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Network-centric Localization in MANETSs based on

Particle Swarm Optimization

Raghavendra V. Kulkarni, Senior Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE,
Ann Miller, Senior Member, IEEE, and Cihan H. Dagli, Member, IEEE

Abstract—There exist several application scenarios of mobile
ad hoc networks (MANET) in which the nodes need to locate a
target or surround it. Severe resource constraints in MANETS
call for energy efficient target localization and collaborative
navigation. Centralized control of MANET nodes is not an
attractive solution due to its high network utilization that can
result in congestions and delays. In nature, many colonies
of biological species (such as a flock of birds) can achieve
effective collaborative navigation without any centralized control.
Particle swarm optimization (PSO), a popular swarm intelligence
approach that models social dynamics of a biological swarm is
proposed in this paper for network-centric target localization in
MANETSs that are enhanced by mobile robots. Simulation study
of two application scenarios is conducted. While one scenario
focuses on quick target localization, the other aims at convergence
of MANET nodes around the target. Reduction of swarm size
during PSO search is proposed for accelerated convergence.
The results of the study show that the proposed algorithm is
effective in network-centric collaborative navigation. Emergence
of converging behavior of MANET nodes is observed.

Index Terms—Mobile ad hoc networks (MANETS), multi-robot
systems, network-centric control, particle swarm optimization
(PSO), target localization, wireless sensor networks (WSNs)

I. INTRODUCTION

IRELESS sensor network (WSN) is a network of dis-

tributed autonomous devices that can sense or monitor
physical or environmental conditions cooperatively [1]. Sensor
nodes that form WSNs are deployed in an ad hoc manner for
remote operations. Applications of WSNs include environmen-
tal monitoring, habitat monitoring, prediction and detection of
natural calamities, medical monitoring and structural health
monitoring [2]. WSNs are expected to realize a convergence
of communication, computing, and control. Sensor nodes
are typically small and inexpensive, operating with limited
resources, often in adverse stochastic environments. Sensor
nodes have stringent limitations in storage resources, com-
putational capabilities, communication bandwidth and power
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supply. These constraints call for a distributed control. In some
applications, sensor nodes are grouped in clusters, and each
cluster has a node that acts as the cluster head. All nodes in
a cluster forward their sensor data to the cluster head, which
in turn routes it to a specialized node called the sink node (or
the base station) through a multi-hop wireless communication.
Self organization, energy efficient routing, scheduling, security
and reliability are the key research topics in the area of WSNs
[2]- [3].

Nodes of a WSN are often endowed with mobility in
order to expand the spectrum of its capabilities. A mobile
ad hoc network (MANET) is a network of mobile devices
that can communicate with each other without the use of a
predefined infrastructure. A popular application of MANETS
is to provide service as the first respondents in emergency
situations [4]. WSNs can be regarded as a subset of MANETS
due to the fact that the nodes are stationary in most sensor
networks. Generally, MANETSs consist of WSNs that are
enhanced by mobile platforms. In most applications, these
mobile platforms are mobile robot systems [5]. Fragile, low
bandwidth wireless links and frequent topology changes pose
challenges in network discovery, network control and routing,
collaborative information processing, querying, and tasking
[2]. Operation and control of nodes in a WSN or a MANET is
a major research issue. A tutorial-style overview of cooperative
control in sensor networks having stationary and mobile nodes
can be found in [6]. Typically, central control is exercised for
sensing, transmission, and locomotion, which may result in
increased network load, leading to congestions and delays.
These problems become more severe when the number of
nodes increases. Though approaches like directed diffusion
exist for data centric communication [7], there exist many
unresolved research issues.

There are several application scenarios in which the nodes
of a MANET need to be navigated to a desired location
in the mission space for a closer investigation of the en-
vironment. Searching for a fire is one such example. The
quicker a node locates the source of the fire, the quicker
can the fire be extinguished. Navigation of a group of nodes
(or all the nodes) to a desired target location is another
requirement. For example, when a node locates the fire, it
might need the assistance of many of its peers in extinguish-
ing the fire. Many colonies of biological species such as
swarms of bees and flocks of birds have mastered the art of
collaborative navigation and convergence without using any
centralized command. This paper discusses an approach for
network centric operation and control for node localization in
MANETs. The approach incorporates the elements of particle
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swarm optimization (PSO), the collaborative problem solving
technique that colonies of biological species use in nature.
This approach generates in-network navigational decisions and
obviates centralized control. This network centric approach is
effective in a typical MANET scenario which involves node
mobility, large deployment and energy constraints.

