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COMPUTATIONAL AND EXPERIMENTAL STUDY  

ON VERTICAL AXIS WIND TURBINE  

IN SEARCH FOR AN EFFICIENT DESIGN 
by 

MOHAMMAD MOHIBBUL BASHAR 

(Under the Direction of Mosfequr Rahman) 

ABSTRACT 

 

Wind alone can fulfill most of the energy requirement of the world by its efficient conversion 

in to energy. Though Horizontal Axis Wind Turbine (HAWT) is more popular but needs high 

wind speed to generate energy. On the other hand Vertical Axis Wind Turbine (VAWT) 

needs low wind speed and can be installed anywhere which are some of the reasons for this 

research. The main objective of this research is to improve the design and performance of 

VAWT to make it more attractive, efficient, durable and sustainable. For a VAWT the blades 

perform the main role to extract energy from the wind. Airfoil is considered as the blade for 

this new design of VAWT. Airfoil has some good aerodynamic characteristics, match with 

the characteristics of Savonius type VAWT, such as good stall characteristics and little 

roughness effect, relatively high drag and low lift coefficient. Integration of Computational 

Fluid Dynamics (CFD) simulation and wind tunnel experimentation has made the current 

research more acceptable. 3-Dimensional CAD models of various simple airfoils have been 

designed in Solidworks. Using these airfoils and other shape, CFD simulation has been 

performed with five different VAWT designed models. Moving mesh and fluid flow 

simulation have been developed in CFD software FLUENT. The findings of these numerical 

simulations provided pressure contour, velocity contour, drag coefficient, lift coefficient, 
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torque coefficient and power coefficient for all these models. Physical models of 

NACA5510, NACA7510 and semicircular rotors of three bladed are fabricated and tested in-

house subsonic wind tunnel. From these experiments dynamic torque has been measured 

using dynamic torque sensors for all these models at three different speeds. By comparing the 

numerical and experimental results it can be concluded that NACA7510 air foiled VAWT 

model gives the better performance at higher Tip Speed Ratio than other two models. 

 

Keywords: wind energy, vertical axis wind turbine, renewable energy, clean electricity, 

Savonius Turbine, CFD. 
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CHAPTER 1 

1 Introduction 

The continuous improvement of this world is based on technological advancement. And the 

technological advancement is directly related to the utilization of energy. The demand of 

energy is creeping up every day due to increase of population, industrial and agricultural 

advancement. But the conventional energy sources are becoming limited which is ultimately 

making them more expensive. In addition to this, everyone is concerned about global climate 

change.  This whole scenario is pushing the world to find the alternative sources of energy. 

 

1.1 Alternative Energy 

Alternative sources involve natural phenomena such as sunlight, wind, tides, plant growth, 

and geothermal heat. Solar and Wind power are the most popular among the various sources 

of renewable energy. Only these two kinds of alternative sources can generate most of the 

world’s electricity within next 50 years, on the other hand which can also help the climate 

change condition. 

 

FIGURE 1-1: Global Renewable Power Capacity (REN21 2014) 

http://en.wikipedia.org/wiki/Sunlight
http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Tide
http://en.wikipedia.org/wiki/Biomass
http://en.wikipedia.org/wiki/Geothermal_heating
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1.2 Wind Energy  

Wind energy has the potential to resolve the power demand of the entire world if it can be 

converted into electricity efficiently. Wind is going to be the most popular alternative energy 

source; because of its availability throughout place and time. As a pollution free and 

sustainable source, wind is getting importance in energy policy too. The disadvantages are its 

lower efficiency and high installation cost. But the ultimate cost would be lowered if it 

operates continuously and small scale turbines can be installed in any corner of the world. 

 

1.3 Wind Turbine and Types 

Wind turbine converts the wind energy into mechanical energy and that mechanical energy is 

used for the production of electricity. There are two types of primary wind turbine; they are 

horizontal-axis wind turbine (HAWT) and vertical-axis wind turbine (VAWT), both of which 

boast of being better than the other.   

HAWTs include both upwind and downwind configuration with various performance 

enhancers such as diffusers and concentrators. HAWT is more popular because they have 

better efficiency, but only suitable for places with high wind speed. In contrast, VAWT 

works well in places with relatively lower strength, but constant wind (Reigler 2003). The 

blades are not needed to orient in wind direction as it can work always in the same direction 

though wind comes from any direction. (Ragheb 2012) 

Due to better aerodynamic behavior and more efficient in the large scale, HAWT was the 

popular choice of the researchers. But several factors are turning the head of researchers 

towards the field of VAWT. They are, VAWT may be more appropriate than HAWT in 

small scale. VAWTs are suitable for electricity generation in the conditions where traditional 
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HAWTs are unable to give reasonable efficiencies such as low wind velocities and turbulent 

wind flows. VAWT can operate without any dependence on wind direction. The quiet 

behavior is more attractive for highly populated places. The cost of complex structure of 

HAWT blades is higher than simpler VAWT blades. Because of the stalling behavior it can 

withstand gust wind, which makes it much safer during those weather conditions. This type 

of rotor can be installed in remote places, away from the main distribution lines and places 

where large wind farms cannot be installed due to environmental concerns. Some place needs 

small scale dispersed generation units where VAWT is suitable. (Bishop and GAJ 2008) 

 

FIGURE 1-2: Power Coefficient (Cp) vs. Tip Speed Ratio (λ) For Various Wind Turbines (HAU 2006) 
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1.4 Vertical Axis Wind Turbines 

In general, VAWT is driven by two types of forces of wind, drag and lift force. Savonius 

rotor is the simplest kind of VAWTs is a drag-type configuration and a bit complex type is 

Darrieus rotor which is lift-type configuration. 

Savonius Rotor: The operation of Savonius rotor depends on the difference of drag force 

when the wind strikes the concave and convex part of the semi-spherical blades. The flow 

energy utilization of Savonius rotor is lower than that of Darrieus rotor. Hence this type of 

turbine is generally not used for high-power applications and usually used for wind 

velocimetry applications (Islam, Ting and Fartaj 2008). The greatest advantage of a Savonius 

rotor is its ability to self-start in contrast to other ‘Lift type’ VAWTs (Mohamed, et al. 2011). 

Recently, some generators with high torque at low rotational speed, suitable for small-scale 

wind turbines, have been developed, suggesting that Savonius rotors may yet be used to 

generate electric power (T. Hayashi, et al. 2004). 

Darrieus Rotor: The energy is taken from the wind by a component of the lift force working 

in the direction of rotation. Lift force is perpendicular to the resultant of two velocity 

component of wind velocity and relative velocity of airfoil to the shaft.  These types of 

turbines have highest values of efficiency among VAWTs and the tip speed ratio can be 

much higher resulting in a much higher rpm. But generally suffer from problems of low 

starting torque and poor building integration. 

Combined Savonius and Darrieus Rotor: Since the Darrieus rotor is not self-starting; a 

blended design with Savonius blade can make the hybrid which can make it starting and 

more efficient than any of the single rotor. 
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1.5 Wind Energy Utilization 

Wind is the generating electricity currently less than 3.5% of US and barely 4.5% of world 

electricity consumption. Though the popularity of wind as energy source is increasing rapidly 

but it will still generate a few portions of US and world electricity requirements by 2030. The 

scarcity of resources, increasing demand of energy and concern of global climate change is 

pushing hard to increase the efforts to find viable energy alternatives. Some of the renewable 

energies may not be achievable or sustainable, some are local and limited. Other than fossil 

fuel the only hope is solar and wind. To be the significantly larger contributor to generate 

global electricity, the wind power needed to be more efficient. 

According to the World and European Wind Energy Associations, installed global wind 

capacity reached 197, Giga-watts by the end of 2010, with just over 3,000 MW of that total 

located offshore. World wind power generation capacity in 2013 was estimated at 318 GW, 

which is 13% higher than previous year (REN21 2014) 

 

FIGURE 1-3: Global Cumulative Capacity of Wind Energy (GWEC 2012) 
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Renewable energy sources provided about 12% of total U.S. utility-scale electricity 

generation in 2013. The largest share of the renewable-generated electricity came from 

hydroelectric power (30%), followed by biomass (25%) and wind (19%)  (Administration 

2013). According to U.S. energy reports, US wind power generation capacity in 2005 was 17 

GW; it had grown to 167 GW by 2013.  

