater the expense to reheat the water.
Therefore the operation cost of a power unit calls for
two cost terms. The �rst is related to the production
of power and depends directly on the amount of fuel
consumed. The second term captures the startup costs
which vary with the temperature of the boiler.
A thermal generation unit cannot switch between

the on-line mode and the o�-line mode at arbitrary
frequency, due to both the non-zero response time of

the unit and the damaging e�ects of fatigue. In other
words, once a thermal unit is shut down (or started
up), it is required to stay o�-line (on-line) for a mini-
mum period, known as the minimum down- (up-) time,
before it can be started up (shut down) again. On the
other hand, committing all units all the time would
not be feasible either. Generation units become un-
available from time to time, due to planned outages
(e.g. for maintenance purpose) or forced outages (e.g.
as a result of component failure.)
In the development, we �rst introduce the following

standard notation. Additional symbols will be intro-
duced when necessary.

t : index for time (t = 0; � � � ; T )
ut : zero-one decision variable indicating whether the

unit is up or down in time period t

xt : state variable indicating the length of time that
the unit has been up or down in time period t

ton the minimum number of periods the unit must re-
main on after it has been turned on

to� : the minimum number of periods the unit must
remain o� after it has been turned o�

tcold : the minimum number of periods required to
fully cool down the boiler of a unit after it has
been turned o�

qt : decision variable indicating the amount of power
the unit is generating in time period t

qmin : minimum rated capacity of the unit

qmax : maximum rated capacity of the unit

pEt : electricity price ($/MWh) in time period t

pFt : fuel price ($/MMBtu) in time period t

C(qt; p
F
t ) : fuel cost for operating the unit at output

level qt in time period t when the fuel price is pFt .

S(xt�1; ut; ut�1) : startup cost associated with turn-
ing on the unit in time period t

In this paper, the unit of time period is in hours.

2.1. Modeling the cost functions

The generating cost ($) of a thermal generation unit
typically includes fuel costs and the startup costs. The
incremental heat rate (MMBtu/MWh) of a unit is
most often modeled as a linear function of the power
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output (MW) of the unit [11]. Equivalently, the fuel
costs are modeled as a quadratic function with the
following form:

C(qt; p
F
t ) = (a0 + a1qt + a2q

2
t )p

F
t (1)

� H(qt)p
F
t ; (2)

where H(�) captures the input-output characteristic of
a generating unit. The input to the unit is in terms of
the heat energy requirement (MMBtu/h) and the out-
put is the net electrical output (MW). Each coe�cient
aj (j = 1; 2; 3) of H(�) is taken to be nonnegative. In
general, a2 > 0, so that the cost function is convex;
a1 > 0 since a1 is the �xed term of the incremental
heat rate; and a0 > 0 because a0p

F
t captures the no-

load cost. In the approach of using �nancial options to
value a power plant, as mentioned in the introduction
of this paper, a power plant's cost function is normally
simpli�ed by setting a2 = a0 = 0, and a1 is addressed
as the (constant) heat rate the generator.

As aforementioned, the startup costs vary with the
temperature of the boiler. In practice, it is assumed
that the boiler cools at an exponential rate inversely
proportional to the cooling constant �i. The function
is given by

S(xt�1; ut; ut�1)

= [b1(1� exp(� t(xt�1)
�

)) + b2]ut(1� ut�1) (3)

� S(xt�1)ut(1� ut�1) (4)

where t(xt) = max(0;�xt) is the amount of time the
unit has been down; b1 represents the cold start fuel
cost for unit i, and b2 combines the labor costs plus
the �xed operating and maintenance expenses of the
plant amortized over the unit. To limit the size of the
state space, we assume that exp(�t(xt�1)=�) in (4)
becomes negligible when t(xt) � tcold.

