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Earthquake-Induced Deformations Of A Bridge Approach Embankment In The 
New Madrid Seismic Zone  

 
W.X. Liu1, R.W. Stephenson2 and R. Luna3 

 
 
 
Abstract 
 
It is predicted that strong earthquakes larger than M7.0 may occur within next 50 
years in the New Madrid Seismic Zone (NMSZ), the location of three of the most 
powerful earthquakes in United States history. Large displacements may occur during 
strong earthquakes to make an embankment fail or lose its function. The hyperbolic 
stress-strain model with Masing rules was modified to account for strength and 
stiffness reduction due to the effective confining pressure change. Byrne model was 
combined with the hyperbolic model to calculate the pore water pressure caused by 
seismic shaking. This modified hyperbolic model was implemented into the FLAC 
computer code and calibrated against the 1971 Upper San Fernando Dam failure. 
Then it was applied to study the seismically induced deformation of an approach 
embankment to Bridge A1466 in the NMSZ near Hayti, Missouri.  
 
Introduction 
 
The permanent deformations that occur to an approach embankment of a bridge 
during an earthquake event are very important. If large deformations occur, the bridge 
has “failed” since it cannot be used for its design purpose, which is to access the 
bridge. Quantifying earthquake-induced deformation analyses is one of the biggest 
challenges in geotechnical earthquake engineering. 

Newmark (1965), Makdisi and Seed (1978), Rathje and Bray (1999), and Lin
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and Hynes (1998) developed empirical methods to estimate the soil displacement 
under cyclic loading. Finn et al. (1986, 1999) and Wu (1998, 2001) proposed and 
modified the nonlinear hysteretic stress-strain soil model combined with Martin-Finn-
Seed approach (Martin et al. 1975). Some elastic-plastic models using Biot’s coupled 
equations, including DYNAFLOW (Prevost 1981), DYSAC2 (Muraleetharan et al. 
1988), and SWANDYNE4 (Zienkiewicz et al. 1990a, 1990b), were developed for 
pore pressure and deformation calculation. Each approach has its advantages and 
limitations. Due to the complexity of the problem, the objective of these analyses is 
focused on predicting general deformation patterns and approximate estimates of 
displacement magnitudes. In this study the hyperbolic model was modified, calibrated 
and implemented into FLAC to analyze the seismic performance of the approach 
embankment at Bridge Site A1466. 

 
Modified Hyperbolic/Byrne Model  
 
There is a built-in model, Finn model, in FLAC. It is the standard Mohr-Coulomb 
model with increments of deformation taken from the volumetric strain, predicted by 
Byrne model, every time a "cycle" is detected. This crude model does not consider 
the shear modulus degradation and damping variation with shear strain and the shear 
strength and maximum shear modulus loss due to the effective confining pressure 
change. In order to consider all these effects, the hyperbolic model using Masing 
rules (1926) was modified and implemented into FLAC. 

The stress strain relationship for Masing rules are shown in Figure 1. Since 
this model uses a tangent elastic modulus, no residual or plastic volume deformation 
remains after the loading. In order to calculate the residual or plastic volume 
deformation, the empirical Byrne relations between irrecoverable volumetric strain 
and cyclic shear strain were incorporated into the hyperbolic model. It is expressed by 
the following equation (Byrne, 1991) 
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effective confining stress. Seed and Idriss (1970) proposed the relationship between 
the shear modulus and the confining pressure as follows: 
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where max2K  and mσ ′  are shear modulus number and mean effective confining stress, 
respectively. 

In the modified hyperbolic model, the maximum shear modulus, shear 
strength, and bulk modulus are reduced due to the excess pore water pressure. They 
are updated in the each element by the following equations: 
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where 0G , 0τ , 0mσ ′ , mσ ′ , and v  are the updated initial shear modulus, the updated 
initial shear strength, initial effective mean confining stress, the updated effective 
mean confining stress, and  Poisson’s ratio, respectively. 
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Figure 1. Hyperbolic stress-strain relationship 

 
 
Calibration of the Modified Hyperbolic Model 
 
To confirm the validity of implemented hyperbolic model, it was calibrated against 
the 1971 Upper San Fernando Dam failure, located in southern California. This 
hydraulic fill dam was constructed on about 15 to 18 m of alluvium overlying 
bedrock. A 5.5-meter-high rolled fill section was placed on the upstream portion of 
the hydraulic fill, leaving a 30.5m wide bench on the downstream slope.  The slopes 
of this dam are 2.5:1. The representative cross section is shown in Figure 2.  