 

FIGURE 1-4: Projected and Actual Installation of Wind Energy by DOE (ADMINISTRATION 2013) 

China has the highest capacity in wind energy generation, followed by the United States, 

Germany and Spain (REN21 2014).  

 

FIGURE 1-5: Wind Energy Generation Capacity by Country  (TECHNICA 2012) 
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1.6 Motivation of Research 

On efficiency measurement, HAWT is the popular to the researchers. But it works best in 

places where the wind is not disturbed and has high wind velocity. But the inherent 

advantages of facing the wind direction, simplistic design, cheap technology for construction, 

lower wind start-up speeds, easier maintenance, and are relatively quiet are turning the focus 

to VAWT. Specially in areas where wind power is low and do not always have a high wind 

velocity. The designs of VAWTs are simple and operation is based on the difference of the 

drag force on its blades.  

The previous researcher from this lab also experimented on three bladed Savonius wind 

turbine and concluded that change of blade shape can have real impact on this kind of 

turbine. The turbine model without any overlap at higher Reynolds number shows better 

aerodynamic co-efficient. (Morshed, et al. 2013). The outcome provided the basic motivation 

to design newer blades which may help to improve the performance of VAWT. 

 

1.7 Scope of Research 

Currently many researchers have been investigating the characteristics to improve the 

efficiency of different VAWTs and to find out a design which can provide maximum output. 

Numerical and Experimental research is going on to find the optimum number, shape of 

blades, overlap ratio and number of layers for Savonius rotor. On the other hand investigation 

is going on aerodynamic behavior of the blades of VAWT to increase the value of starting 

torque. 

Comprehensive dynamic study using both experimental and numerical methods has not been 

extensively studied on airfoil as VAWT blade, if studied at all. In this current research the 



8 

 

shape of airfoil blades have been changed to investigate experimentally and numerically at 

various tip speed ration. Dynamic torque measurement method has been performed for 

experimental investigation. Commercially available software ANSYS FLUENT have been 

used for the numerical analysis. 

 

1.8 Objectives of the Research  

The objective of this research is to find the highly efficient VAWT by studying the 

aerodynamic characteristics of the blades of Savonius rotor. In order to investigate the 

improvement of the performance the following steps were set for the research: 

1. To design the models using 3-Dimentional CAD software Solidworks and ANSYS; 

2. To generate numerical mesh around all the turbine models using FLUENT; 

3. To create a Fluid flow field around the models using k-ε turbulence model of FLUENT 

for study; then to determine the drag coefficient, lift coefficient, pressure contours, 

velocity contours and torque coefficient at various wind speed; 

4. To calculate the numerical power coefficient using torque coefficient; 

5. To design and fabricate Savonius rotor wind turbine scale models with optimum blade 

numbers and selected shapes; 

6. To measure torque in front of subsonic wind turbine for all models at different wind 

speed with the help of dynamic torque sensor. Then calculate torque and power 

coefficient from experimental values 

And  

7. To compare the numerical and experimental results. 

 



9 

 

1.9 Outline of the Thesis  

The thesis is presented in the following direction. 

 A brief description of the findings of both experimental and numerical investigation for 

different models of VAWT from previous research outcomes. 

 The method of this research; outlines of experimental setup, design development of 

turbine models, governing equations, experimental and numerical methodology.  

 Discuss the result yielded from the experiment. 

 Final conclusion on the current study, recommendation and guidance based on the 

laggings for the future investigation. 
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 CHAPTER 2 

2 Literature Review 

 

2.1 Introduction 

Researchers have been conducting lots of experiments on HAWT, because of its high 

efficiency. In some way, researchers have been trying their best to find the best from 

Darrieus rotor. Meanwhile, significant numbers of researchers have been working to improve 

the aerodynamic characteristics of Savonius turbine. These researches are numerical and 

theoretical prediction for flow around the wind turbines and from that it varies from research 

laboratories to full scale simulation. The extensive amount of work has been carried to find a 

sustainable solution of wind energy. Around the globe researchers have been experimenting 

on HAWT and Darrieus rotor for large scale energy production and Savonius rotor for small 

scale usage. Based on the conclusion of those experiments, hybrid turbines are also a focus of 

the researchers. A brief discussion of Numerical analysis and experimental work on VAWT 

will be discussed in this chapter. 

 

2.2 History of Wind Turbine 

2.2.1 The Wind Turbine 

Windmills were used in Persia (present-day Iran) as early as 200 B.C. Pumping water had 

been the role of wind turbine for many centuries. The Netherlands used wind mills for 

dewatering large areas from the 13th century onwards. The ending of the nineteenth century 

divided the two development periods; the earlier is known as ancient development period and 



11 

 

later as the modern development period. In July 1887, Scottish academic James 

Blyth installed the first electricity-generating multi bladed HAWT to charge his battery for 

holiday light in Scotland. (Price 2009).  

By 1900, there were about 2500 windmills almost produced 30 MW of electricity for 

mechanical loads such as pumps and mills in Denmark. By 1908 there were 72 wind-driven 

electric generators from 5 kW to 25 kW and by 1930 wind farms for electricity were 

common in USA. 

2.2.2 Vertical Axis Wind Turbine 

From history book, it was found that about 1300 A.D a Syrian cosmographer Al-Dimashqi 

drew a vertical axis windmill (Shepherd 1990). It was a two storied wall structure with 

milestones at the top and a rotor at the bottom. It had latter with spooked reel with 6 to 12 

upright ribs that covered with cloth. It was found that this type of windmill had been in 

operation in 1963 which used to produce an estimated 75 hp (at efficiency of 50% at wind 

speed 30 m/s).  Each windmill milled one ton of grain per day (Wulff 1966).  

2.2.3 Savonius and Darrieus Type Wind Turbine 

The Savonius wind turbine was first used by a Finnish Engineer S. J. Savonius in 1931 

(Savonius 1931). The design of his rotor was S-shaped with two semi-circular buckets with 

small overlap. At that time this rotor was successfully used as an ocean current meter.  

In 1931, G. J. M. Darrieus in France patented another VAWT named Darrieus vertical axis 

rotor. This type of rotor was not self-starting.  

http://en.wikipedia.org/wiki/James_Blyth_(engineer)
http://en.wikipedia.org/wiki/James_Blyth_(engineer)
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2.3 Review on Savonius Rotor 

The optimum output from the wind energy is the key objective of the investigation and 

different aerodynamic shapes of the blades are designed to verify the outcome. Numerous 

investigations had been carried out in the past to study the performance characteristics of 

Savonius rotor. These investigations included wind tunnel tests, field experiments and 

numerical studies. Blade configurations were studied in wind tunnels to evaluate the effect of 

aspect ratio, number of blades, overlap and gap between blades, effect of adding end 

extensions, end plates and shielding. 

2.3.1 Changing the Overlap Ratio of Blade 

The performance of two bladed Savonius turbine with five overlaps of 16.2%, 20%, 25%, 

30% & 35% were investigated. Among them 16.2% overlap condition showed maximum 

power extraction. The pressure drop across the rotor from upstream to downstream as well 

as, maximum pressure difference across the returning bucket was displayed in the same 

condition which eventually indicated the better overall aerodynamic torque and power. 

(Gupta, Das, et al. 2012) 

Three bladed Savonius rotor with different overlap ratio was taken care for another 

experiment. Ratio of 0.0, 0.12 and 0.26 had been used for different Reynolds number (Re). 

The model with no overlap ratio showed better torque coefficient for lower Re, better power 

coefficient at higher Re and with the increase of tip speed ratio. (K. N. Morshed 2010) 

 (Biswas et al. 2007) conducted the experiment on three bladed Savonius turbine in front of 

sub-sonic wind tunnel with no overlap and for overlap conditions in the range of 16% to 

35%. They found out that, at no overlap condition, maximum power factor is 36% without 

blockage correction at TSR of 0.50, and 28% with blockage correction at TSR of 0.46. With 
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the increase of overlap ratio, the values of power-coefficient decreased for blockage effects. 