2.2. Deterministic formulation

Assuming that the future prices for electricity and
fuel are fully and perfectly known, we present the de-
terministic formulation of the generation asset valua-
tion problem over a short term period.
(P )

J� = max
u;x;q

TX
t=1

(pEt qt�C(qt; p
F
t )�S(xt�1)(1�ut�1))ut

(5)

subject to the following physical constraints:
State transition constraints

xt =

�
min(ton;max(xt�1; 0) + 1); if ut = 1;
max(tcold;min(xt�1; 0)� 1); if ut = 0;

(6)
Minimum up/down time constraints

ut =

8<
:

1; if 1 � xt�1 < ton;
0; if � 1 � xt�1 > �to� ;
0 or 1; otherwise;

(7)

Unit capacity constraints

qmin � qt � qmax; t = 1; � � � ; T; (8)

Initial conditions on ut and xt at t = 0. That
is, (u0; x0; q0) equals to some initial schedule, say
(~u0; ~x0; ~q0).

2.3. Solving the deterministic model

The deterministic problem can be solved by dy-
namic programming. The corresponding equations
are

F (u0; x0) =

�
0 if (u0; x0) = (~u0; ~x0)
�1 otherwise

(9a)

F (ut; xt) = max(ut+1;xt+1)2W [(pEt gt � C(gt; p
F
t )

�S(xt)(1� ut))ut+1 + F (ut+1; xt+1)]

subject to (7); (9b)

where t = 0; � � � ; T � 1, and gt is the solution of the
following problem

max pEt qt � (a0 + a1qt + a2q
2
t )p

F
t

s:t: qmin � qt � qmax; (10)

that is,

gt � min

�
qmax;max

�
qmin;

1

2a2
(
pEt
pFt

� a1
2a2

)

��
:

(11)
Also the decision space W is given by

W = f(1; x+)j1 � x+ � ton; x+ 2 Zg[
f(0; x�)j � 1 � x� � �tcold; x� 2 Zg: (12)

The optimal value J� of this deterministic problem
is obtained from the last step of the dynamic program-
ming algorithm as

J� = F (u0; x0): (13)
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The above recurrence relation is the backward dy-
namic programming approach. The F (ut; xt), known
as cost-to-go, de�nes the optimal cost from time t to
the end of the period considered. The state transition
diagram is given in Figure 1.

1

2

t on

t on -1

-1

-2

-t cold

-t off

t t +1x
it

t on:unit uptime

t off:unit downtime

t cold:unit coldtime

Figure 1: The state transition diagram for ut

3. The approach using �nancial

option theory

In this section, we briey review the approach of
using �nancial option theory to value a power plant.
This approach (e.g. [4]) assumes that a unit can be
started up immediately, and hence commitment deci-
sion can be made after the prices of electricity and fuel
are observed. Also the minimum uptime and down-
time constraints, and the startup cost are left out. The
value of a power plant over the period t = 1; � � � ; T can
be represented as follows.

TX
t=1

E0[max
�
pEt gt � (a0 + a1gt + a2g

2
t )p

F
t ; 0

� jpE0 ; pF0 ];
(14)

where gt given in (11) is also a function of pEt and
pFt ; and E0 denotes the expectation operator given
the price information available at t = 0. In their ap-
proaches, a0 and a2 are set to be 0. The power plant
value for per MWh electricity generation is

TX
t=1

E0[max
�
pEt � a1p

F
t ; 0

� jpE0 ; pF0 ]: (15)

The term in the parentheses in (15) is the so-called
spark spread, and (15) captures the sum of the payo�
of (European) spark spread call option expired at each
t. The power plant value obtained by either (14) or
(15) is always nonnegative.

4. Multi-stage Stochastic model

Obviously price uncertainties plead for a stochas-
tic model. In this paper we formulate the generation
asset valuation problem as a multi-stage decision prob-
lem. The decision variable ut is now the commitment
decision which has to be made before the uncertain-
ties pEt and pFt are revealed. On the other hand, the
generation level qt can be adjusted in real time and is
obtained after the prices at time t are known. Namely,
optimal generation level qt can be obtained determin-
istically by solving (10). That is, we shall always set
qt = gt as de�ned by (11) in the rest of this paper. In
reality, since committing a generation unit involves re-
heating the water in boiler, commitment decisions in-
deed have to be made a certain time before operation
takes place. In this paper, for simplicity we model the
commitment decision lead time (unit startup time) to
be one hour. However, the proposed valuation method
is exible enough to be extended to more complicated
situations. Thus, this modeling intends to capture the
characteristics of real-world power plant operation.
We assume that the operator is risk neutral so that

his objective is to maximize the expected pro�t with
respect to the random price vectors (pE;pF), which
represent the subjective price probability distributions
believed by the operator. At time t, the operator ob-
serves the prices pEt for electricity and pFt for fuel, he
then decides the commitment of the unit for the next
hour. The operator's decision takes one hour to pro-
cess to become e�ective.
Let Jt(ut; xt; p