The ground motion (EERC 73-2) developed by Seed et al. (1973) was used. 
SPT tests were performed at the site during April and May 1971, as reported by 
Harder et al. (1986). Soil properties are correlated from SPT N values and estimated 
from cross-hole seismic surveys for the dynamic analysis. 

The computed deformations and measured displacements (Serf et al. 1976) at 
the end of the earthquake using the implemented hyperbolic model are shown in 
Figure 3.  
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Figure 2.  Soil profile of Upper San Fernando Dam (Seed et al., 1973) 

 
 

 
 

Figure 3.  Deformed mesh after earthquake using modified hyperbolic model 
 

Figure 4 illustrates the computed displacements using both Finn and the 
modified hyperbolic models and measured displacements along the embankment 
profile. It was observed that the deformed pattern is almost same.  

The calculated, measured, and modified deformations at different locations 
using both Finn and modified hyperbolic models are shown in Table 2. It is seen that 
the calculated displacements using the Finn model are lower than the measured 
values (Seed et al. 1973), but the calculated displacements using the hyperbolic 
model agree well with the measured values (Serff et al. 1976). The measured and 
modified measured displacements are close only at point 2 and totally different at 
point 6. The reason may be that the modified measured values are inferred from the 
numerical and empirical analysis. Compared with the original measured values, the 
hyperbolic model can give very good results. Therefore, the hyperbolic model can 
provide reasonable results and better understanding of the deformation of earth 
structures during earthquakes. 
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Figure 4.  Displacements along embankment profile 
 
Table 2.  The calculated, measured and modified measured deformations 
 

Finn model Hyperbolic 
model 

Modified from 
measured 

(Serff et al. 1976) 

Measured 
(Seed et al. 1973) Position 

x y x y x y x y 
Point 1 -0.61 0.05 0.66 0.11 - -   
Point 2 0.11 -0.47 1.28 -0.65 1.49 -0.76 1.52 -0.91 
Point 3 0.23 -0.37 1.34 -0.85 - - - - 
Point 4 0.57 -0.11 1.60 -0.06 1.95 -0.06 - - 
Point 5 1.59 -0.90 1.34 -0.50 2.2 -0.43 - - 
Point 6 0.63 0.19 1.45 -0.03 1.1 -0.06 - 0.61 

 
 
Application of the Modeling Technique to NMSZ Highway Embankments   

 
To understand the performance of the embankment during an earthquake, the 
calibrated hyperbolic model was applied to determine the deformations in the 
transverse cross section of the approach embankment to Bridge A1466 in the NMSZ. 
To reduce the boundary effect and study the liquefaction potential of foundation soils, 
the depth of 37 m of foundation soils was included in the embankment system as 
shown in Figure 5.  

The bottom boundary was fixed. Free-field boundaries (Seed et al. 1975) were 
applied to the vertical sides of the model to minimize wave reflections and achieve 
free-field conditions. Ground motions were input at the bottom of the model. Ground 
motions were obtained from the site response analysis accounting for high confining 
pressure effect (Liu, 2005). A total of five ground motions at M7.0 were used for this 
study to understand the general behavior of the embankment-foundation soil system. 
Index, permeability, and triaxial tests were conducted on the samples taken from the 
embankment and subgrade soils. The shear wave velocity was measured using SCPT, 
cross-hole and SASW test procedures.  
 

Horizontal Displacement Vertical Displacement 
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Figure 5.  Embankment profile including foundation soils 
 

 
Figure 6 shows the horizontal and vertical displacements along the 

embankment surface. The maximum horizontal displacements in the positive x 
direction occurred at location E, and in the negative direction they occurred at 
location A.  The maximum horizontal displacements in the positive x direction range 
from 0 to 0.8 m.  The maximum negative horizontal displacement was -0.35 m for 
M7.0. The vertical displacements are symmetrical along the middle of the 
embankment.  The maximum settlements occurred at locations B and D, ranging from 
0.15 to 0.35 m.  Heave happened in front of the toe. It can be observed from Figure 6 
that the slope slide along a surface and the maximum deformation occurred near the 
toe of the slope.  
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Figure 6.  Displacement along embankment surface 

 
Summary 
 
A modified hyperbolic model was developed and implemented into FLAC. The 
numerical model was calibrated against the 1971 failure of the Upper San Fernando 
Dam. This modified hyperbolic model can provide good estimate for the earthtuake-

Horizontal Displacement Vertical Displacement 
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induced deformation. It was then applied to study the permanent deformation of the 
approach embankment at Bridge Site A1466. The results showed that large 
deformation would occur in the embankment during an earthquake with a magnitude 
larger than M7.0. The maximum displacements would take place at the toe of the 
embankment, and heave would occur in front of the toe of embankment.   
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