Power coefficients increased with the increase of overlap ratio up to a certain limit and 

afterwards start decreasing even the overlap is increased. From this experiment, the 

maximum power coefficient was found 47% without blockage correction and 38% with 

blockage correction at 20% overlap. 

2.3.2 Changing the Shape of Blade 

(Qasim et al. 2011) worked with impeller scoop-frame type with movable vanes wind turbine 

VAWT. The objective was to maximize the drag factor by closing the vanes on convex shape 

and open when air hit the concave part. Due to movement of vanes for and against of wind, a 

higher drag factor had worked on the impeller scoop-frame type with movable vanes, and 

had higher efficiency than flat vanes. 

(Manzoor et al. 2008) experimented on Savonius rotor to compare the performance of twisted 

blade. Initially they carried the experiment with two vertical, semi-circular curved blades and 

then with twisted blade with the angle ranging from 0° to 60°. From the analysis of wind 

flow over various configurations of the rotor blades they have concluded that, the maximum 

efficiency of 33.85% had been found at θ=45° compared to 25.6% without twist. This twist 

increases the positive wetted part in the side projected area which results an increase in the 

average projected area. At the same twist angle, both the RPM and torque were also obtained 

higher than without twist. 

(Saha et al. 2006) studied the performance of twisted blade. All the tests were carried out in a 

three-bladed system with a blade aspect ratio of 1.83. The study showed that, a potential of 

smooth running, higher efficiency and self-starting capability had been there for twisted 

blades compared to semicircular blades. Comparatively larger twist angle provides maximum 
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power and better starting characteristics at lower wind velocity. The optimum performance is 

displayed at low airspeeds of 6.5 m/s and twist angle of α =15° in terms of starting 

acceleration and maximum no load speed. 

(Ghatage and Joshi 2012) have done further experiment by changing twist of blade as well as 

the number of blade. They have studied with both regular blade and twisted blade. The 

experiment concluded that two blades with twist enhance the efficiency of turbine. In their 

experiment the two-bladed 30° twisted bladed turbine gave the better power coefficient. It 

was concluded that the twisted blade attributes relatively higher drag on the turbine surface. 

2.3.3 Changing the Stage 

(Ghosh, et al. 2009) have experimented Single- and three-stage modified Savonius rotors, 

which are extensively tested in front of an open jet wind tunnel. With the increase in the 

Reynolds number both the single- and three-stage rotors shows higher coefficient of power. 

The three-stage rotor showed positive and uniform coefficient of static torque. Here the 

number of blade also had some effect. The coefficient of static torque differed with the 

change of blade number in a three-stage rotor. 

(Hayashi et al.2005) experimented a wind tunnel test to improve the starting characteristics 

of Savonius rotor with and without guided vanes. They have concluded that, the three staged 

rotor had better torque coefficient than single stage rotor. The guide vanes further increased 

the torque coefficient. 

(Kumbernuss, et al. 2012) studied two-staged Savonius-type turbines with different number 

of blades, the shape of the blades, the overlap ratio and the phase shift angle. The wind 

turbines were tested under four different wind speeds of 4m/s, 6m/s, 8m/s and 10m/s. There 

were three turbines with the overlap ratios of 0, 0.16 and 0.32. Before testing those in an 
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open wind tunnel, the wind turbines were adjusted to the phase shift angles (PSA) of 0, 15, 

30, 45 and 60 degrees under different air velocities. The overlap ratio of 0.16 produced the 

better performance among the three, followed by the 0.32 overlap ratio. At lower air 

velocities the larger phase shift angles and at higher air velocities smaller phase shift angles 

will produce better performance of the turbines. 

(Saha et al. 2008) conducted a wind tunnel test to assess the aerodynamic performance of 

Savonius rotor systems with different stages. Both semicircular and twisted blades had been 

used in each case. Experiments were carried out to optimize the different parameters like 

number of stages, number of blades (two and three) and geometry of the blade (semicircular 

and twisted). It was concluded from this experiment that, two-stage rotor showed a better 

performance characteristics when compared the three-stage rotor. As the number of stages 

was increased, the inertia of the rotor was found to increase thereby reducing its 

performance. This was independent on the blade geometry. Two-bladed system gave 

optimum performance and in a two bladed system, the performance of twisted-bladed rotor 

was superior to the semicircular-bladed rotor. 

2.3.4 Aerodynamic Characteristics 

(Diaz et al. 1991) analyzed to find the drag and lift coefficients of a Savonius wind turbine to 

find the aerodynamic performance. They found that at a tip-speed ratio of λ = 1 the rotor 

operated with maximum efficiency, in terms of power coefficient. For either increase or 

decrease of tip-speed ratio the drag coefficient decreases sharply. They also suggested that, 

around tip-speed ratio λ = 1, Savonius rotor operates most efficiently, where there is almost 

no effect of change of lift force due to the coefficient remains constant at 0.5. 
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(M. Rahman, K. N. Morshed, et al. 2009) (2010) experimented on the Drag and Torque 

characteristics of three bladed Savonius Wind Turbine. The turbines with no overlap has 

better drag and torque characteristics.  They also performed Aerodynamic performance 

analysis on three bladed Savonius wind turbine and concluded that higher reynold number 

showed better aeorodynamic behavoir for no overlaping blades.  

(Carrigan, et al. 2012) had the objective to introduce and demonstrate a fully automated 

process for optimizing the air foil cross-section of a VAWT. The objective was to maximize 

the torque while enforcing typical wind turbine design constraints such as tip speed ratio, 

solidity, and blade profile. This work successfully demonstrated a fully automated process 

for optimizing the air foil cross-section of a VAWT. As this experiment was not an extensive 

study, so they had suggested further research and development. 

 

2.4 Review on Darrieus Rotor 

Like Savonius, many experiments have been studied to find the optimum performance of 

Darrieus rotor. These investigations included mostly numerical studies and some are 

simulated in wind tunnel as well as in field. Aerodynamic characteristics were studied to 

evaluate the effect of blade shape and angle, material and configurations. Some researchers 

tried to change the external factors to improve the starting characteristics of Darrieus rotor. 

2.4.1 General Findings 

(Howell, et al. 2010) experimented on small scale Darrieus rotor. A combined experimental 

study in wind tunnel and computational study was done to find the aerodynamics and 

performance. In this experiment they changed wind velocity, tip-speed ratio, solidity and 

rotor blade surface finish. It was found that, below a critical wind speed (Reynolds number of 
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30,000) a smooth rotor surface finish degraded the performance of the turbine. The tests also 

showed that both two and three bladed rotor models had produced highest performance 

coefficient, but the three bladed models did so at a much reduced Tip Speed Ratio. 

Considering errors and uncertainties in both the CFD simulations and the wind tunnel 

measurements, computational study displayed reasonably good agreement with the 

experimental measurements. Stronger tip vortices were created at phases with higher 

amounts of lift present. 

(Beri and Yao 2011) studied to show the effect of camber airfoil for a self-starting Darrieus 

turbine. For this purpose they have used three bladed NACA 2415 camber airfoil and 

simulated in different tip speed ratio. The experiment results showed that, camber airfoil 

have the characteristics of self-starter. Though for same power coefficient the efficiency was 

less than the non-self-starting airfoils. 

2.4.2 Changing the Shape of Blade 

(Hameed and Afaq 2012) designed a straight symmetrical blade for a small scale Darrieus 

rotor using beam theories. They changed the design parameters of the blade like solidity, 

aspect ratio, pressure coefficient etc. for experiment purpose. Then the blade design was 

analyzed at extreme wind conditions where maximum values of deflection and bending 

stresses were determined at peak values of aerodynamic and centrifugal forces. It was 

concluded that keeping the maximum stresses and deflection within acceptable range, the 

wall thickness of the blade could be optimized by reducing weight of the blade.  

