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DESIGN AND MODELING FOR DC NANO-GRIDS 

 

by 

                                                            ORMOND D. CASTLE 

(Under the Direction of Adel El Shahat) 

 

ABSTRACT 

 

Smart grids were constructed as a means of communication to the electric grid through 

computer and other information technologies.  This line of communication acts as gauge for 

a more accurate reading of power consumed.  A nano grid is a model version of a smart grid 

with the ability to function as separate power generator.  Such feature allows for this grid to 

power single loads and apply for special applications. A DC-DC converter was designed to 

apply to a nano grid which is a form of a smart grid.  The converter was a single-input-multi-

output converter which is taking one DC voltage and applying it to two DC output voltages.  

This boost converter takes the inputs and increases its voltages, leading to the outputs 

respectively.  The nano grid utilizes this proposed converter to carry out its special 

characteristics.  Procedures carried out in this research showed the success of the converter.  

Further steps include the designing of a ring and radial architecture nanogrid to form a 

microgrid.  A comparison of results are made showing the efficiency and reliability of ring 

architecture layout microgrids. Doing this creates a more complex system, and provides relief 

to multiple sources to prevent outages. 

INDEX WORDS: DC-DC Converter, Nanogrid, Microgrid   
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CHAPTER 1: INTRODUCTION 
 

1.1 The Growth of Smart Grids 

 

Whether it is to supply power to a house or building, or to provide power for electronics in 

numerous locations, the demand for energy increases globally.  The world needs a reliable, 

efficient, and feasible method of power supply to the grid.  The current electric grid has been 

in place for years, supplying consumers with power and measuring the power consumed with 

electric meters to calculate fee to pay for the power consumed.  While this has been the way 

that electricity works and is distributed throughout the world, a new method has risen to 

prominence.  The smart grid hopes to become the new forefront of electrical distribution in 

the near future.  The smart grid was created to pair with different forms of renewable energy 

resources such as wind and solar energy.  Enabling this technology creates a greener 

environment for the entire world.  The grid has the ability to not only measure energy 

consumed by users, but use a form of computer intelligence to regulate power use and 

communicate with electrical companies’ changes in power consumption.  This unique feature 

allows for reduced electricity bills, and a system that can assist consumers in managing 

power consumption.   

Since the creation of the grid a major issue that exist are the actions of the smart grid in case 

of emergencies, which leads to the creation of nanogrids.  Nano-grids are designed to 

function to receive forms of several types of renewable energy resources.  The nanogrid 

functions as a backup generator and as a primary power source.  Furthermore, the creation of 

this grid allows for consumers to have a way to distribute power when outages occur, and to 
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control the amount of power that is distributed.  Nano-grids are used to power single loads in 

kitchens, living rooms or office spaces for special applications.  Ultimately it has the ability 

to power single loads up to 100 watts in either a home or office building.  Numerous 

converters exist for the nanogrid in the categories of AC-AC, AC-DC, DC-AC, and DC-DC.  

In these categories exist topologies such as single-input-single-output, single-input-multi-

output, multi-input-single-output, and multi-input-multi-output.  Single-input-multi-output 

DC-DC converter provided the most promising and consistent results: through the 

application in a location such as a home, one can take a single input voltage and increase or 

decrease the output being delivered to multiple locations.  The usage of this grid could 

provide a more economically stable planet, thus creating a better environment overall.  Not 

only will it allow for the utilization of renewable energy resources, but it would allow for 

everyone to detach from the use of the electrical grid and focus more on going green. 

1.2 Interconnecting Smart Grids 

 

The interconnection of systems is considered the building of a network or a system. With the 

creation of network it can be beneficial to different parts of life including health, and 

education just to name a few. The addition of renewable energy resources not only provides a 

possibly more efficient option but also something more environmentally friendly. In regards 

to transmission DC surpasses AC with its better current carrying capacity.  
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1.3 Breakdown of Thesis   

 

This project focuses on the design and modeling a SIMO converter. The converter is a 

boost converter with the ability to take one load and increase it into 3 separate load voltages. 

Furthermore, these three loads have their own respective values, thus allowing connecting to 

different devices. Along with the converter a layout for a decentralized microgrid system is 

designed. The microgrid system allows each household to function separately but also acts as 

backup source for other homes tied into the system.         

The thesis is organized by the following order: 

Chapter 2 which is the literature review that focuses on six key points. First introducing 

what is smart grid then explains the different levels such as a microgrid and nanogrid. Then the 

various topologies of converters are discussed. There will be investigations Dc systems and 

forms of protection, distribution and storage systems. Lastly the investigation of DC 

architecture that can are beneficial is expanding nanogrid systems as whole. 

Chapter 3 takes a look at the research methodology used to conduct this research. First 

the overall device configuration is presented. The design a DC-DC converter is explained in 

detail explaining formulas used to find results. Finally, this section goes in depth of the design 

of as a microgrid system with homes in a ring architecture being used to increase efficiency 

Chapter 4 gives results and analysis of the methodology that was discussed. In the 

methodology, the chapter contains results from the converter as well as the interconnected 

system.  The three main components of the research (design, base equations, and waveforms.    

Chapter 5 is an overview of the results and recommendations for future work are presented.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Smart Grids 

 

Since the first electric grid was implemented in 1882, few changes have been made in reading 

consumers’ electricity.  A smart grid was created to help electricity distribution companies and it 

so consumers adapt to the 21st century.  It produces more accurate readings, which creates more 

efficient, reliable, and secure power, and greener electric distribution locally and globally.  