Main contributions of this paper are as follows: Two PSO
based localization algorithms are presented. The first algorithm
navigates the sensor nodes of a MANET to search for a target
such as a fire or a source of odor. When the first node reaches
a point in sufficiently close vicinity of the target, the mission
is deemed accomplished. The second algorithm aims at quick
convergence of a sizeable number of nodes around the target.
Results of simulation studies are presented.

The rest of the paper is organized as follows: The potential
of the network centric operations in MANETs and WSNs is
discussed in section II. Section III reviews the approaches used
for multi robot target localization. Fundamental concepts of
PSO are explained in section IV. Details of the simulation
studies are given and the results obtained are discussed in
section V. Finally, conclusions are presented in section VI.

II. NETWORK-CENTRIC OPERATION AND CONTROL

Coordination and control of MANETS, especially collabo-
rative target localization is an emerging research area. The
MANETs monitor an environment or a phenomenon con-
tinuously. Sensor data is transmitted to a central system
for processing through multi-hop communication. Then the
navigation commands are delivered. This scheme is illustrated
in Fig. 1. If data needs to be transmitted over a long distance,
one has to either use a high power transmission, or several
number of hops. While the former scheme results in premature
exhaustion of the nodes, the latter results in accumulation of
delays. Centralized control is prone to network congestion as
well.

A possible way to overcome these limitations is to use
an efficient network-centric localization scheme. The desired
network-centric control and operations in a MANET is illus-
trated in Fig. 2. This scheme employs data-centric message
forwarding, aggregation and processing. Major requirements
of such a scheme are:
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Fig. 1. Centralized control in a MANET
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Fig. 2. Network centric operation and control in a MANET

1) Self organized operation without centralized control
2) Self learning properties

3) Reduced network utilization

4) Faster response

Scientists have sought inspiration from nature to address
many technological challenges. Computer technology is full of
mechanisms that have been adapted from biological systems.
Bio-inspired technologies have been proposed for network-
centric actuation in sensor/actuator networks [8]. Swarm in-
telligence (SI), a paradigm of computational intelligence, en-
compasses several bio-inspired techniques. PSO, a popular SI
algorithm [9], is used for network-centric collaborative target
localization in this study.

IIT. MULTI-ROBOT TARGET LOCALIZATION

It has long been recognized that there are several tasks that
can be performed more efficiently and robustly using multiple
robots. Moving from one robot to a group of robots increases
the resources available to accomplish a task, but adds its own
complexity. Locating one or more targets within an unknown
environment is a task well-suited to a group of mobile robots.
One major challenge within multi-robot target localization is to
design effective algorithms that allow a team of robots to work
together to find target locations. Literature has a large number
of techniques proposed for efficient multi-robot navigation.
An overview of cooperative multi-vehicle test-bed (COMET)
created in order to facilitate the development of cooperative
control systems and mobile sensor networks is presented in
[10]. Video camera assisted vision based control [11], neuro-
fuzzy control [12] and behavior-based control [13] of multiple
robot platforms in real-time are some techniques reported in
literature.

Use of swarm-intelligent robotic approach in search tasks
can offer multiple benefits like parallel search, quick conver-
gence and increased robustness against failure of a robot. SI
techniques, the techniques based on the collective behavior of
decentralized, self-organized systems, have been used to solve
target localization problem. A swarm-based fuzzy logic control
for collaboratively locating the hazardous contaminants in an
unknown large-scale area is proposed in [14].
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PSO uses a virtual multi-agent search to find global optima
in a multi-dimensional solution space. It has been adapted
for multi-robot target localization problem. PSO based multi-
robot target search approach is presented in [15] and [16]. The
work discussed in [17] proposes a PSO based mobile sensor
network for odor source localization in an environment having
a dynamic odor distribution. The work presented in this paper
uses PSO to navigate the robots laden with sensor nodes of a
MANET to a target location.