 (Armstrong et al. 2012) investigated the aerodynamics of a high solidity Darrieus rotor 

through wind tunnel tests limited at Re >500,000 for full size operating turbine. Straight 

blades and canted blade showed different flow separation behavior. Canted blades 
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experiencing less flow reversal on their upwind pass and recovering attached flow before θ = 

180
0
. Much less flow separation was noted relative to the straight blades at the same blade 

speed ratios even for the peak blade ratio λ = 2.1. Canted blades increased the power and 

reduced the blade speed ratio at which peak power occurred. The addition of fences, which 

acted to impede span wise flow on the swept blades, reduced the blade speed ratio at peak 

power to about λ =1.9, presumably with a flow that is more similar to the straight blade case.  

2.4.3 Different Other Numerical Investigations 

(Castelli, et al. 2013) presented a model for the evaluation of aerodynamic and inertial 

contributions to a VAWT blade deformation. Solid modeling software, capable of generating 

the desired blade geometry depending on the design geometric parameters, is linked to a 

finite volume Computational Fluid Dynamic (CFD) code for the calculation of rotor 

performance and to a Finite Element Method (FEM) code for the structural design analysis of 

rotor blades. Flow field characteristics were investigated for a constant unperturbed free-

stream wind velocity of 9 m/s, determining the torque coefficient generated from the three 

blades. The computed inertial contribution to blade deformation resulted quite higher with 

respect to the aerodynamic one for all the analyzed blade shell thicknesses. Both inertial and 

aerodynamic displacements resulted higher at blade trailing edge than at leading edge. They 

suggested for further investigation on the influence of this blade section deformation on the 

aerodynamic performance.  

(Carrigan, et al. 2012) had the objective to introduce and demonstrate a fully automated 

process for optimizing the airfoil cross-section of a VAWT. The objective was to maximize 

the torque while enforcing typical wind turbine design constraints such as tip speed ratio, 

solidity, and blade profile. This work successfully demonstrated a fully automated process 
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for optimizing the airfoil cross-section of a VAWT. As this experiment was not an extensive 

study, so they had suggested further research and development. 

 

2.5 Review on Hybrid Rotor 

(Wakui, et al. 2005) experimented to find a suitable hybrid configuration of Darrieus lift type 

and Savonius drag-type rotors for stand-alone wind turbine-generator systems. They 

experimented with Savonius rotor inside the Darrieus rotor and Savonius rotor outside the 

Darrieus rotor. The maximum power coefficient points showed that Savonius rotor inside the 

Darrieus rotor had fine operating behavior to wind speed changes and could be compactly 

designed because of a shorter rotational axis. This is an effective way for stand-alone small-

scale systems. The results of evaluating the net power extraction under field wind conditions 

confirmed that Savonius rotor outside had been more effective in a small-scale system. 

However, under wind conditions involving short blowing duration, Savonius rotor inside had 

been more effective due to the drop in the effective electric power coefficient. Also the 

Savonius rotor outside had some starting problem. 

 (Gupta et al. 2008) has compared one simple Savonius and the other combined Savonius–

Darrieus wind rotors.  The Savonius rotor was a three-bucket system having provisions for 

overlap variations. The Savonius–Darrieus rotor was a combination of three-bucket Savonius 

and three-bladed Darrieus rotors with the Savonius placed on top of the Darrieus rotor. This 

comparative study showed that, there had been a definite improvement in the power 

coefficient for the combined Savonius–Darrieus rotor without overlap condition. Combined 

rotor without overlap condition provided an efficiency of 0.51, which was higher than the 

efficiency of the Savonius rotor at any overlap positions under the same test conditions. 
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CHAPTER 3 

3 Methodology 

The research objective is to find the highly efficient Vertical Axis Wind Turbine by studying 

the aerodynamic characteristics of the blades of Savonius rotor. The basic parts are divided 

into three parts.  

The foremost part of this research is numerical investigation. This computational 

investigation was done using academically available ANSYS. The flow field was designed 

on a 2-D model. The mesh was generated with ANSYS and basic investigation was run on 

FLUENT to determine the aerodynamic coefficients; such as drag, lift, and torque 

coefficient. And values of forces, velocity and torque are extracted and then used to calculate 

torque and power coefficient.  

The next step is to create few prototype blades of models and some tests were conducted in 

front of a subsonic wind tunnel varying the wind speed. Torque, wind speed and rotational 

speed are measured and used to calculate torque and power coefficient.  

Final step is to study both numerical and experimental results and to make a final conclusion.   

This chapter also describes the basic experimental setup which is applied for both numerical 

and experimental study; in detail method of the numerical model selection, validation and 

numerical technique to solve fluid flow, experimental set up, fabrication of rotor blade and 

experimental data measurement procedure. 
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3.1 Experimental Design 

A subsonic wind tunnel with the capacity to change the wind speed is considered to produce 

wind velocity. The experiment needs to be done under different wind velocity and different 

blade shapes are created to compare different results.  

The NACA 4-digit series is chosen to create air foil. Because this type of airfoil has some 

good aerodynamic characteristics which match the characteristics of Savonius type VAWT. 

Those are good stall characteristics and little roughness affect, relatively high drag, low lift 

coefficient.  The analytical equations describe the camber (curvature) of the mean-line 

(geometric centerline) of the airfoil section and also the distribution of section thickness 

along the length of the airfoil; are used to generate this kind of airfoil.  

 

FIGURE 3-1: Airfoil Terminology 

Based on previous experimental results, it is optimized that three blades provide best result. 

The blades are placed 120
0
 apart for the rotor model. The whole turbine model assembly is 

installed in a frame. The same experimental setup is also portrayed in computational 

simulation.  

The air is the only fluid for the experiment. The models are tested using the interchangeable 

design varying wind speed of 10 m/s, 11.5 m/s, 12.5 m/s and computationally at15 m/s. This 
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wind speeds produce different angular speed of the rotor and the torque. Based on same base 

load, the torque is measured and angular speed is measured with the device. The effect of 

temperature can be ignored in this measurement technique as the experiment is carried out at 

atmospheric temperature. For the regular room temperature the air density 𝜌 = 1.2
𝑘𝑔

𝑚3
 and air 

viscosity 𝜇 = 1.983
𝑘𝑔

𝑚𝑠
∙ 10−5  

 

3.2 Mathematical Relations 

The power is nothing but the rate of change of angular momentum of wind stream just at 

inlet of the test section. Power produced by the rotor was measured from torque and the 

angular speed using equation (3.5). The tip speed ratios () were calculated using the 

measured angular speed values in equation (3.4). The torque coefficients (Cq) can be 

calculated using the measured dynamic torque data using equation (3.6) for all the models. 

Power coefficient can be calculated using the measured torque and angular velocity of the 

rotor in equation (3.7). 

Rotor Area A= D.H [3.1] 

Angular Velocity 
𝜔 =

2𝜋𝑁

60
 

[3.2] 

Reynolds Number 
𝑅𝑒 =

𝑉𝐷

𝜈
 

[3.3] 

Tip Speed Ratio 
𝜆 =

𝜔𝐷

2𝑉
 

[3.4] 

Power 𝑃 = 𝑇𝜔 [3.5] 

Torque Coefficient 
𝐶𝑞 =  

𝑇

0.5𝜌𝐴V2𝑅
 

[3.6] 
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Power Coefficient 
𝐶𝑃 =  

𝑃

0.5𝜌𝐴V3
 

[3.7] 

Drag Coefficient 
𝐶𝑑 =  

𝐹𝑑

0.5𝜌𝐴V2
 

[3.8] 

Lift Coefficient 
𝐶𝑙 =  

𝐹𝑙

0.5𝜌𝐴V2
 

[3.9] 

 

The schematic diagram of the Savonius rotor cross-section with the components of drag 

forces on each blade is shown in Figure 3-2. 