(Farahangi 2010) 

Additionally, smart grids are defined as one of the great technologies of today ushering humanity 

into the future.  Its ability to control the production and distribution of electricity puts smart grids 

in high demand.  A typical electric grid involves the distribution of electricity on one path going 

from the power plants to its consumers.  By combining internet intelligence and communication 

with electric distribution network, a smart grid adds an additional line of communication which 

allows for the implementation of solar panels, wind energy and other renewable energy 

resources.  The grid incorporates various tools such as smart metering, sensored distribution grid, 

and smart transmission.  Figure 1 exhibits a smart grid and the elements that go into a smart grid.  

These tools help to further define what a smart grid is and its abilities.  They also help match and 

create a balance to the renewable energy resources and their variability. 
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Figure 1 Elements of a smart grid (Farhangi 2010) 

 

 

 

2.2 Micro-grids 

 

When micro-grids were designed, they were considered components of a macro-grid.  (Nordman 

2010) However, a micro-grid can function connected to a smart grid, as well as operate 

separately.  This grid can be used as a backup generator, but is also considered an element used 

to cut costs and continue to deliver various amounts of power.  (Youichi, Zhongqing, and Akagi 

2004) Much like a smart grid, the micro grid still utilizes the two way communication between 

homes and electric distribution companies.  Also these grids will still make use to conventional 
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centralized energy sources.  But will include local consumers having a local source of energy.  

Which allows the ability to independently manage and distribute their power.  The 

implementation of a micro grid creates many advantages.  For example, if a blackout occurs, 

many consumers are left without power during this emergency, particularly consumers with local 

energy sources that are rely on the grid.  A micro-grid can allow for consumers to receive power 

independently during such emergency.  The use of this backup power is possible because the 

micro-gird still receives energy from the local energy sources.   

There are many benefits come from the application of a micro-grid:  

• Enhanced integration of distributed renewable energy resources.   

• More efficient way for consumers to receive power and control energy distribution 

• Contributes to a greener environment by involving low or no carbon energy sources 

• Cuts costs  

• Increases power efficiency  

• Provides a reliable power source 

 

 

2.3 Nano-Grids  

When locations such as Dublin, California and Fort Collins, Colorado began utilizing this grid, 

there was still was still a hunt for something more compact that could focus solely on single 

buildings or loads.  (Nordman, Christensen, and Meier 2012) The nano-grid was created as a 

solution to this problem.  Nano-grids are considered elements of a micro-grid, and are also 

referred to as small micro-grids –, this means they can be interconnected to form a larger micro-
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grid.  Nano-grids can also be separated from a micro-grid and function independently with their 

own voltage, phase, and frequency from dc to kilohertz.  Interconnecting these grids gives them 

ability to increase their range and power supply.  A nano-grid can cover a range less than 100 

meters, and also power up to 50 households.  Though it has a wide range, it’s typically used to 

serve single buildings or loads.   When tied to a micro-grid, a nano-grid delivers up to 100 

kilowatts of power.  (Nordman 2010) When connected, it delivers up to 5 kilowatts of power.  

The components of the nano-grid consist of a controller, gateway, load, and an optional storage.  

The typical load size is 100 watts and, at times can follow under 1 watt.  The controller is 

considered the core or the authority.  It controls the load as well as manages the storage.  Storage 

can be installed internally or through as second nano-grid.  Solely to relieve the primary nano-

grid and act as storage specifically.  Gateways can be considered one way or two way, with a 

capacity limit.  These gateways consist of two components including communication and power 

exchange.  The communication portion should be considered generic giving it the ability to run 

across physical layers.  The power exchange is a component that focuses on defining the various 

amount of voltages and capacities.  Figure 2 shows a schematic of a nano-grid and its 

components. 

 

Figure 2 Schematic of Nanogrid (Nordman 2010) 

 



16 
 

 
 

 

2.4 DC-DC Converter 

A direct current to direct current DC-DC converter is used in relation to power electronics or 

power conversion.  It’s considered to be energy efficient for a higher power conversion, provide 

a more flexible design, and presents a lower temperature rise in its components.  This converter 

works by using a transistor as a switch alternating on and off.  The operation of the switch 

changes the flow of the current, which then alters the voltage leading from the input to output.    

(Schonberger, Duke, and Round 2006) There are numerous types of topologies when involving DC-

DC converters which can be broken down into two types:  isolating, and non-isolating.  A non-

isolating converter is considered the most common and differs from an isolated since it has an 

electrical barrier between the input and output.  An advantage to this form of the DC-DC 

converter is it’s low cost and simple to design.  Disadvantages include the fact that it has an 

electrical barrier which isn’t ideal since most of these converters are user accessible and this 

creates a safety hazard.  An isolated converter has a transformer acting as a barrier between the 

input and output.  Which gives the advantage of a being able to withstand high amounts of 

voltage.  Another advantage would include that the output voltage can be either positive or 

negative.  In these categories exist converters such as buck, boost, buck-boost, and zeta just to 

name a few.  Each individually alternating between increasing and decreasing the output voltage 

of a load.  But all converting one DC source to another.  In practice this converter provides 100% 

efficiency, ideally, nonetheless in practice obtains between 70% and 95% efficiency. 
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2.5 Single Input-Single-Output DC-DC Converter (SISO) 

SISO converters are considered the simplest of the converters.  Created for mostly simple 

applications involving single loads.  Its advantages include the ability to focus solely on one load 

which does not include or involve complex circuitry.  These simple circuits allow for the 

concentration on simply increasing or decreasing a voltage a respectively.  (Fred, Boroyevich, 

Mattavelli, and Ngo 2010) The capability of a buck-boost converter is applicable as well but 

requires the MOSFET to act as a switch thus separating the buck or boost of the circuit.  Other 

typical topologies for this converter specifically include the cuk, zeta and sepic as discussed 

previously.  Which also include designating various part of the circuit to affect the load voltage.  