E
t ; p

F
t ) denote the power plant value

for the remaining period starting at time t. At each
time t, the operator either has no commitment deci-
sion to make because the minimum uptime or down-
time constraints are not yet satis�ed, or can decide
to turn on or turn down the unit at the next hour.
However, once committed, a unit needs to ful�ll the
minimum uptime or downtime requirement regardless
the subsequent price changes. The dispatcher's prob-
lem is then one of solving the recursive relationship:
Jt(ut; xt; p

E
t ; p

F
t ) =

(pEt qt�(a0+a1qt+a2q
2
t )p

F
t )ut�S(xt�1)(1�ut�1)ut+

max
ut+1;xt+1;qt+1

Et[Jt+1(ut+1; xt+1; p
E
t+1; p

F
t+1)jpEt ; pFt ] (16)
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subject to (6) to (8). In (16), Et denotes the expecta-
tion operator given the price information available at
time t. Note that the maximization on the right-hand
side of (16) compares the values of no more than two
cases, ut+1 = 1 or 0.
The boundary conditions are:

JT (uT ; xT ; p
E
T ; p

F
T ) =

(pET qT�(a0+a1qT+a2q2T )pFT )uT�S(xT�1)(1�uT�1)uT ;
(17)

for all (uT ; xT ) 2W .

4.1. Price Processes

In this paper we assume that price processes for both
electricity and fuel are given. Although the valuation
method to be presented in this paper can be applied to
general Ito price processes, we focus on the following
two processes for electricity and fuel respectively:

d ln(pEt ) = ��E(ln(pEt )�mE
t )dt+ �EdBE

t ; (18)

and

d ln(pFt ) = ��F (ln(pFt )�mF
t )dt+ �F dBF

t ; (19)

where BE
t and BF

t are two Wiener processes with
instantaneous correlation �. The above commodity
price models are characterized by mean reversion and
lognormally distributed, seasonal prices. Because, to
varying degrees, both electricity and fuel have asso-
ciated storage costs, their prices are determined to a
large degree by the forces of producer supply and con-
sumer demand and less so by investor speculation [1].
This interplay is manifested in the mean-reverting na-
ture of their price processes. Thus, in some sense, the
mean reversion parameter � represents the storability
of the commodity. For electricity, which is quite dif-
�cult to store, this parameter is large implying little
autocorrelation between today's price and tomorrow's
price. Furthermore, this parameter in conjunction
with � captures the short and long term price uc-
tuations and characterizes variance of the lognormal
price distribution. This distribution resembles that of
other traditional price process models in that price re-
turns are normally distributed and prices are nonneg-
ative. Finally, mt is a periodic function capturing the
cyclical nature of the long-term expected prices. mt

is thus a function of the interplay between the cost of
production and consumer demand for the commodity.
In a later section, we will describe the procedures for
estimating the parameters from historical data using
the method of maximum likelihood.

4.2. Valuation using simulation

In this section we demonstrate how Monte Carlo
simulation can be used to value a power plant con-
sidering the physical constraints described in previous
sections. Let's �rst de�ne

� � fx 2 Zjx = ton or � tcold � x � �to�g (20)

as the set of states at which turning on and o� the gen-
eration unit are options (see Figure 1). The basic idea
is to determine the indi�erence locus d(pEt ; p

F
t ; t; xt) =

0 for each time t and each of the states xt 2 � such
that for any pair of (pEt ; p

F
t ) on one side of the locus

(d � 0), the optimal decision is to turn the unit on
for the next hour; and on the other side of the locus
(d < 0) the optimal decision is to turn the unit o�.
Again, the `optimality' of the decision is in terms of
expected value as de�ned in (16). In terms of function
d(pEt ; p

F
t ; t; xt), at time t the optimal commitment de-

cision for ut+1 is as follows.

ut+1 =

8>>>>>>>>>><
>>>>>>>>>>:

1 if 0 < xt < ton

0 if 0 > xt > �to�
1 if xt = ton; and d(pEt ; p

F
t ; t; xt) � 0

0 if xt = ton; and d(pEt ; p
F
t ; t; xt) < 0

1 if � tcold � xt � �to� ; and
d(pEt ; p

F
t ; t; xt) � 0

0 if � tcold � xt � �to� ; and
d(pEt ; p

F
t ; t; xt) < 0

(21)
Our approach corresponds closely to that presented
in [3] for valuing path-dependent options. In [3], a
critical locus is obtained in each period to determine
optimal early exercise policy for American Asian op-
tions. In this paper, we extend the approach to a
more complicated situation involving multi-stage de-
cision making and intertemporal constraints.
Starting from t = T � 1, for xT�1 = ton, we can

initiate a Monte Carlo simulation for any pET�1 to de-
termine a p̂FT�1(p

E
T�1) such that the only two cases

uT = 1 or 0 of the maximization on the right-hand
side of (16) are equated. That is,

ET�1[JT (uT = 1; xT = ton; pET ; p
F
T )jpET�1; p̂FT�1(pET�1)]

= ET�1[JT (uT = 0; xT = �1; pET ; pFT )jpET�1; p̂FT�1(pET�1)]:
(22)

Similarly, for each xT�1 such that �tcold � xT�1 �
�to� , and any pET�1 we look for p̂

F
T�1(p

E
T�1) such that

the following equation holds.

ET�1[JT (uT = 1; xT = 1; pET ; p
F
T )jpET�1; p̂FT�1(pET�1)] =
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ET�1[JT (uT = 0; �xT ; p
E
T ; p

F
T )jpET�1; p̂FT�1(pET�1)];

(23)
where �xT = max(xT�1 � 1;�tcold).
In the next step, we try to determine an indi�erence

locus (a function) that �ts all the (pET�1; p̂
F
T�1(p

E
T�1))

obtained. This procedure theoretically calls for in�-
nite number of price pairs on the locus. In practice,
we identify as many indi�erence price pairs as nec-
essary to obtain an acceptable approximation of the
locus. The indi�erence locus at time T � 1 and state
xT�1 can therefore be approximated by

d(pET�1; p
F
T�1;T � 1; xT�1) = p̂FT�1(p

E
T�1) = 0: (24)

For a given pET�1, the process to locate p̂FT�1(p
E
T�1)

is similar to �nding a root for a univariate function.
A simple bisection method can be applied to solve the
problem. However, in such a root-�nding problem,
the function evaluation is very expensive, since each
function evaluation includes two independent Monte
Carlo simulations (for both uT=0 and 1). A more
sophisticated root-�nd technique such as curve �tting
method (e.g. [7]) can greatly improve the convergence.

With all the indi�erence loci for time T � 1 and
xT�1 2 � obtained, we repeat the same process be-
ginning at time T � 2. For each (pET�2; p

F
T�2) pair,

�rst we let uT�1 = 1. This leads to some state
xT�1 at T � 1. Each iteration then produces val-
ues for the electricity price and fuel price at time
T � 1. We compare these values with the indi�erence
locus of that corresponding state at T � 1 to deter-
mine the optimal commitment decision, and calculate
the corresponding pro�t. Based on this optimal deci-
sion uT�1, we move to a corresponding state at time
T and aggregate the corresponding pro�t at time T .
This completes one simulation iteration. By running
many simulation iterations, we closely approximate
the expected pro�t for turning on the unit at T � 1,
ET�2[JT�1(uT�1 = 1; xT�1; p

E
T�1; p

F
T�1)jpET�2; pFT�2].

We then let uT�1 = 0, and repeat the same proce-
dures for simulation and obtain ET�2[JT�1(uT�1 =
0; xT�1; p

E
T�1; p

F
T�1)jpET�2; pFT�2], the expected pro�t

for turning o� the unit at T � 1. If these two ex-
pected pro�ts for turning on the unit and turning o�
the unit at T � 1 are the same, (pET�2; p

F
T�2) forms

a (pET�2; p̂
F
T�2(p

E
T�2)) pair. If not, using search tech-

nique, update pFT�2 (with pET�2 �xed), and repeat the
same process above (for both uT�1 = 1 and uT�1 = 0
again) till a (pET�2; p̂

F
T�2(p

E
T�2)) pair is found. Af-

ter a certain amount of (pET�2; p̂
F
T�2(p

E
T�2)) pairs are

collected, the indi�erence locus for this state xT�2 is
approximated.