 

FIGURE 3-2: Schematic Diagram of the Drag Force Components on Model Cross-Section  

Savonius wind turbine is drag type VAWT where the lift forces are considered to be 

negligible. When the wind strikes the blade surfaces of the model, two components of drag 

force are generated on each blade surface. Normal drag force (FN) acts perpendicular on the 

blade surface and tangential drag force (FT) acts along tangential direction on each blade. 
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3.3 Numerical Method 

The first step is the optimization process is generating the geometry. Different blades of 

VAWT have been created using Solidworks and ANSYS. This geometry is described as a set 

of Cartesian coordinates and is passed to the mesh generation module. For the purpose of 

numerical analysis, Computational Fluid Dynamics (CFD) code FLUENT 2-D is used and 

five different models are numerically examined at the different wind speed and compared 

among them. 

3.3.1 Blade Profiles 

Five different models were created for this numerical analysis. With overall diameter of 8.5 

inch, the shaft diameter at the center is 0.5 inch. Five different blade profiles: semi-circular, 

quarter-circular, and three airfoils NACA5510, NACA7510 and NACA9510 had been 

created. The basic semi and quarter circular shapes experimented in many researches, which 

will help to compare the basic shapes with airfoil shape. 

 

FIGURE 3-3: Comparative View of NACA 5510, NACA7510 and NACA9510 

NACA 4-digit airfoil series is popular way to create airfoil. The first digit specifies the 

maximum camber in percentage of the chord. The second indicates the position of the 

maximum camber in tenth of the chord. The last two digits provide maximum thickness in 

NACA9510 

NACA7510 

NACA5510 
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percentage of the chord. (Airfoil Tools n.d.) For our research work we considered to change 

the maximum camber and keeping the position of that camber and thickness constant 

 

FIGURE 3-4: Isometric View of All Five Blade Profiles 

Then all the profiles had taken into academically available 3-Dimensional CAD software 

Solidworks to create solid model. Then ANSYS Design Modeler were used to make the 2-D 

profiles and generating mesh. 

   

FIGURE 3-5: Isometric View of Rotor Models of NACA5510, NACA7510 and NACA9510 
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3.3.2 Mesh 

For 2-Dimensional analysis a mesh was generated around the rotor using ANSYS Mesh. The 

exit of wind tunnel is thought to be the inlet in the grid here. Then in the environment the 

rotor is placed. The environment and the rotor are separated by interface. This interface is 

also required for sliding mesh technique. A total created number of nodes are 5476 for 

NACA5510, 6077 for NACA7510 and 6137 for NACA9510. For quarter circular shape 6675 

and semi-circular shape 6437 Nodes were created.  

 

FIGURE 3-6: Mesh around the Airfoil Using ANSYS 

The models were simple extrusion, so a 2-D simulation had been done here because it would 

provide the same result of 3-D model. CFD ANSYS solver was used to create the mesh. The 

orthogonal grid was very refined around the rotor blade and the interface which means inlet 

of air towards rotor area and with a smooth transition at downstream and radially. The Air-

inlet, outlet and side outlet (top and bottom) are shown in the figure 3-6. All the meshes were 

generated with three blades. The computational domain was measured 40in X 30in. 

Side Outlet 

Outlet Inlet 

Blade 

Interface 
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3.3.3 Numerical Model: 

A systematic, iterative numerical study on various blade shapes was performed using the 

commercial software package ANSYS/FLUENT (version 14.0) from ANSYS Inc. To 

simulate air flow around the rotor, pressure based solver and transient solution were used and 

to rotate the rotor sliding mesh technique is used. The k-ε turbulence model was used for the 

flow simulation. The standard k-ε turbulence model (Launder and Spalding 1972) is a semi-

empirical model. This model is based on the transport equations for the turbulence kinetic 

energy (k) and its dissipation rate (ε). The model transport equation for (k) was derived from 

the exact equation.  On the other hand physical reasoning and little resemblance to its 

mathematically exact counterpart helps to obtain the model transport equation for (ε).  

3.3.4 Numerical Procedure 

Boundary conditions were changed to vary different procedure. The left side of the grid was 

assigned as inlet where it was considered that air is flowing in single direction. The air hits 

the rotor blade and helps rotating and then going away. This right side was main outlet and 

top and bottom were side outlets at atmospheric pressure. The air velocity at the inlet was 

considered as 10 m/s, 11m/s, 12.5m/s and 15m/s. Blades were considered as moving wall. 

For uniformity of the results all the models were kept at the same starting position. 

The environment where the air was flowed around the rotor was assumed turbulent. As the 

outlet is directly against the open door and side outlet is against the wall at a distance so the 

backflow turbulence was considered higher for regular outlet. The momentum, turbulent 

kinetic energy and dissipation rate were calculated using Second Order Upwind method. 

Numerical simulation provides the pressure and velocity values at all nodal points of flow 

domain around the rotating blades. Solidity is another important parameter dictating the 
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rotational velocity at which the turbine reaches its maximal performance. For all the models 

continuity, X and Y velocity, Kinetic energy (k) and dissipation rate (ε) had the same 

convergence criteria.  

 

FIGURE 3-7: Residual Convergence of Model NACA5510 at 12.5 m/s 

 

FIGURE 3-8: Residual Convergence of Model NACA7510 at 10  m/s 

 

FIGURE 3-9: Residual Convergence of Model NACA9510 at 15  m/s 
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FIGURE 3-10: Residual Convergence of Quarter Circular Bladed Model at 10 m/s 

 

FIGURE 3-11: Residual Convergence of Semi Circular Bladed Model at 15  m/s 

For transient solution, after few time-steps the residuals shows same pattern. After few 

seconds all the models showed a pattern for the convergence. Figure 3-7 to 3-11 show 

residuals of different models at different speed. 

As a rotating device, all the characteristics residual display a sinusoidal curve. But the main 

characteristic on which the steadiness depends for all the models is Kinetic energy (k). From 

the above figure it is displayed that the residual of kinetic energy changed suddenly from low 

to high and low and then remains steady for the steady wind flow. Velocity provides the 

main role behind the kinetic energy. Continuity and Epsilon has little change over the time.  

It has seen that, NACA profile bladed rotors are unsteady for lower wind speed for almost 

5seconds. With increment of wind speed the pattern developed after 2-3 seconds. On the 

other hand, circular shaped bladed rotor developed steady pattern soon for any wind speed.  
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3.4 Experimental Method 

Similar to computation analysis blades were manufactured and those rotors were tested in 

front of the wind tunnel varying wind speed. 

3.4.1 Subsonic Wind Tunnel  

The subsonic wind tunnel is already available which is 12 feet long consisting converging 

mouth entry, honeycomb section 1, fan section, rectangle section, honeycomb section 2, 

converging diverging section and rectangular exit section. The air flow was generated from 

the fan inside the tunnel and the air velocity is controlled using variable frequency drive. 

  

FIGURE 3-12: Complete Experimental Setup of Wind Tunnel 

The converging mouth entry designed to easy entry and to maintain uniform flow through the 

tunnel. First honeycomb section is used to reduce swirling effect and make the flow straight. 

A variable frequency axial flow fan was used to axial flow fan was used to induce flow 

through the wind tunnel. Second honeycomb section is used to make flow straight. 

Converging and diverging section helps to minimize the expansion and contraction loss and 

to reduce the possibility of flow separation. The exit section was used to make the flow 

straight and uniform. 
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3.4.2 Rotor Models 

Based on the CFD simulation results, various VAWT scale models were designed and 

manufactured. Three of the rotors are manufactured: semi-circular, NACA5510 and 

NACA7510. The models of both NACA5510 and NACA7510 were made of three blades of 

diameter, d = 5 in and height, H = 10 in. The turbine models were made of wood and film 

coated with a central shaft of stainless steel of 0.5 in. The blades were 120
0
 apart from each 

other and the overall rotor diameter is D = 10.5 in. The two discs holding the blades were 

made of acrylic. Fabricated NACA5510 airfoil bladed turbine scale model is shown in Figure 

3-7. 