Figure 3 displays a SISO boost converter where a single input is input thus increasing the output 

voltage or load. 

 

 

 

Figure 3 Single-Input-Single-Output Boost converter 
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2.6 Single-Input-Multi-Output DC-DC Converter (SIMO) 

A SIMO converter takes a single input and can either lower or rise the voltage of multiple loads.  

The number of output can vary contingent on the number of loads needed for application.  This 

converter is also considered a multilevel voltage source.  (Zare, Ghosh, and Blaabjerg 2010) This 

converter’s advantages include the production of high quality waveforms, using lower voltage 

ratings, as well as lower switching losses.  Though this converter is considered one to cut cost it 

has a few disadvantages as well.  Given a single input the multilevel configuration circuity 

exudes complexity, requiring a high number of DC sources as well as requiring a high number of 

power switches.  (Yajian and Jatskevich) 

SIMO converters has various topologies including: boost, buck, buck-boost converters.  These 

topologies have the ability to take a single input, and vary between increasing the voltage of one 

or more loads.  Or also, increase, and decrease a load at the same time.  (Rong-Jong, and Jheng) 

Figure 4 shows an example of SIMO buck-boost converter.  Where load Vo1 is being increased 

and Vo2 is being decreased. 

 

Figure 4 Single-Input-Multi-Output Buck-Boost Converter 
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2.7 Multi-Input-Single-Output DC-DC Converter (MISO) 

In most converters the goal is to design a converter with a great input as well as output.  These 

requirements with single input are hard to reach due to the fact the one input can be difficult 

when attempting to reach efficiency.  (Solero, Lidozzi, and Pomilio 2005) A converter with 

multi-input-single-output MISO is designed to reach efficiency.  By combining multiple voltage 

sources it increases the chances of giving an output voltage with great sustainability as well as 

reliability.  Furthermore, the MISO converter involves a less number of components, simple 

control, and lower losses in the system.  This converter works efficiently with renewable energy 

resources combining solar, wind, and fuel cells to power a load.  These sources have the ability 

to deliver power respectively to the load without any disturbing the operation of the other 

sources.  A typical MISO shown in Figure 5 shows 2 inputs being delivered into a load and 

converted into one single output.  (Gummi and Ferdowsi 2012) 

 

Figure 5 General form of multi-input-single-output converter (Gummi and Ferdowsi 2012) 

 

Though this converter can function simultaneously it also has the ability to allow a single input 

to function in the circuit.  However, doing so lessens the efficiency of the circuit.  The general 
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topology of this circuit is used to sustain a certain voltage thus the input much vary between 

being both higher and lower than the necessary output voltage or load.  Although, it also has the 

ability to combine numerous amounts of low voltage to combine for one high voltage. 

 

2.8 Multi-Input-Multi-Output DC-DC Converter (MIMO) 

MIMO converters are considered before anything cost effective.  Compared to a SISO a MIMO 

is a better choice being that it wouldn’t have to connect to a DC bus system.(Behjati and 

Devoudi 2013) Other advantages of this circuit includes fewer components, higher power density 

and location of centralized control.  In most cases MIMO is considered an extension of (SISO) 

which involves the rearranging and combing of components to give the outcome of a single 

complex circuit.  As supposed to numerous amounts of simple single circuits.   

This converter much like the MISO combines various power sources, and gives an output.  

Although, the output for this converter differs.  It takes the input and sends them to a different 

individual load, thus giving each load its own voltage.  This complex converter can also double 

and triple the ratio of inputs to outputs.  In Figure 6 a MIMO buck-boost converter is displayed 

showing two inputs and three outputs.  The final output voltage reads Voutn, which is displayed 

to show a MIMO’s ability to power an infinite amount of loads contingent on the inputs. 
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Figure 6 Multi-Input-Multi-Output Buck-Boost Converter 

 

2.9 DC Protection Systems 

2.9.1 Line Current Derivative 

This paper focuses on taking protection techniques of an AC grid system and modifying them to 

fit the needs and requirements of a DC system.  It focuses on a ring type micro-grid architecture 

which method of protection treats the link of systems as backups.  The specific system is ideal 

due to the fact that is robust as well as reliable. (Meghwani, Srivastava, and Chakrabrti 2015)  Its 

components consists of: non deterministic generation, deterministic generation, loads, and 

energy faults.  Non deterministic generation are considered components such as solar panels or 

wind turbines because of their unpredictability of output to sources.  While deterministic 

generator consist of typical sources such as diesel generators.  The loads are composed of just 

typical DC loads and the energy storage system is a Battery Energy Storage System (BESS) 

connected to a DC-DC converter.  (Meghwani, Srivastava, and Chakrabrti 2015)   The system is 

built and designed to function on analyzing the response of the system during faults.  This is 

done with the addition of a high speed current protection which can assess the issue quicker.  A 
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protective device was added in the form of a digital relay to a circuit breaker.  This relay asks a 

transformer of the signal measured from analog to digital as well as provides an option to change 

directions of the signal in case a fault occurs.  This change of direction is broken up into two 

types of coordination: a primary and a backup.  The primary protection takes the 2 lines of 

communication and separates the line with a fault and then transfers the entire signal through one 

line.  The backup is activated if the primary fails and takes the signal and acts a directional delay 

thus pushing the signal back towards the bus for protection.  The forms of protection. 

