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Numerical Simulation of Prestressed Precast Concrete Bridge Deck
Panels Using Damage Plasticity Model

Wei Ren1),*, Lesley H. Sneed2), Yang Yang2), and Ruili He2)

(Received January 13, 2014, Accepted October 23, 2014, Published online November 11, 2014)

Abstract: This paper describes a three-dimensional approach to modeling the nonlinear behavior of partial-depth precast pre-

stressed concrete bridge decks under increasing static loading. Six full-size panels were analyzed with this approach where the

damage plasticity constitutive model was used to model concrete. Numerical results were compared and validated with the

experimental data and showed reasonable agreement. The discrepancy between numerical and experimental values of load

capacities was within six while the discrepancy of mid-span displacement was within 10 %. Parametric study was also conducted

to show that higher accuracy could be achieved with lower values of the viscosity parameter but with an increase in the calculation

effort.

Keywords: bridge decks, concrete, concrete damage plasticity, cracking, finite element simulation.

1. Introduction

This paper presents the results of numerical simulations con-
ducted using ABAQUS on hybrid partial-depth precast pre-
stressed concrete (PPC) bridge deck panels using the concrete
damage plasticity model to investigate the behavior and failure
mechanism. The term ‘‘hybrid panel’’ in this paper describes a
PPC panel that contains two different types of prestressing ten-
dons: either epoxy-coated steel or carbon fiber reinforced poly-
mer (CFRP) tendons at the panel edges, and uncoated steel
tendons at the interior of the panel. Previous studies have shown
that substitution of steel tendons with epoxy-coated steel could
effectively reduce the occurrence of corrosion (Kobayashi and
Takewaka 1984) and using FRP tendons as the addition of
reinforced tendons, the ductility of the prestressed beams can be
significantly improved (Saafi and Toutanji 1998).

2. Background

2.1 Bridge Deck Description
Partial-depth prestressed precast concrete deck panels span

between girders and serve as stay-in-place (SIP) forms for a

cast-in-place (CIP) concrete bridge deck. Typical panel
geometries are 75–90 mm (3.0–3.5 in.) thick, 2.4 m (8 ft)
long in the longitudinal direction of the bridge, and suffi-
ciently wide to span between the girders in the bridge
transverse direction. The panels are typically pretensioned
with prestressing steel strands located at the panel mid-
depth. Panels are placed adjacent to one another along the
length of the bridge and typically are not connected to each
other in the longitudinal bridge direction. After the panels
are in place, the top layer of reinforcing steel is placed, and
the CIP concrete portion of the deck [typically 125–140 mm
(5.0–5.5 in) thick] is cast on top of the panels. At the bridge
service state, the CIP concrete and SIP panels act as a
composite deck slab.

2.2 Problem Statement
The most common problem reported with the use of par-

tial-depth deck panels is reflective cracking on the top sur-
face of the deck. Cracks in the transverse direction of the
bridge may form at locations at which adjacent panels are
placed (panel edges), while cracks in the longitudinal
direction may form at the locations at which the panels are
supported on the girders (panel ends).
The cause of the transverse reflective cracks is attributed

primarily to the concentration of shrinkage and stress of CIP
concrete at the joints between the precast panels (Hieber
et al. 2005) (Fig. 1a). Transverse reflective cracks generally
raise a deterioration concern because they permit the ingress
of moisture and corrosion agents of steel reinforcement in
the deck (Fig. 1b). When reflective cracks extend the full
thickness of the CIP concrete layer, the ingress of moisture
and corrosion agents can be concentrated at the panel edges
(Fig. 1c), which has been observed to cause corrosion of
steel prestressing tendons at the panel edges and spalling of

1)Key Laboratory of Bridge Inspection and Reinforcement

Technology of China Ministry of Communications,

Chang’an University, Xi’an 710064, Shaanxi, China.

*Corresponding Author; E-mail: rw20062@163.com
2)Department of Civil, Architectural & Environmental

Engineering, Missouri University of Science and

Technology, Rolla, MO 65409, USA.

Copyright � The Author(s) 2014. This article is published

with open access at Springerlink.com

International Journal of Concrete Structures and Materials
Vol.9, No.1, pp.45–54, March 2015
DOI 10.1007/s40069-014-0091-2
ISSN 1976-0485 / eISSN 2234-1315

45



concrete along the panel edges (Fig. 2) (Wieberg 2010;
Sneed et al. 2010). Critical combinations of panel geometry,
material properties, and reinforcement details can lead to
long-term serviceability problems (Young et al. 2012;
Wenzlick 2008).