 

FIGURE 3-13: Fabricated Model of NACA5510 Bladed Rotor 

Fabricated semi-circular bladed wind turbines scale model is shown in Figure 3-8. The semi-

circular model was made of three semi-cylindrical blades of diameter, d = 4.75 in, and 

height, H = 11.5 in. The turbine model was made of acrylic without any central shaft. The 

blades were 120
0 

apart from each other and the overall rotor diameter was D = 9.75 in. 
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FIGURE 3-14: Fabricated Model of Semi Circular Bladed Rotor  

These Rotor models were placed in front of the tunnel, with bearing on both side and 

supporting structures at the same height as the center of the tunnel, between 15 in 

downstream from the outlet with uniform air flow. These blade models can freely rotate 

using through shafts and ball bearing collars. 

3.4.3 Experimental Procedure 

The experiments were carried out at three different wind speeds V = 11.3 m/s, 11.7 m/s and 

12 m/s. Wind speed was measured by a handheld anemometer at different location 15 inches 

from the outlet of wind tunnel around the rotor. The average wind velocity around the rotor 

was taken into account while calculation. 

A dynamic rotary torque transducer (Model: T8 ECO) had been used to measure Torque (T). 

The rotor was coupled in driving side of the transducer and a constant breaking load was 

applied on the other side which helps to measure torque. A drop bracket was fabricated that 

holds the sensor and the break underneath in a location that allows for easy, smooth coupling 

and roation with the bottom of the main shaft. The sensor itself cannot provide readouts. To 
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provide said readouts, the DP41-B bench top display was added to the setup as a means of 

reading real-time torque output via signals transmitted from the compatible torque sensor. 

The rotational speed of the rotor (N) was measured by non-contact handheld photo 

tachometer. 

 

3.5 Measured Characteristics 

Numerical study provided the drag, lift and torque coefficients. These were directly measured 

parallel to time of rotation. The force and moment on the blade wall were also directly 

extracted from the simulation. The angular speed of the rotor was arbitrary calculated to a 

fixed number for all the models. From the contour we can also see the velocity and pressure 

profile around the blade. 

Angular velocity (ω) was calculated from this measured rotational speed using equation 

(3.2). These parameters then helped to calculate Tip speed ratio, Reynolds Number, Torque 

Coefficient and Power Coefficient.  
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CHAPTER 4 

4 Findings of the Study 

Numerical findings are the first to find in this study. The change of drag and lift coefficient 

along with time is the very first characteristics. The overall torque during the steady 

movement of rotor is extracted and then Torque coefficient, power coefficients are discussed. 

Experimental results of torque which is directly measured and torque coefficient and power 

coefficient along with tip speed ratio is discussed for three bladed VAWT for different 

design. Finally comparison of torque and power coefficients is discussed for different 

models. 

 

4.1 Numerical Results 

Numerically pressure and velocity contours are found directly. Also the drag, lift and 

moment coefficients are found along with time of rotation. Five different blade shapes have 

studied for four different wind velocity values.  

4.1.1 Pressure Contour 

Numerical solution provides the pressure contour for five different models.  The negative 

side of camber or the concave side of circular blade has lower pressure than the positive 

camber or convex side of blade. This creates the positive and negative pressure region and 

the difference causes the rotation. After 5 seconds of rotation at various wind speed the 

pressure around the rotor blades are little different.  
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The higher wind speed creates more negative pressure at the negative camber. Figure 4-1 

shows the characteristics for NACA 5510 profile. 

i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-1: Pressure Contour around NACA5510 at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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Figure 4-2 shows the characteristics for NACA 7510 profile. NACA7510 provides lesser 

maximum pressure and more minimum pressure than NACA5510 

i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-2: Pressure Contour around NACA7510 at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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Figure 4-3 shows the characteristics for NACA 9510 profile. NACA9510 shows a same 

pressure profile like NACA 7510. 

i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-3: Pressure Contour around NACA9510 at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301  

 



38 

 

Unlike NACA airfoil, quarter-circular blade shows almost similar pressure profile for 

different TSR. The opposite side of turbine produces negative pressure. It produces less 

minimum pressure 

i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-4: Pressure Contour around Quarter-Circular at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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Semi-circular bladed rotor behaves same as quarter-circular bladed rotor. The only difference 

is it produces more pressure difference. 

i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-5: Pressure Contour around Semi-Circular Rotor at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv)0.301 
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The comparisons of highest and lowest pressure are shown in the following table: 

 NACA5510 NACA7510 NACA9510 Semi-circular Quarter-circular 

TSR Max Min Max Min Max Min Max Min Max Min 

 Pascal 

0.226 107.7 -135.3 93 -96.4 97.1 -96.4 104.4 -159 105.8 -174.1 

0.247 129.7 -155.4 114.4 -67.3 111.6 -67.3 125 -162 126.3 -171.3 

0.271 163.9 -145.6 145.1 -46 146.6 -46 159 -188 162.2 -200.9 

0.301 233.8 -108.3 240.0 -50 240.1 -50 225.8 -186.6 226.9 -205.4 

TABLE 1: Max and Min Pressure after 5 Sec. of Rotation for All the Rotor Models at Different TSR 

The outcome of the pressure contour after 5 seconds of rotation is almost similar for all the 

models. The pressure profiles around the blades show that, the change for all the models 

produce same picture. The highest and lowest pressure as well as the pressure difference of 

the rotors varies each time. 

4.1.2 Velocity Contour  

Velocity contour for five different models at four different tip speed ratio are compared.  

Once the wind comes near the rotor the velocity magnitude starts to decrease. The velocity 

remains always lowest at the trailing edge of the blade. Then after hitting the wind at the 

blade the wind also produces some angular velocity and start to gain the velocity again. 

In general the higher velocity region is displayed at the leading edge of the blade specially at 

the blade which is on the pressure side. The back of the rotor side always creates a vacuum 

and remains at lowest velocity. 
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i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-6: Velocity Contour around NACA5510 at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-7: Velocity Contour around NACA7510 at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-8 Velocity Contour around NACA9510 at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-9: Velocity Contour around Quarter-Circular at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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i) 

 

ii) 

 

iii) 

 

iv) 

 

FIGURE 4-10: Velocity Contour around Semi-Circular at TSR i) 0.226, ii) 0.247, iii) 0.271 and iv) 0.301 
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Contours of Velocity magnitude for all the rotors at different TSR are shown in Figures 4-6 

to 4-10. The table-2 below shows the comparison of maximum and minimum velocity among 

those five models. The outcome of velocity profile after 5 seconds of rotation for each Tip 

Speed Ratio looks almost similar. They have almost similar maximum and minimum 

velocity. Increase of wind velocity also increases the velocity around the rotor and they are 

showing the same pattern of velocity profile and increment. 

The only difference for airfoil and non-airfoil is non-airfoil produces 0 m/s, which means 

complete vacuum at the back of rotor when airfoil has some very little amount of flow. 

 NACA5510 NACA7510 NACA9510 Semi-circular Quarter-circular 

TSR Max Min Max Min Max Min Max Min Max Min 

 m/s 

0.226 14.85 0.05 14.4 0.02 14.5 0.04 15.01 0 14.85 0 

0.247 16.3 0.09 15.1 0.07 15.2 0.07 15.9 0 15.7 0 

0.271 17.7 0.09 16.5 0.12 16.4 0.13 17.2 0 17.06 0 

0.301 19.8 0.19 18.9 0.15 18.7 0.25 19.3 0 19.4 0 

TABLE 2: Max and Min Velocity after 5 Sec. of Rotation for All the Rotor Models at Different TSR 

4.1.3 Drag Coefficient 

Drag coefficient (Cd) changes with the change of time and rotation of turbine. The starting 

drag coefficient changes sharply towards positive from negative and then the curve shows a 

sinusoidal behavior. With the change of angle of rotation the curve moves from positive to 

negative and to positive again. This drag coefficient is the key factor that produces thrust on 

the blade which eventually helps to rotate the wind turbine.   
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Drag coefficient vs. Angle of Rotation 

The drag coefficient (Cd) of each blade and combined blade effect of three bladed Savonius 

wind turbine model variation with the change in rotor angle (θ) is shown in Figure 4.11. The 

drag coefficient here is displayed after the start, so it shows almost uniform movement. The 

plot is displayed at 15° interval from 0° to 360°. Drag coefficient increases with the increase 

of rotor angle and then decreases with the increase of angle.  

i) 

 

ii) 

 

iii) 
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iv) 

 

v) 

 

FIGURE 4-11: Drag Coefficient (Cd) vs. Angle of rotation (θ) for Single Blade and Three Blades Combined 

Effect at TSR 0.226 for Five Models 

Semi Circular bladed model shows less oscillation for combined drag coefficient, while the 

highest drag coefficient is displayed for quarter-circular bladed rotor. 