 

2.9.2 Control Power Sequencing 

  In (Cairoli, Kondratiev, and Dougal, 2011) electronic power converters in combination with 

mechanical contractors to solve short circuit faults in a nano-grid system.  The fault in this 

system is solved within roughly 8 milliseconds thus making a more effective strategy than of 

traditional fault solving techniques.  The condition is improved through the assistance of diode 

clamping and load capacitors.  There are three steps that occur when handling a fault in a nano-

grid systems through the contractors and power converter.  First, the feed of the converters into 

the system are shut off.  Then the contractor then separates the faulted branch which decreases 

the systems current faster.  Lastly, the contractors make adjustments to the system applying 

changes different from those that caused the fault and then re-energizes the nano-grid.  There 

exist parameters also known as fault dynamics that effect the way in which faults are handled.  

The system if the model during faults shows the phases in of identification in the form of 

function of the model as a whole.  This includes, fault identification, bus de-energizing, fault 

branch isolation, and bus-re-energizing. (Cairoli, Kondratiev, and Dougal, 2011)  There is also 

fault currents which occurs in the second phase of faults, bus- de-energizing.  During this time 
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energy has depleted form the primary source and seeks a solution through the inductance of the 

system.  Finally, the timing of the opening of the contractor and its dynamics.  The timing of the 

contractor interacting with the power converter induces the stage of bus re-energizing.  When 

opened properly the arc voltage across the contractor decreases the fault current and assists in 

reconfiguration of the system through the resistance and inductance.  The protection of the 

system focuses on transient behavior, time or operation as well as quality of power being 

delivered.  These characteristics control faults and the methods in which they are to be handled.  

This exemplifies the method of protection through power sequencing for a dc nano-grid system. 

 

2.9.3 Differential Protection Strategy 

(Dhar, Patnaik, and Dash, 2016) Uses a new fast fault detection for Multitermial DC (MTDC) 

distribution network for a micro-grid with power electronic based loads.  Furthermore, as backup 

protection arc fault circuit interrupters are added to detect arc series faults.  Essential constraints 

that must be fixed in unit protection consist of fast fault detection and fault distance reliability.  

(Dhar, Patnaik, and Dash, 2016)  Implements a fast fault detection system that works in solving 

these two constraints.  This MTDC includes multiple PV panels, a diesel generator and various 

DC loads.  The plan for fault protection is used when the PV panels are considered pole to 

ground to fault.  Which differs from the hazardous pole to pole distribution in DC systems.  

During the occurrence of the fault the voltage and current through the cable change.  This should 

be detected effectively using the cumulative sum average (CuSum) (Dhar, Patnaik, and Dash, 

2016) which helps determines the fault type.  This can be determined by either a sample by 

sample or window by window approach.  Which is the comparison a one sample to a previous 

sample or the comparison of a lump of samples (window) to a previous window.  In regards to 
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the distance of the fault the new fast fault detection uses the Moore- Penrose method.  The 

Moore- Penrose method consist of limiting calculations by early detection of voltage and current 

through adding uncertainties without a unique solution. (Dhar, Patnaik, and Dash, 2016)   The 

fast fault detection is considered to be effective in comparison through conventional methods 

using CuSum and Moore-Penrose which reduces time in calculations and increases efficiency. 

 

2.9.4 Coordination Strategies and Effective Protection Coordination System 

There exist fault detection methods including line to line and line-to ground fault types in a 

micro-grid. (Bui, Chen, et.al, 2014)   It also reviews the strengths and weaknesses of the main 

types of protection devices.  Strategies can be created for these devices to secure the longevity as 

well as the protection of micro-grid system.  .Line to line and line to ground fault are considered 

the two faults in this system.  This happens in many systems involving renewable energy 

resources with battery storage units.  These also occur due to those same sources acting with 

converters thus creating a line to line faults.  There are different methods used to handle faults in 

micro-grids.  The common fault detection methods are divided into two protection types: unit 

and non-unit. (Bui, Chen, et.al, 2014)    Unit protection works only under the bounded zone of 

the micro-grid.  While non-unit protection focuses on everything outside the micro-grid and any 

damaged threshold.  Furthermore, it act as a back-up form connected systems.  Other methods 

are determined by location of a faults which can be either at the bus, feeder, or ground or a 

system. (Bui, Chen, et.al, 2014)   Goes further to show which devices work best in different 

components of a micro-grid.  Table 1 shows these devices.   
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Table 1: Devices for Microgrid (Bui, Chen, et.al, 2014) 

 

 

2.10 DC Distribution Systems 

2.10.1 Distribution: Design, Operation and Control 

(Kwasinski, 2011) various modeling and implementation of highly reliable power sources. DC 

architecture of power distribution in smart systems are considered superior to ac. It’s considered 

more useful due to its positive characteristics such as being more efficient, and flexible. In the 

past, however ac power distribution was more preferable for it was simpler in means of 

transmission as well as feeding induction motors. With these qualities it made ac distribution a 

standard for 120 years. (Kwasinski, 2011)  Today’s increase in demand for renewable energy 

resources with sustainability have caused for an equivalent increase in dc distribution. 