By repeating this process working backward in time
to time 0, we identify the indi�erence locus for each t
and xt 2 �. The last simulation, which begins with
the initial conditions at time 0, provides an estimate
value of the power plant during the operating period.
In summary, the Monte Carlo method in this approach
is employed not only in forward-moving simulation,
but also backward-moving recursion of dynamic pro-
gramming.

5. Numerical results

We have implemented the proposed method for
valuing a power plant in FORTRAN on a Pentium
II personal computer. This section presents numerical
test results.

5.1. Test System Parameters

The proposed method has been applied to a natural
gas-fueled generating unit with the following input-
output characteristics over a 4-day (96 hours) operat-
ing period:

H(qt) = 820 + 9:032qt + 0:00113q2t : (25)

To obtain the parameters of the price processes of
both electricity and fuel, we examine historical price
data series of Nymex natural gas prices and electricity
prices from both Palo Verde and Norway, taking the
logarithm of these prices as our basic data series. Since
there is no hourly market for natural gas, we assume
thatmF

t is constant within a given day and �t the price
process to daily data. Because the model time step is
hourly, however, we adjust these parameters accord-
ingly. Speci�cally, since the model is a continuous-
time model, we can deduce the implied hourly uctu-
ations immediately from the daily parameters.
For electricity, we use historical daily data from the

Palo Verde electricity markets and similarly normal-
ize the data to the hourly time step. However, to in-
corporate a daily price pattern, we then adjust mE

t

by overlaying the daily electricity price pattern (in
terms of percentage changes) of the Norwegian mar-
ket. Although this market is not identical to the newly
established hourly market of California, it is the au-
thors' belief that for the purposes of power plant valu-
ation, the cyclical uctuations incorporated are su�-
cient. Moreover, while some hourly California electric-
ity prices are available, due to its newness and accom-
panying scarcity, the hourly California electricity price
data was not su�ciently reliable. In the appendix of
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this paper, we summarize how to use maximum likeli-
hood method to estimate price parameters.

Using the maximum likelihood method, we obtain
�F = 4:17 � 10�6 and �F = 1:78 � 10�2. For elec-
tricity we obtain �E = 0:32 � 10�3 and �E = 0:20.
As aforementioned, mE

t captures the cyclical nature
of the expected electricity prices. Obtained mE

t val-
ues are summarized in Table 1. Also we assume the
instantaneous correlation coe�cient between electric-
ity and natural gas is � = 0:4.

Table 1: Values of hourly mE
t

t 1 2 3 4 5 6

m
E

t
2.9913 2.9719 2.9600 2.9528 2.9527 2.9699

t 7 8 9 10 11 12

mE
t

3.0052 3.0341 3.0545 3.0587 3.0597 3.0555

t 13 14 15 16 17 18

mE

t
3.0491 3.0444 3.0403 3.0362 3.0365 3.0386

t 19 20 21 22 23 24

m
E

t
3.0365 3.0324 3.0272 3.0252 3.0192 3.0005

We shall apply the proposed method to the unit
of (25) with various minimum uptime and downtime
cases. For simplicity, we assume that to� = tcold in all
test cases.

5.2. Indi�erence Loci

In Figure 2, we show three indi�erence loci taken
from the test case with ton = to� = 10. They are
the indi�erence loci at time t = 95 with state xt = 1,
t = 89 with state xt = �1 and t = 5 with state xt = 1
respectively. The sample price pairs on each indi�er-
ence locus obtained in our simulation follows closely
to a straight line. These price pairs are then �tted by
a linear function with mean square error minimized.
Each indi�erence locus divides the price plane (pEt ; p

F
t )

into two regions: on-line region (the lower right half)
and o�-line region (the upper left half). At time t,
if (pEt ; p

F
t ) falls into the on-line region, the optimal

commitment decision for the following hour, t + 1, is
to turn on the unit, and vice versa. The indi�erence
locus at di�erent time t and state xt 2 � appears to
have di�erent slopes and interceptions. No speci�c re-
lation between the locus characteristics and prices has
yet been observed.
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off−line region
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t=5
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Figure 2: Three indi�erence loci: (t; xt) = (95; 1),
(89;�1) and (5; 1).