 

FIGURE 4-12: Drag Coefficient (Cd) vs. Angle of rotation (θ) for Three Blades Combined Effect at TSR 

0.226 for Five Models 
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Drag coefficient vs. Time of Rotation 

For NACA5510 model, the starting drag coefficient is lowest for highest TSR and it is more 

for lower TSR. The models are rotated for 5 seconds but after .08 seconds the curve is not 

showing any more special movement.  Figure 4-13 shows the drag coefficient for four 

different TSR for 0.5 seconds and magnified view after 0.1 second for NACA 5510. 

  

FIGURE 4-13: Drag Coefficient (Cd) vs. Time for NACA5510 for Different TSR 

For NACA7510 model, the starting drag coefficient is lowest for highest TSR.  Figure 4-14 

shows the drag coefficient for four different TSR for 0.5 seconds and magnified view after 

0.1 second for NACA 7510 model. 

  

FIGURE 4-14: Drag Coefficient (Cd) vs. Time for NACA7510 for Different TSR 
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For NACA9510 model also demonstrate the same behavior.  Figure 4-15 shows the drag 

coefficient for four different TSR for 0.5 seconds and magnified view after 0.1 second. 

  

FIGURE 4-15: Drag Coefficient (Cd) vs. Time for NACA9510 for Different TSR 

Quarter Circular bladed rotor almost showing the same behavior but TSR 0.301 provides 

negative coefficient up to 0.10 second which is unlike before.  Figure 4-16 shows the drag 

coefficient for four different TSR for 0.5 seconds and magnified view after 0.1 second. 

  

FIGURE 4-16: Drag Coefficient (Cd) vs. Time for Quarter-Circular Rotor for Different TSR 

Finally Semi Circular bladed rotor shows a little different behavior. TSR 0.271 had higher 

drag coefficient for first few seconds. And then the coefficient shows similar behavior like 

before.  Figure 4-17 shows the drag coefficient for four different TSR for 0.5 seconds and 

magnified view after 0.1 second. 
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FIGURE 4-17: Drag Coefficient (Cd) vs. Time for Semi-Circular rotor for Different TSR 

The average drag coefficients of five different models are shown at figure 4-18. For different 

TSR, all the drag coefficients are averaged and then plotted. NACA5510 rotor always 

produce highest drag coefficient. Increase of camber number decreases the drag coefficient.  

For circular blades, the drag coefficient increases when the TSR also increases. 

 

FIGURE 4-18: Average Drag Coefficient (Cd) vs. Tip Speed Ratio (λ) for Different Blades 
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4.1.4 Lift Coefficient 

Lift Coefficient (Cl) is another important characteristic. For the airfoil lift force also helps to 

create a negative pressure at the negative camber this will eventually increases the positive 

drag.  

Lift coefficient vs. Angle of Rotation 

The lift coefficient (Cl) of each blade and combined blade effect of three bladed wind turbine 

model variation with the change in rotor angle (θ) is shown in Figure 4.19. The lift 

coefficient here is displayed while rotor was at almost uniform movement.  

i) 

 

ii) 

 

iii) 
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iv) 

 

v) 

 

FIGURE 4-19: Lift Coefficient (C l) vs. Angle of rotation (θ) for Single Blade and 

Three Blades Combined Effect at TSR 0.226 for Five Models 

The plot is displayed at 15° interval from 0° to 360°. Figure 4-20 shows the combined effect 

of three blades on lift coefficient. Semi Circular bladed model shows less oscillation for 

combined lift coefficient.  NACA7510 shows the overall highest lift coefficient. 

 

FIGURE 4-20: Lift Coefficient (C l) vs. Angle of rotation (θ) for Three Blades Combined Effect at TSR 0.226 

for Five Models 
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Lift coefficient vs. Time of Rotation 

The starting lift coefficients changes sharply from positive to negative and then the curve 

shows a sinusoidal behavior. 

 

 

FIGURE 4-21: Lift Coefficient (C l) vs. Time for NACA5510 for Different TSR 

For NACA5510 model, the starting lift coefficient is highest for higher TSR and it is less for 

lower TSR. The models are rotated for 5 seconds but after 0.1 seconds the curves are almost 

steady but after 1.0 second there is little wave shown for a single TSR.   

 

 

FIGURE 4-22: Lift Coefficient (C l) vs. Time for NACA7510 for Different TSR 

Unlike NACA5510; NACA7510 model shows steady behavior just after 0.1 sec. Higher TSR 

shows higher lift coefficient. Figure 4-22 shows the lift coefficient for four different TSR. 
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FIGURE 4-23: Lift Coefficient (C l) vs. Time for NACA9510 for Different TSR 

NACA9510 model shows completely different behavior than previous two models. The 

starting lift coefficient is highest for lower TSR and it is less for higher TSR. TSR 0.301 

shows little unsteady behavior until 1.0 second.  Figure 4-23 shows the lift coefficient for 

four different TSR for 1.0 second. 

 

 

FIGURE 4-24: Lift Coefficient (C l) vs. Time for Quarter-Circular Rotor for Different TSR 

-1.0

-0.6

-0.2

0.2

0.6

1.0

0
.2

2

0
.2

8

0
.3

4

0
.4

0

0
.4

6

0
.5

2

0
.5

8

0
.6

4

0
.7

0

0
.7

6

0
.8

2

0
.8

8

0
.9

4

1
.0

0

Time (s) 

TSR 0.226

TSR 0.247

TSR 0.271

TSR 0.301

-1.0

-0.6

-0.2

0.2

0.6

1.0

0
.2

2

0
.2

8

0
.3

4

0
.4

0

0
.4

6

0
.5

2

0
.5

8

0
.6

4

0
.7

0

0
.7

6

0
.8

2

0
.8

8

0
.9

4

1
.0

0

Time (s) 

TSR 0.226

TSR 0.247

TSR 0.271

TSR 0.301

-4.0

-2.0

0.0

2.0

4.0

0
.0

2

0
.0

8

0
.1

4

0
.2

0L
if

t 
C

o
ef

fi
ci

en
t 

(C
l)

 

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

0
.0

2

0
.0

8

0
.1

4

0
.2

0

L
if

t 
C

o
ef

fi
ci

en
t 

(C
l)

 



56 

 

 

 

FIGURE 4-25: Lift Coefficient (C l) vs. Time for Semi-Circular Rotor for Different TSR 

For both circular shaped bladed rotor the starting lift coefficient is very low and jumped to 

positive and after 0.2 seconds the behavior remains steady. The higher TSR has higher lift 

coefficient. Figure 4-16 and 17 shows the behavior. 

 

FIGURE 4-26: Average Lift Coefficient (C l) vs. Tip Speed Ratio (λ) for Different Blades 

For different TSR, all the lift coefficients of five different models are averaged and then 

plotted; shown in figure 4-18. NACA7510 rotor produce better lift coefficient.  

Semi-circular rotor shows negative tendency for higher TSR. But Quarter circular rotor 

shows same behavior like the airfoils. Around TSR 0.301 seems to be the optimum point. 
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4.1.5 Torque Coefficient 

The torque is measured from the numerical solution. This torque is measured at a certain 

point of the rotation. As the torque is always changed for rotational component, so it is 

assumed that the combined effect is averaged when to rotor starts to show steady movement 

for steady wind velocity.  