Furthermore, this system in comparison to ac integrates better with storage devices such as 

batteries, and flywheels. A typical means of power source distribution consist of either creating a 

converter of single or multiple input. (Kwasinski, 2011)  Proposes a similar system however 

placing this same converter with multiple outputs at the grids distribution nodes. There exist 

various topologies for designing a system with an alternative way of distribution power. They are 

titled ring and ladder distribution architectures. When connected with proper autonomous 

controllers it increases the likelihood of advanced self-healing capabilities for a system.  
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2.10.2 Local Power Distribution for Micro-grids and Nano-grids 

(Nordman, Christensen, and Meier 2012) uses a concept called Local Power Distribution (LPD) 

where various devices are used in a nano-grid system to then be combined and integrated to form 

a bigger micro-grid system. Furthermore, its focus is on creating a balance in supply, demand 

and storage in regards to smart grid layouts. Currently, DC power generation and storage is 

considered the most practical source in regards to photovoltaic (PV) solar panels. It is also 

considered the most efficient when converting from DC/DC. Though efficient there are a few 

requirements when designing a thorough and effectively functioning method of power 

distribution. You must minimize losses in transmission as well as cost for the components for 

methods of distribution (i.e. breakers and inverters). (Nordman, Christensen, and Meier 2012)  

Also, all power sources must have the ability to be plugged in for optimum usage as well as 

control. These guidelines would increase resiliency in the system. LPD is used as a system to be 

integrated into achieving the goal of sufficient and high functioning smart grid system. LPD is 

typically used in micro-grid systems which consist of interconnect nano-grid that are in turn all 

connected to a local power generation. Nano-grids sit at the center of LPD being known for its 

internal storage. To meet the requirements mentioned LPD applied certain aspects to micro-grids 

to ensure stable positive results. To minimize losses in transmission it focuses on DC/DC to 

conversion only to cut out the losses when converting to AC. Capital costs is decreased by 

simply focusing on DC parts which not only more convenient but also smaller. LPD also 

prioritizes electricity use, cuts out manual configuration, and easily interconnects electrical 

domains. 
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2.11 DC Storage Systems 

2.11.1 Decentralized Stored for Smart grid Systems: Micro-grid and Nano-grid 

(Bastos, Dragičević, Guerrero, Machado, 2016) Compared to typical as storage devices of high 

bandwidth, this topology for storage utilizes batteries and ultracapacitors (UC). In low bandwidth 

communication (LBC) the system fails due to slow transient power thus depleting the efficiency 

of the battery. Integrating UC’s into the system increases the speed of transient power and a 

means of power restoration. Connecting into a DC-link, batteries and UC ‘s use renewable 

energy sources to control the absorption and delivery of excess power. Along with these 

additions a decentralized control layout is designed that helps with maintaining stability in the 

battery and UC. There also lies an incorporation of an AC grid to help assist with relief on the 

DC-link. This addition creates a diversified system that can interchange between DC-DC and 

DC-AC conversion. The controller of the grid is split into UC currents reference being controlled 

by a high pass filter and the battery by a low pass filter. These filters help with the transient 

power and its efficiency. (Bastos, Dragičević, Guerrero, Machado, 2016) the high pass filter 

helps the UC by subtracting the error of the UC from the output of the high pass filter. And the 

low pass filter working with the battery helps to slow down and maintain the systems dynamic. 

 

2.11.2 Multilevel Energy Management System 

(Xiao, Wang, and Setyawan, 2016) a distributed control hybrid energy storage system that will 

help increase and maintain reliability. This differs from a centralized control system which is the 

typical set up of for energy storage. The sharing of storage acts with the combination of low pass 

filters for low ramp rates. Combining the system then forms a multilevel storage system 
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consisting of primary and secondary functionality. With the primary control consisting of high 

energy storage, and the secondary being bus control and power sharing compensation to 

eliminate power deviation and voltage tracking errors. (Xiao, Wang, and Setyawan, 2016)   

Using the primary control source sharing of power is almost done autonomously. This however 

creates deviation due to transmission line impedance of the bus system. To increase and solidify 

a lifetime of application bus restoration is used to improve the power quality. Though the means 

of control create a balance of storage a third means of control is used as backup for efficiency. 

This tertiary control function uses ultracapacitors as a means of relief when the limits on the state 

of charge are too low or high. It acts a form of protection for the storage system. 

 

2.12 DC Architecture 

2.12.1 Modeling and Power Flow for Microgrid 

(Farooq, Mateen, et al.) A microgrid system is created to strengthen the grid in a community as 

well increase power flow. The systems initial set-yup consist of a classic microgrid system using 

PV panels as well as a method of generation, storage and to share energy within the system. 

However, it additionally uses an islanded DC system with schemes for protection as well as 

regulating the power in this system. Allowing the homes in the system to have their own form 

power thus allows for the power to be scalable in the system. The PV panels on the house are 

connected to a Maximum Power Point Tracking (MPPT) converter. This is used to take the 

power from the solar panel and supply it to the DC link. The DC link is connected to a converter 

which can either step the voltage up or down. MPPT also acts as an intelligent battery charger 

which regulates the amount of power being consumed by controlling the power being drawn 

from DC link/grid (Farooq, Mateen, et al.).  
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2.12.2 Distributed Energy Network for Nanogrids 

(Werth, Nobuyuki, and Tanaka) the design of an open energy system is used conceptually in 

nanogrid homes. Using some key factors from commonly interconnected nanogrids, some 

additions are made for more versatility. With PV panels and a battery for storage for each home, 

a extension of a net controller allows for energy be transmitted between each home. The net 

controller acts more like a software then a physical aspect for the homes. With this open energy 

system there wouldn’t be a need for the system to be connected to a basic utility grid unless 

homes are on a typical commercial based property (Werth, Nobuyuki, and Tanaka). This system 

consists of 2 levels the nanogrid in each of the homes, and the homes connected to the microgrid. 

Each of the levels consist of DC components, which brings advantages such as: efficiency equal 

to or greater than 90 percent, easier way to merge power, and increase in transmission efficiency. 

The hardware architecture involved is split into three components: subsystem design, DC 

interconnection between subsystems, and generalization and scalability. Subsystem design 

consist of power sources, power loads, and storage devices. Some basic power sources are PV 

panels, wind turbines and generators. The loads can be either DC or AC. And for storage 

batteries are used but these can alternate as ether or storage device or another method of supply. 