IV. BAsICc CONCEPTS OF PSO

PSO is a population based iterative parallel search algorithm
that models social behavior of birds within a flock. PSO uses
a simple concept, and it can be implemented in a few lines
of computer code. It requires only primitive mathematical
operators, and is inexpensive in terms of memory requirements
and computational time. It has been found effective in solving
several kinds of problems. Since its introduction in [9], PSO
has seen many modifications and has been adapted to different
complex environments [18]. Many versions of PSO have been
proposed [19] and applied to solve optimization problems in
such diverse fields as reactive power systems [19]- [20], stock
markets [21], distribution state estimation [22] and adaptive
phased array antenna control [23].

PSO consists of a population (or a swarm) of s particles,
each of which represents a potential solution. The particles
explore an n dimensional solution space in search of the
global solution, where n represents the number of parameters
to be optimized. Each particle ¢ occupies a position X;4 and
moves with a velocity v, 1 < i < sand 1 < d < n. The
particles are initially assigned random positions and velocities
within fixed boundaries, i.e., Xpnin < X < Xmax and
Umin < Vig < Umax. Fitness of a particle is determined
from its position. The fitness is defined in such a way that
a particle closer to the global solution has higher fitness value
than a particle that is far away. In each iteration, velocities
and positions of all particles are updated to persuade them
to achieve better fitness. The process of updating is repeated
iteratively either until a particle reaches the global solution
within permissible tolerance limits, or until a sufficiently large
number of iterations is reached. Magnitude and direction of
movement of a particle are influenced by its previous velocity,
its experience and the knowledge it acquires from the swarm
through social interaction.

Each particle has a memory where it stores pbest;q, the
position where it had the highest fitness. Besides, gbest,, the
maximum of pbest;qs of all particles is stored as well. The
gbest particle represents the best solution found as yet. At
each iteration k, PSO adds velocity v;q to the position X4
of a particle and steers the particle towards its pbest;q and
gbesty using (1) and (2).

vialk+1) = w-vi(k) +c1-rand;y - (pbestia — Xiq)
“+eo - rands - (gbestq — Xiq) (1
Xia(k +1) = Xja(k) + via(k + 1) 2

Here, rand; and rands are the random numbers that range
between 0 and 1 with a uniform distribution. The velocity
update equation (1) shows that a particle is influenced by
3 components of acceleration. The first term involves the
inertia coefficient w, 0.2 < w < 1.2, and it denotes the
inertia of the particle [24]. The second term involves the
cognitive acceleration constant c;. This component propels
the particle towards the position where it had the highest
fitness. The third term involves the social acceleration constant
co. This component steers the particle towards the particle
that currently has the highest fitness. Fig. 3 illustrates these
components of velocity. The net change in a particle’s velocity
vector is equal to the vector sum of these individual velocities.

The velocity of a particle is bounded between properly
chosen limits vy,ax and vpyin. If vmax is a very large constant,
particles might acquire a velocity high enough to go out of
the solution space. If v« 1S @ very small constant, particles
might move in very small steps and therefore, take a long
time to converge to the solution. Similarly, the position of a
particle is restricted between properly chosen constants X,,ax
and X,,;,. Pseudocode for the PSO based search algorithm is
given in Fig. 4.

V. SIMULATION RESULTS AND DISCUSSION

In this study, two PSO based application scenarios are sim-
ulated in MATLAB software environment. The PSO particles
are the MANET nodes enhanced by mobile robots. As done
in some real-time MANETS, the nodes are randomly deployed
in the mission space. The mission space is a 2-dimensional
plane grid having an area of 1000x1000 square units. It is
assumed that the nodes always know their current locations.
The user defines a target by specifying its cartesian coordinates
(T, T,). However, the coordinates of the target are unknown
to the sensors. It is assumed that each node has a sensor
which provides with the information necessary to compute
its distance from the target. The PSO seeks to minimize
the distance to target (or to maximize the strength of sensor
signal). The sensor is simulated in such a way that the detected
signal strength I is obtained as the reciprocal of the sensor’s