Torque coefficient vs. Angle of Rotation 

The torque coefficient (Cq) of each blade and combined blade effect of three bladed wind 

turbine model variation with the change in rotor angle (θ) is shown in Figure 4.27. The 

torque coefficient here is displayed while rotor was at almost uniform movement.  

i) 
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iii) 

 

iv) 

 

v) 

 

FIGURE 4-27: Torque Coefficient (Cq) vs. Angle of rotation (θ) for Single Blade and Three Blades Combined 

Effect at TSR 0.226 for Five Models 

The plot is displayed at 15° interval from 0° to 360°. Figure 4-28 shows the combined effect 

of three blades on torque coefficient. Semi Circular bladed model shows the highest torque 

coefficient. While NACA7510 shows the better coefficient among the airfoils. 
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FIGURE 4-28: Torque Coefficient (Cq) vs. Angle of rotation (θ) for Three Blades Combined Effect at TSR 

0.226 for Five Models 

Figure 4.29 shows the torque variation with the change of Tip Speed Ratio. This point is 

recorded after 5 seconds of rotation. From this figure it can be concluded that with the 

increase of wind speed the corresponding values of torque increases. The optimum torque 

could not be found from this computational data. NACA5510 produces more torque than any 

other models at any point of wind speed. On the other hand Semi-circular rotor produces 

lowest torque. 

 

FIGURE 4-29: Torque (T) at 5sec. vs. Tip Speed Ratio (λ) for Different Blades 

-0.2

0

0.2

0.4

0.6

0.8

1

0

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

3
3
0

3
6
0

T
o

rq
u

e 
C

o
ef

fi
ci

en
t 

(C
q
) 

Angle of Rotation (θº) 

NACA5510

NACA7510

NACA9510

quarter

Semi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.226 0.247 0.271 0.301

T
o

rq
u

e 
(N

-m
) 

Tip Speed Ratio (λ) 

NACA5510

NACA7510

NACA9510

Quarter-
circular
Semi-
circular



60 

 

Figure 4-30 and 4-31 show the torque coefficient variation with the change of Tip Speed 

Ratio at the point after 5 seconds of rotation. The torque coefficient of Figure 4-30 is 

calculated from the torque and the other geometric parameters; Figure 4-31 is directly 

yielded from numerical solution. Torque coefficient shows the same trend of torque.  

NACA5510 produces more torque than any other models at any point of wind speed. On the 

other hand Semi-circular rotor produces lowest torque. Though for circular shaped bladed 

rotors the torque coefficient is lowest around 0.250 TSR. From the curves, it is not evident 

that the increase of camber does not necessarily produce better torque coefficient.  

 

FIGURE 4-30: Calculated Torque Coefficient (C q) at 5sec. vs. Tip Speed Ratio (λ) for Different Blades  

 

FIGURE 4-31: Computational Torque Coefficient (Cq) at 5sec. vs. Tip Speed Ratio (λ) for Different Blades 
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Figure 4-32 is the average of torque coefficients calculated at each 0.02 seconds for 5 

seconds of rotation. For all the cases the minimum torque coefficient shows at 0.247 TSR 

except semicircular bladed rotor. The quarter-circular rotor shows the best result. 

NACA9510 showed better result among the airfoils. 

 

FIGURE 4-32: Averaged Torque Coefficient (Cq) vs. Tip Speed Ratio (λ) for Different Blades  
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4.1.6 Power Coefficient 

The power coefficient is shows the very same picture of torque coefficient. Figure 4-23 and 
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FIGURE 4-33: Calculated Power Coefficient (Cp) at 5sec. vs. Tip Speed Ratio (λ) for Different Blades 

 

FIGURE 4-34: Computational Power Coefficient (Cp) at 5sec. vs. Tip Speed Ratio (λ) for Different Blades 

NACA5510 shows better power coefficient than any other models at any point of wind speed 
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FIGURE 4-35: Averaged Power Coefficient (Cp) vs. Tip Speed Ratio (λ) for Different Blades  

Figure 4-25 is the average Power coefficient. This is simply calculated from the average 

torque coefficient and TSR. Around 0.250 TSR all the models show least efficiency and then 

increases with the increase of TSR. Quarter circular shape produces better power coefficient. 
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good change of torque coefficient when the wind speed as well as TSR is increased. This 

behavior is plotted and figure 4-26 illustrates the behavior. 

 

FIGURE 4-36: Torque Coefficient (Cq) vs. Tip Speed Ratio (λ) for Different Blades 

 

4.2.2 Power Coefficient 

Like torque coefficient, power coefficient also shows the similar picture. With the increase of 

Tip Speed Ratio, NACA7510 shows the best result among these three rotors. NACA5510 

produces very low power coefficient. 

 

FIGURE 4-37: Power Coefficient (Cp) vs. Tip Speed Ratio (λ) for Different Blades 
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4.3 Comparison of Numerical and Experimental Power Coefficient 

Figure 4-29 shows the comparison between numerically and experimentally calculated data. 

The experimental data has taken at some point of average data, so average computational 

data is also used here.  

Figure 4-29 compares the torque coefficient characteristic of three blades at different TSR. 

Both computational and experimental data shows that NACA7510 profiled bladed rotor has a 

better result than others. 

 

FIGURE 4-38:  Torque Coefficient (Cq) vs. Tip Speed Ratio (λ) of Numerical and Experimental Result for 

NACA5510, NACA7510 and Semi-Circular Bladed Rotor 
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Power coefficient behaves the same way of torque coefficient here. NACA7510 

characteristics are better than the other two rotors.  Figure 4-30 shows the comparison of 

power coefficient (Cp) with the increase of TSR.  

 

FIGURE 4-39: Power Coefficient (Cp) vs. Tip Speed Ratio (λ) of Numerical and Experimental Result for 

NACA5510, NACA7510 and Semi-Circular Bladed Rotor 
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CHAPTER 5 

5 Conclusion and Recommendation 

Five different three bladed Savonius type VAWT are designed and tested computationally. 

Then three of them are fabricated and experimentally investigated in front of a subsonic wind 

tunnel. All these experiments are tested at different wind speeds. Torque coefficient and 

Power coefficients are determined from both the methods and compared.  

The experimental setup has some issues which could contribute some error during data 

acquisition.  

 

5.1 Conclusion 

After studying and analyzing all the yielded and calculated data, the conclusions are: 

 NACA7510 provides the better torque coefficient than the other models. Though 

computationally NACA9510 provides slightly better torque coefficient.  

 Power coefficient provides the similar result of Torque coefficient. The higher TSR the 

better power coefficient for all the models. NACA7510 shows overall better power 

coefficient. Computationally quarter circular bladed turbine and NACA 9510 provides 

better power coefficient.  

 The torque and power coefficient decreases around TSR 0.250. Then with the increase 

of TSR, both the coefficient shows better result. 

 From computational study, NACA5510 shows higher Drag Coefficient. With the 

increase of wind speed the drag force increases too. 
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 NACA7510 shows higher Lift coefficient. Around TSR 0.301 it seems that all lift 

coefficient reaches its optimum value as most of the curves seems to start declining. 

 Camber of airfoil has definite impact on blade design. The change of camber 

percentage shows different characteristics.  

 In most of the cases, airfoils showed better results than regular circular shaped turbines. 

 

5.2 Recommendation  

VAWT design can be improved by change of blade shape and number. The following 

recommendation can be made for more improvement of VAWT. 

 Camber position, percentage and thickness percentage of airfoil can be changed for the 

different airfoil creation. This may show new behavior. 

 To change the shape of blade, twisted blades from 15
0 

to 90
0
 can be examined. 

 The airfoil blades can be used for Savonius and Darrieus type VAWT. In addition to 

that hybrid type VAWT can be created using both Savonius and Darrieus turbine. 

 Changing the number of blade and stage can be another option which can also help to 

improve the performance. 

 A better load system on the other side of dynamic transducer needs to be installed to 

get better dynamic torque data. Computer interface with the transducer can provide 

average data, which is not possible in current display system. 

 The rotor needs to be properly vertically aligned, which means the shaft, torque 

transducer, load system and the overall frame should be aligned properly. 

 To yield similar kind of result for different type of design, the geometry, weight and 

material of the rotor should be similar to get comparable data.  
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