The next component is the dc interconnection between subsystems which is done through a local 

area network (LAN) line, and bi-directional DC link. The last component is generalization and 

scalability. This part expresses there being difference between homes in size as well as 

components, and scalability expressing the distance in transmission lines and the amount of 
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power delivered as well as stored. An open energy system acts as method to increase delivery in 

a smart grid system. 

 

2.12.3 Radial distribution  

 

In comparison to other distribution types, radial distribution systems are considered the simplest 

to design. This being that every load connected is solely connected to the power source.  Radial 

distribution is considered profitable in systems with low voltages and power supply and battery 

are centered. Furthermore, the cost of the system is fairly low. With all these advantages some 

cons to radial distribution, are at times the power supply may become heavily loaded if the 

voltage is too high. If alterations are made to the supply this could affect loads at further 

distances perhaps causing variations in the voltage. Also, if there is a fault that occurs at the 

supply the entire system shuts down. The system can only be restored if the one problem is 

resolved for it is the only supply for the loads. These disadvantages can be overcome with the 

addition of more lines to transmit power as well and adding feeders. However, though simple 

additions the cost of the system and its parts makes this less economically friendly.  
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CHAPTER 3: Design Applications for Nano-Grid Systems 
 

3.1 Design of Single-Input-Multi-Output Converter for Nano-Grid Applications 

3.1.1 System Configuration 

A single input multi output converter will be designed and implemented into a nano-grid.  This 

application will allow for the powering of a single load for special applications.  To reach the 

target, several mandatory steps are followed.   The proposed converter can generate the voltage 

of a low voltage input to controllable levels of boosted output voltage and it can also produce the 

inverted output voltage.  This dc-dc converter utilizes the properties of voltage clamping and 

soft switching based on a coupled inductor.  Design of SIMO dc-dc converter along with modes 

of operation has been presented using MATLAB / SIMULINK and/or Multisim and/or PSIM for 

modeling, design and simulation with any new advanced software for the new type of 

semiconductor.  The objectives of this design is to get high-efficiency, high step up ratio and 

various levels of output voltages.  The use of a modified single input multiple output dc-dc 

converters can be used to give multi outputs.  This converter consist three outputs, That is low 

voltage power source is converted into high-voltage dc bus and middle voltage output terminals.  

It has only one power switch with the properties of voltage clamping and soft switching.  With 

these specific modifications they assist in the goal get different level of output voltages, and 

multiple outputs, high efficiency power conversion and high step up ratio too.  Table 1 lists the 

parameters used in the circuit to achieve each output voltage respectively.   The first capacitor 

value of 10 µF is the auxiliary capacitor which is used initially in the circuit.  Along with the 

capacitor the process of coupled inducting is used with values with values of 2 mH.  Which 

helps with the soft switching and voltage clamping process.   
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Table 2: Required Components for SIMO Converter 

  

C  L  R  Vout  

10 µf  2 mH Coupled 
Inductor  

(Primary)  

200 Ω    

  

  

13 volts  2 mH Coupled 
Inductor  

(Secondary)  

33 µF  1 mH    

  

33 µF  

  

1 mH  

  

1 kΩ  

  

21 Volts  

500 µF    500 kΩ  93 Volts  

 

 

 

 

3.1.2 Circuit Equations 

In designing a boost converter there are conventional formulas, used to design a boost converter.  

Focusing mostly importantly on the input voltage, output voltage, and duty cycle, to start the 

assumption is that the capacitor C is large and the voltage across this capacitor does not change.  

Also that when your switch is transitioning from open to close the current 𝐼𝐿 is 0, along with the 

diode being ideal diode.  Now starting with the switch being open performing a KVL we get:  
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(1) 

 

 

Thus equaling, 

 

 

 
(2) 

 

When the switch is closed.  When the switch is opened using the same method you get: 
 

 

 

 
 (3) 

 

 

Solving for 𝑉𝑙 using (3), 
 

 

 
 

(4) 

 

 

 

 

 
(5) 

 

 

 

 

 
(6) 

 

 

Using simplifying methods we get: 
 

 

 

 
 (7) 

 

 

 

 

 
(8) 

 

 

 



34 
 

 
 

From this gives the relationship between the output voltage, input voltage, and duty cycle of a 

PWM modulated signal.  Figure 7 shows the layout of a conventional converter with additional 

loads. 

 
 

 
Figure 7.  Block Diagram of Proposed Topology 

 

 

 

 

 

This SIMO converter contains 4 parts: an input circuit, an output voltage low, output voltage mid 

and output voltage high.  In this design the method of coupled inductors are used in which 

voltage clamping and soft switching are utilized to reduce switching and conduction losses.  

Using equations (1)-(8) along with some modifications as well as using contributions from the 

capacitors and the switch in this situation to get these formulas.  We first start with the 

acknowledgement of the inductors in circuit 1 inductors showing the relationship between the 

coupled inductors as N is the turns ratio and K the coupling coefficient for a transformer with 

𝐿𝑚𝑝 acting as the primary inductor and 𝐿𝑘𝑝 the secondary inductor[4] [6]: 
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(9) 

 

 

 

 

 

 
(10) 

 
 

 

 

With respect to the capacitor 𝐶𝑎𝑢𝑥 is taking calculated using:  
 

 

 

 

(11) 

 
 

The coupled inductor component can be modeled as follows in relation to the voltage 
  

 

 

 
(12) 

 

 

 

 

 
(13) 

 

 

Resistance maximum and minimum considerations are used in regards to reaching to expected 

outputs for the converter in (14) and (15): 
 

 

 

 
(14) 

 

 

 

 

 

(15) 

 
 

The resonant frequency were calculated as 

 
 

 

 
 

(16) 
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Using the formula used to calculate the duty cycle (17) we rearrange some variables and in turn 

put it with respect to efficiency or eff and get (18) 

 
 

 

 
 

(17) 

 
 

 

 

 

 

 

 

 
(18) 

 

 

 

 

 

 

 

 

3.1.3 Modes of Operation 

 

Mode 1:  

In this mode the MOSFET is turned ON and D3 is OFF.  Due to the polarity of the coupled 

inductor the terminal then becomes positive, thus charges to the middle inductor L3.  After 

discharging completely and the conclusion of this mode Diode 2 turns OFF. 