5.3. Power plant value vs. physical

constraints

To demonstrate the relation between a power plant
value and physical constrains, we applied the proposed
method to the generator of (25) under various mini-
mum uptime and downtime constraints. Four cases,
ton = to� = 1, 4, 10 and unconditionally on-line, are
tested. The �rst three cases are all tested twice, one
with startup cost considered, the other without. The
results are summarized in Table 3.

In Figures 3a to 3c, three frequency charts are de-
picted. They correspond to three di�erent minimum
uptime and downtime constraints, ton = to�=1, 4, 10,
with startup cost considered. In each of the frequency
charts, the tallest \spike", representing the most fre-
quent occurrence, corresponds to zero pro�t, i.e. no
commitment at all hours. The outliers on left hand
side of the tallest spike correspond to loss. It can be
seen that as ton (or to�) increases, the downside risk
increases. The case with units on at all hours is consid-
ered to be a good measurement of the limiting case for
increasing ton, which corresponds to the lowest mean
pro�t, and the highest variance among all test cases.
The last column of Table 2 corresponds to value ob-
tained without considering decision lead time. This
also represents the value obtained by the approach us-
ing �nancial option theory presented in Section 3. To
summarize the test results, based on our speci�c test
system, we observe: (1) with unit startup time (de-
cision lead time) introduced, the (mean) pro�t drops
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Table 2: Power plant value vs. physical constraints

ton (hr) 1 4 10 1�

to� (hr) 1 4 10 0
Startup cost S 0 0 0 0

x0 -1 -4 -10 1

Meany (�106) 3.06 2.97 2.93 2.87
Variance (�1012) 62.97 63.97 65.84 69.38

Skewness 14.6 9.26 11 12
Kurtosis 485 154 254 329

Per MWh Pro�t 36.23 37.24 36.20 30.37
($/MWh)

ton (hr) 1 4 10 1z

to� (hr) 1 4 10 1
Startup cost S 2050 2050 2050 0

x0 -1 -4 -10 1
Mean (�106) 3.04 2.97 2.93 3.07

Variance (�1012) 63.00 63.99 65.85 74.58
Skewness 14.64 9.26 11 16.07
Kurtosis 485 154 254 610

Per MWh pro�t 35.94 35.98 35.38 39.32
($/MWh)

y: All simulations terminate when the statistical errors are
within 0.5% of the mean values.
�: The unit is on-line unconditionally at all hours.
z: This corresponds to the case with no decision lead time.

0.33%; (2) With respect to the case with lead time and
ton = to� = 1, when ton = to� is increased to 4, the
pro�t is decreased by around 2.4%, and is 3.78% when
ton = to� is 10. Overall, in this 4-day period, ignoring
both startup cost and physical constraints may result
in up to 6.5% (=(3.07-2.87)/3.07) di�erence in power
plant value. We expect this deviation to go up when
the length of operating period increases.
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Figure 3a: Frequency chart: ton = to� = 1, S = 2050

5.4. Value at risk

One advantage of using simulation to value a power
plant is that it provides information on the Value at
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Figure 3b: Frequency chart: ton = to� = 4, S = 2050
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Figure 3c: Frequency chart: ton = to� = 10, S = 2050

Risk (VaR) [6] of the power plant's operation. VaR is
a measure of the amount of money that an institution
could lose due to price changes in the underlying mar-
kets. The VaR measure depends on the chosen time
period and desired con�dence level. For example, let
the frequency function of the power plant value ob-
tained by simulation be represented by Pr(V = vi).
The 10% percentile of the cumulative distribution
function of the power plant value corresponds to the
amount of money that the power plant of (25) may
lose during the 4-day operating period, given a 90%
con�dence level (� v10%), i.e.