y
A
o The target (7, 7))
© The ghest particle (gbest,, gbest,)
X(k+1)
o Particle 1 ¢y randy (gbest -Xiq)
Social Acceleration
e Particle 2
¢y randy- (pbesti-Xiq)
F)’('(glr?icle ; wvidk) Cognitive Acceleration
Inertia
o Particle s
» X
Fig. 3. Components of velocity update in PSO
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Initialize w, ¢, ¢, max_iterations, target_fitness, Xmin, Xmax» Viin a0d Vinax
FOR each particle i
FOR each dimension d
Initialize positions randomly, Xnin < X< Xinax
Initialize velocity v, randomly, Viin< Vi <Vinax
End FOR
END FOR
Iteration k=0
DO
FOR each particle i
Compute fitness(i)
IF fitness(i) > fitness(pbest,)
FOR each dimension d
pbest,= X,
End FOR
END IF
IF fitness(i) > fitness(gbest,)
FOR each dimension d
gbest=X,
End FOR
END IF
END FOR

FOR each particle i
FOR each dimension d
Calculate velocity according to the equation
vidk+1)=wv (k) + ¢ rand (pbest.~X.) + c-rand. (gbest-X.)
Update particle position according to the equation
Xk+1)= X (k) + vk+1)
Restrict v, within vy, and vinax
Restrict X, within X, and Xax
END FOR
END FOR
k=k+1
WHILE k < max_iterations AND fitness(gbest) < target_fitness

Fig. 4. Pseudocode for PSO
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Fig. 5. The top view of the initial mission space

distance from the target. Strength of the signal detected by
sensor ¢ is obtained from (3).

B(i) = ! 3)
\/(Tr - Xiz)® + (Ty - Xiy)2

The top view of the mission space before the PSO starts is
shown in Fig. 5.

The PSO simulated in this study has a population of 20
particles. Limits of particle position are X;,,,=1000, and
Xmin=0. Due to the planar mission space, the PSO particles
have 2 dimensions. Therefore, the particle ¢ is represented as
a pair (X, X4y), where X, and X, represent horizontal (z)

and vertical (y) coordinates respectively. The particle velocity
is bounded by v.x=20 and vyin=-20. The inertia weight w
is chosen as 0.8; and the acceleration constants are chosen as
¢1 = ¢ = 2. The results obtained in each of the scenarios are
presented in the following subsections.

A. Scenario 1

In this scenario, the goal of MANET nodes is to locate the
target. In real world, this task is identical to searching for a fire
in the mission space. The search is terminated when a node
finds the target location within the predefined tolerance limit.
Here, the tolerance limit is taken as 0.01 units. The fitness,
which the PSO seeks to maximize is the signal strength F,
which is obtained from (3).

fitness(i) = E(3) “4)

The average distance d,, of the swarm to the target is
computed using (5).

daw =Y (T = Xu2 + (T, - Xy )2 )
=1

As the PSO search progresses, the particles move closer to the
target. Fig. 6 shows the reduction in the distance between the
target and the particles as the iterations progress.
25 trial runs are executed for the sake of statistical analysis
of the results. Mean and standard deviations of the number
for iterations taken for convergence, average swarm distance
and fitness of the best particle before termination are recorded.
Following is the statistical summary of the results obtained:
e Mean number of iterations = 105.25
o Standard deviation in the number of iterations = 18.89
e Mean of average swarm distance to the target = 53.73
« Standard deviation in average swarm distance to the target
= 38.32

¢ Mean distance to the target from the best particle =
0.0064

o Standard deviation in distance to the target from the best
particle = 0.0025
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Fig. 6. Iterative reduction of distance to the target in the scenario 1
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B. Scenario 2

In this scenario, the goal of robots that carry the MANET
nodes is to converge around the target location. In real
applications, this task is similar to convergence of a group
of fire-fighters around the fire to extinguish it quickly in a
collaborative manner. Two strategies are proposed here to
achieve the task and each strategy uses a different variant
of PSO. In strategy 1, the PSO based navigation task is
terminated when 75% of the nodes (15 nodes in this study)
converge within a circle of 5 unit radius around the target.
Fitness of a particle and the average distance of the swarm
to the target are computed using (4) and (5) respectively.
25 trial runs are executed for the sake of statistical analysis
of the results. Mean and standard deviations of the number
for iterations taken for convergence and the average swarm
distance are recorded. The statistical summary of the results
obtained is given in Table 1.