 

Mode 2: 

In mode 2 the switch is OFF.  The current loss coming from the secondary inductor  𝐿𝑘𝑝 .  When 

the voltage across the switch increases to more than the voltage moving across 𝐶𝑎𝑢𝑥 this is 

moved to L4 which causes D1 to conduct.  L3 supplies D2, also causing it to discharge due to all 

energy being absorbed from the secondary side. 

 

 



37 
 

 
 

Mode 3: 

In mode 3 the MOSFET or switch is then triggered.  In this 𝐶𝑎𝑢𝑥 and secondary inductor 

windings are all in series which releases energy through D3.  The switch is now ON, soft 

switching is used which leads to a reduction in losses during the switching process.  During the 

end of the mode the secondary current decays to zero, and the switching cycle repeats starting at 

Mode 1. 

 

3.2 Ring Scheme Architecture and Decentralized Supply 

3.2.1 Architecture Background 

The ring architecture is taking a nanogrid and interconnecting it to other homes with nanogrid 

systems to create a microgrid. There exist two types of architecture for the systems: distributed 

generation distributed storage architecture (DGDSA) and centralized storage centralized storage 

architecture (CGCSA). It furthermore explains how DGDSA is more efficient due to less line 

which decreases losses and decreases voltage drop. A CGCSA system uses a photovoltaic (PV) 

panel but simply allows generation in one direction to the each home in the system using a 

shared power source. In regards to storage the placement of a battery to be used as storage could 

create boundaries in which each home would receive power. With this limitation the 

methodology and design for the system only allows for one out on each home.  These now 

complex designs of a system allow for loss in power, as well as decrease in transmission. The 

design of DSDGA as shown in Figure 8, shows a system in which each house generates its own 

power through (PV) panels. Which gives these homes the ability to generate, store its own power 

as well allow for these two things to operate and function bi-directionally through a nanogrid 
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system design. Using its bi-directional abilities, these homes have the flexibility to naturally 

handle power in any sort the system needs.  

 

 

 

 

Figure 8.  Basic Ring Architecture 

 

 

3.2.2 Optimal Power Flow Equations for Decentralized Architecture 

Optimal power flow focuses on a process that will assist with reduction in cost as well as losses 

in transmission through power supply in network settings. With DC nanogrids being the goal and 

having such an abundance of positives that is the focus of this optimal power flow. The 

algorithm used is the basic DC Optimal power Flow formulas. With 𝑥 representing the number 

of units, the outputs 𝑝 and the buses voltage angle by 𝜃. The functions are ℎ(𝑥) and g(x) are the 

balanced and unbalanced constraints. (Kargarian, Mohammadi, et.al) (19) - (21) Highlight 

functions that include the cost regulation, the load buses, and generating units. 
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CHAPTER 4: EXPERIMAENTAL RESULTS AND FINDINGS 
 

4.1 DC-DC Converter Results 

4.1.1 Boost Converter Design  

The results from the simulation are shown in this section Figure 9.   Shows a model of the SIMO 

converter designed through Simulink.  A single-input-multi-output boost converter was designed.  

This converter took the input voltage of 12 volts and increased the voltage leading to three 

outputs.  The voltages of the three outputs were 13, 21 and 93 respectively.   

 

 

 

 

 
 

Figure 9.  Simulink Model of Proposed Converter 
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4.1.2 SIMO Converter and Nano-grid Application 

 

The power source of the SIMO converter consist of photovoltaic (PV) cells.  This renewable 

energy source is modeled as a 12V DC power source for accuracy in design of the converter.  

Using a PV panel provides energy efficiency as well as a self-sufficient power source.  Reference 

[10] Nano-grids consist of DC sources which removes the need of inverters for generators.  The 

converter will be connected to the controller of the nano-grid system which will be used to 

distribute the voltage throughout the system.  In sending power throughout the Modes of the 

converter are activated accordingly.  The Loads of the system receive the input and reach their 

respective values.  Furthermore, the nano-grid would deliver power according to the amounts 

demanded by each load.  This is in relation to the gateways of the grid.  One way of function on 

the gateways involves power exchange in combination with the controller.  The other way of 

communication is through layers to either through Universal Serius Bus (USB) or Power over 

Ethernet (POE) 
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4.1.3 Results from SIMO Converter 

 

Figure 10 shows the pulses delivered from the generator being delivered into the switch of the 

circuit. 
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Figure 10.  Pulses from the Generator 

 

 

 

Figures 11, 12, and 13 show the output voltages achieved resulting in 13, 21 and 93 volts.  With 

Figure 10 the voltage rises to approximately 23 volts then settles to our desired value of 13 volts. 

 

 

 

 
Figure 11.  Output Voltage of 13 volts   
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Similar to Figure 10, the voltage in Figure 11, of 21 is our expected goal, however output begins 

to surpass that value and peaks at 29 volts later to settle at our intended value of 21 volts.    

 

 

 

 

 

 

 
 

Figure 12.  Output voltage of 21 volts  
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Due to the layout of the circuit the output of Figure 12 is different.  It increases to a value of 93 

volts and then remaining there consistently throughout the time the circuit remains active.   