10% = Pr(V � v10%): (26)

This single number v10% encapsulates the power
plant's total operation risk over the 4 days of oper-
ation. The VaRs (90% con�dence) of the power plant
of (25), varied with di�erent physical constraints, are
summarized in Table 3. It can be seen that VaR in-
creases as the the length of minimum uptime or down-
time increase. Also the incorporation of startup cost
increases the VaR of a power plant.
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Table 3: Value at risk (VaR)

t
on (hr) t

o� (hr) Startup cost S VaR ($)
1 1 0 -14,277
1 1 2050 -25,437
4 4 0 -26,962
4 4 2050 -33,555
10 10 0 -52.808
10 10 2050 -57,799
1 0 0 -438,736

6. Future directions and conclu-

sion

In this paper we present a method for valuing a
power plant using Monte Carlo simulation. As op-
posed to the popular approach using �nancial options,
we emphasize the need for incorporating physical con-
straints into the problem modeling. Without consider-
ing physical constraints, the payo� is nonnegative, and
the potential risk due to operational limits is greatly
overlooked.

While we have tried to model real-world physical
constraints into the power plant valuation problem,
the unit ramp constraints [9] are still left out. Ramp
constraints, which limit the capability of a generator
to move between operating levels over short periods
of time, can have signi�cant impacts on the power
plant value. When subject to ramp constraints, the
generation levels of a unit are interdependent in all
hours. Incorporating ramp constraints into the valua-
tion problem requires to increase the dimension of the
state space of the dynamic programming, and hence
increases the complexity of computation. Research
using heuristics to take account ramp constraints has
been initiated. We will report further results in a fu-
ture paper.

Appendix

A Estimating parameters using

maximum likelihood method

Given a sequence of observations fX0; : : : ; Xng, the
joint density function of the sample

f(X0; : : : ; Xn; �) =

nY
i=1

f(Xi j Xi�1; �) (27)

where f(Xi j Xi�1; �) is the conditional density func-
tion of Xi given Xi�1. ( Note because the \inuence"
of the marginal distribution of the initial point is negli-
gible for large n, we exclude its e�ect for convenience.)
Let L(�) denote the log-likelihood function, the natu-
ral logarithm of f(X1; : : : ; Xn; �). Then,

L(�) =
nX
i=1

ln[f(Xi j Xi�1; �)] (28)

and so the maximum likelihood estimates solve

argmax
�
L(�) (29)

Recall the price process model letting Xt � ln(Pt):

dXt = ��(Xt �mt)dt+ �dBt (30)

This equation has solution

Xt = e��tX0+�
�
1� e��t

�
+�

Z t

0

e��(t�s)dBs (31)

Solving for the conditional density, we �nd

f(Xi j Xi�1;�; �; �) =

1p
2��̂2

exp

�
� (Xi � (e��Xt + � (1� e��)))2

2�̂2

�
;

(32)
where

�̂2 � �2

2�

�
1� e�2�

�
(33)

Thus, given the conditional density ofXi of our model,
we �nd the log-likelihood function is

L(�; �; �̂) =Pn

i=1 ln[f(Xi j Xi�1;�; �; �̂)]

= �n
2

�
ln[2�] + ln[�̂2]

�
+

� 1

2�̂2

nX
i=1

�
Xi � (e��Xi�1 + �(1� e��))

�2
(34)

To �nd the maximum likelihood parameters, �rst or-
der conditions imply

0 =
@L(�; �; �̂)

@�

=
1

�̂2

nX
i=1

�
(Xi � e��Xi�1)� �(1� e��)

�
(35)

0 =
@L(�; �; �̂)

@�
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=
1

�̂2

nX
i=1

((Xi � �)(Xi�1 � �)�

e��(Xi � �)2
�

(36)

0 =
@L(�; �; �̂)

@�̂

=
n

�̂
� 1

�̂3

nX
i=1

�
Xi � (e��(Xi�1 � �) + �)

�2
(37)

Thus the maximum likelihood estimators are

� =
1

(n+ 1)

nX
i=0

Xi � 1

(n+ 1)

�
X0 � e��Xn

1� e��

�

� 1

n+ 1

nX
i=0

Xi for n large (38)

� = � ln

"Pn

i=1(Xi � �)(Xi�1 � �)Pn�1
i=0 (Xi � �)2

#
(39)

�̂2 =
1

n

nX
i=1

�
Xi � (e��(Xi�1 � �) + �)

�2
(40)

�2 =
2��̂2

(1� e�2�)
(41)

Therefore, by replacing the prices in our original data
series with the natural logarithm of prices, we may
apply these formulas to determine the parameters of
the model for electricity and fuel.
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