Fig. 8 shows the reduction in the distance between the target
and the particles as the iterations progress.

The objective here is not to navigate a particle to go close
to the target, but to navigate a group of particles to converge
around the target. How close to the target the best particle goes
has no relevance in this scenario. Therefore, the conventional
PSO, which persuades the particles to move closer to the
target, is not the perfectly suitable approach. In strategy 2,
a modification is done to the PSO algorithm such that quicker
convergence is achieved. When the gbest particle reaches
within the circle of 5 unit radius around the target location,
it is excluded from the swarm; and the PSO navigation is
continued with one less particle. This is repeated until 75% of
the particles reach within the circle. Fig. 8 shows the reduction
in the distance between the target and the particles as the
iterations progress in the modified PSO. This modification
enhances the convergence speed as indicated by the results
of 25 trial runs which are summarized in Table I.

The particle that has the maximum fitness represents the best
solution found by the PSO algorithm. The global best fitness
of the swarm never decreases from an iteration to another.
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Fig. 8. Iterative reduction of distance to the target in scenario 2, strategy 2

This is clear from the plots of the distance to target from
the best particles (reciprocal of the best fitness) in Figs. 6
and 7. However, several rises can be observed in the plot of
distance to the target from the best particle in Fig. 8. This is
obvious because, when the current best particle moves within
the tolerance circle around the target, the particle from those
outside, which is nearest to the periphery of the circle will be
chosen as the next best particle.

The effectiveness of PSO in determining the solution to
a multi-dimensional optimization problem is reflected by its
ability to locate the target with an accuracy of 0.01 unit
distance in an average of 105 iterations in scenario 1 of this
study. The only external data the particles need to use is the
coordinates and the fitness of the gbest particle. Only the
particle that attains better fitness than the current gbest particle
has to transmit this information, based on which the new gbest
particle will be elected. The total communication effort needed
here is much less than in the centralized control scenario in
which each particle would receive navigational control data
from the central controller.

The modifications made to PSO in strategy 2 of scenario
2 resulted in faster convergence. The standard PSO used in
strategy 1 achieved the convergence in 134.32 iterations, while
the modified PSO achieved the same in 50.6 iterations. This
saving comes at a cost of s comparisons in every iteration

TABLE I
SUMMARY OF RESULTS OF PSO AND MODIFIED PSO FOR SCENARIO 2

Strategy 1:  Strategy 2:  Difference
PSO Modified
PSO
Mean number of iter-  134.32 50.60 62.32%
ations (93.64) (11.67)
Mean of average 67.39 45.64 32.27%
swarm distance to the  (54.32) (28.61)
target (dav)
Convergence Time 0.2462 0.1163 52.76%
(0.16) (0.16)

The numbers shown in brackets represent standard deviation.
All trial runs are conducted on the same computer.
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where fitness of each particle is compared with a constant
before deciding if the particle should remain in the swarm.
The plots of average distance from the swarm to the target
show the emergence of a convergence behavior pattern.

VI. CONCLUSIONS

This paper presents an algorithm for network-centric target
localization of the nodes of a MANET enhanced by mo-
bile robots. The proposed navigation algorithm uses PSO, a
popular bio-inspired, population based optimization technique.
Two application scenarios are simulated in MATLAB software
environment. While the first scenario aims at locating the
target, the second scenario aims at convergence of a major
section of population in the vicinity of the target. A modified
PSO algorithm is proposed for quicker convergence in the
second scenario. The performance analysis is done by results
obtained in 25 trial runs of each scenario. It is demonstrated
that the PSO enables collaborative navigation based on local
intelligence. The interaction and collaboration between the
MANET nodes results in an optimized swarm behavior in an
emergent fashion.

Extension of this study is possible in several directions. The
practical usability of the methods studied in the simulations
needs to be assessed in real-time MANET applications. The
simulation done here assumes almost ideal planar mission
space without any obstacles. The collaborative navigation tech-
niques that are suited for collision avoidance can be combined
with the proposed algorithms. Besides, this work assumes
that the MANET nodes know their locations, which may not
be possible in some applications. Investigation of the effect
of localization error is another direction in which the work
can be extended. A detailed investigation of computational
complexities of the methods is yet another area where the
extension of this work is possible.
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