 

 

 

 

Figure 13.  Output Voltage of 93 volts 

Along with the voltage being married across the resistors the current is also calculated. The 

current in this design is measured across each output and which also has the resistances are 

across each load. Figure 14-16 shows the various currents if the system. Each graph shows a 
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spike in signal which is simply the energy being released into its current position in the circuit. 

Figures 14, and 15 ar esimiliar due to the components and its arrenment in the circuit. They are 

close in measure for Figure 14 is 137 milliamps and Figure 15 is 95 milliamperes. 

 

 

 

 

Figure 14.  SIMO Converter Current 1 of 137 milliamperes 
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Figure 15.  SIMO Converter Current 2 of 95 milliamperes 

 

 

 

 

 

 

The results in Figure 16 is the lowest due to losses in progression giving it the results of 66 

milliamperes. 
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Figure 16.  SIMO Converter Current 3 of 25 milliamperes 

 

 

 

Figures 17-19 show the totla harmonic distoriton from each of the three outputs. Which shows 

over a time a decrease in THD due to the addition of compoenents during progression through 

the circuit. 
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Figure 17.  Total Harmonic Distortion of Output 1. 
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Figure 18.  Total Harmonic Distortion of Output 2 
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Figure 19.  Total Harmonic Distortion of Output 3 

 

 

 

 

4.2 Ring Architecture Layout 

The layout of the ring architecture forms a microgrid system. The modified version of a 

microgrid, the ring architecture is created as shown in Figure 20. 
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Figure 20. Ring Architecture Simulink Model 
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4.2.1 Results from Ring Layout 

This model contains three loads in the form of homes connected to a photovoltaic panel and a 

battery. The battery acts a storage as well as a method to dump energy when necessary. Figure 

21 shows the primary voltage averaging around 200 kilovolts and the primary current in Figure 

22 peaking at 1750 kilo amperes. 

 

 

 

 

Figure 21.  Primary Voltage-Ring 
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Figure 22.  Primary Current-Ring 
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Figure 23.  Power from PV panel-Ring 

 

 

 

Figure 23 shows the output from the PV panel which in this system has 10 kilowatts of power 

delivered to the system. 
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In Figure 24 the secondary power which is simply acting as generator backing up the solar panel 

if it fails has about 50 kilowatts worth of power 

 

 

 

 

Figure 24. Secondary Power Source 
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Figure 25.  Average Load Output-Ring 

 

 

 

 

The average loads in the system is 80 kilowatts which sits right below the average for a nanogrid 

system which is 100 kilowatts which is in Figure 25. 

 

Figure 26 shows the amount of voltage battery is low. This being because the PV panel is 

supposed to be the main power source thus limiting the necessity of a battery. The battery mostly 
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acts a backup to the secondary due to the fact that the PV panel is the initial power source and its 

secondary are used to keep up the functionality. 

 

 

 

 

Figure 26.  Power from Battery-Ring 
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4.3 Radial Architecture Layout  

The radial layout consist if each load being directly connected to the PV panel. Though the 

battery still exist it works only with the PV panel. Causing the loads to rely heavily on the panel. 

Figure 24 shows the radial architecture. 

 

 

 

 

 

 

Figure 27.  Radial Architecture Simulink Model 
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4.3.1 Results from Radial Layout 

The primary voltage in Figure 28 approximately 9 kilowatts. This comes from the system having 

the component such as the battery directly connected to solely the solar panel and not the loads. 

This helps boost the primary voltage of a system. 

 

 

 

 

 

 

 

Figure 28. Primary Voltage-Radial 
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Furthermore the current shows a steady output current for the PV panel. It also shows no positive 

response for the secondary source which is also affected by the layout and the setup of the 

homes. 

 

 

 

 

 

 

Figure 29. Primary Current-Radial 

 

 

 

 

 



62 
 

 
 

The PV panel power being delivered to the system is approximately 5 KW due to the fact that 

it’s the method of generation and no battery connected with power being supplied in Figure 30. 

 

 

 

 

 

 

 

 

Figure 30. Power from PV Panel-Radial 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 
 

5.1 Conclusion 

The novel approach to create a converter that can take a one input and converter it into numerous 

outputs was the goal of this paper.  As shown in this paper, success in designing a DC-DC 

converter with this criteria was achieved.  This included designing a converter receiving a single 

input voltage for usage of a nano-grid.  The single input leads to outputs where each are loads of 

different values.  With these successful results allowed for the nano-grid to act as a generator.  

Furthermore, ring architecture was constructed consisting of nanogrids being interconnected to 

create a microgrid. The architecture allows for the system to act as a method of prevention from 

loss in power and transmission. It also is a form of protection in relation to faults occurring and 

possibly damaging the network.  Along with a ring architecture, a radial layout was also 

designed to act as a comparison to the ring layout. Thought a radial layout is simpler design it 

has a lot of drawbacks. Along with needing extra cables to increase efficiency, if ever the PV 

panel was to shut down it would result in the entire system shutting down. While the ring layout 

requires less cables as well a backup method in case an outage occurs. Thus making the ring 

layout the best choice in regards to microgrid design using nanogrid systems. 

5.2 Recommendations for Future Work 

• Implementation of the nano-grid in homes 

• Emphasize on the ability of a nano-grid to function as power generator by adding 

additional inputs. 

• Fabricating a circuit to which it would be both complex and distribute power to more 

loads. 

• Focus on a method to increase current flowing throughout the circuit. 
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• Combine multiple nano-grids to form a micro-grid for applications of higher voltage 

loads. 

• Design a bus system that can go into further detail of a microgrid system. 

• Compare and contrast other architectures to alter methods for optimal power flow and 

results. 
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