3. Experimental Program

Testing data of an experimental program (Sneed et al.
2010) on six full-size partial-depth precast concrete deck
panels were used to verify the numerical model developed in

this study. The purpose of the experimental program was to
investigate the structural behavior of the hybrid PPC panels
as discussed previously. The dimension of the specimens
was 75 mm thick, 2,440 mm length, and 2,440 mm width
(Fig. 3 and Table 1). Three types of prestressed reinforce-
ment were used in the experiments. Steel strand was 9.5 mm
diameter, 7-wire, Grade 270 low-relaxation conforming to
ASTM A 416 (2010). Epoxy-coated strand was 9.5 mm
diameter, 7-wire, Grade 270 low-relaxation grit-impregnated
conforming to ASTM A 882 (2010). Carbon fiber reinforced
polymer (CFRP) tendons were No. 3 reinforcing bar. Table 2
summarizes the material properties of the prestressing
reinforcement.
The specimens were testing under displacement control,

where a 1.25 mm increment was used until the failure of
specimens. All six panels failed with concrete crushing in
the compression zone near the mid-span. The testing setup is
shown in Fig. 4.

4. Modeling Approach

4.1 Material Models
The finite element models of the tested specimens were

built and analyzed with software ABAQUS. For linear
elastic materials, at least two material constants are required:

(a) (b)

(c)

Fig. 1 Spalling mechanism observed in PPC panels.

Fig. 2 Cracking and spalling at bridge deck panel joints.

46 | International Journal of Concrete Structures and Materials (Vol.9, No.1, March 2015)



Young’s modulus (E) and Poisson’s ratio (v). For nonlinear
materials, the steel and concrete uniaxial behaviors beyond
the elastic range must be defined to simulate their behavior
at higher strains. ABAQUS provides different types of
concrete constitutive models including, (1) a smeared crack
model; (2) a discrete crack model; and (3) a damage
plasticity model (ABAQUS Theory Manual 2010). The
concrete damage plasticity model, which can be used for
modeling concrete and other quasi-brittle materials, was
used in this study. This model combines the concepts of

isotropic damage elasticity with isotropic tensile and
compressive plasticity to model the inelastic behavior of
concrete. The model assumes scalar (isotropic) damage and
can be used for both monotonic and cyclic loading con-
ditions. Elastic stiffness degradation from plastic straining
in tension and compression is accounted for (Lubliner et al.
1989; Lee and Fenves 1998). Cicekli et al. (2007) and Qin
et al. (2007) proved that damage plasticity model provides
an effective method for modeling the concrete behavior in
tension and compression.

Fig. 3 Reinforcement details of specimens (mm).

Table 1 Test matrix.

Test specimen Edge tendon type Concrete type

ST-NC Steel Normal

ST-FRC Steel FRC

ECT-NC Epoxy-coated steel Normal

ECT-FRC Epoxy-coated steel FRC

CFRP-NC CFRP Normal

CFRP-FRC CFRP FRC

N normal concrete, FRC fiber reinforced concrete, ST steel strands, ECT epoxy-coated steel strands, CFRP CFRP tendons.

Table 2 Material parameters (MPa/Psi).

Concrete
compressive
strength

Concrete
tensile strength

Concrete
modulus of
rupture

Tendon fy Tendon fu
ST Epoxy-coated

steel
ST Epoxy-coated

steel
CFRP

ST-NC 37.2/6,360 3.36 31,342/600 1,737/
2.52 9 105

– 1,889/
2.74 9 105

– –

ST-FRC 32.6/5,580 3.08 29,357/855 1,737/
2.52 9 105

– 1,889/
2.74 9 105

– –

ECT-NC 34.5/5,900 3.20 30,187/765 1,793/
2.6 9 105

1,882/
2.73 9 105

1,924/
2.79 9 105

1,999/
2.9 9 105

–

ECT-FRC 37.8/6,460 3.40 31,587/745 1,793/
2.6 9 105

1,882/
2.73 9 105

1,924/
2.79 9 105

1,999/
2.9 9 105

–

CFRP-NC 40.9/700 3.58 32,881/620 1,793/
2.6 9 105

– 1,924/
2.79 9 105

– 2,576.5

CFRP-FRC 37.4/6,390 3.37 31,416/585 1,793/
2.6 9 105

– 1,924/
2.79 9 105

– 2,576.5
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4.1.1 Concrete Constitutive Model and Damage
Indices
The concrete damage plasticity model requires input of

parameters including the constitutive relationship of con-
crete, which can be customized by the user. This paper used
the constitutive model of concrete developed by Zhenhai
(2001) and Xue et al. (2010).
The stress–strain relationship as shown in Fig. 5 of con-

crete under uniaxial tension is described in Eq. (1). Damage
is assumed to occur after the peak stress is reached.

y ¼ x

atðx� 1Þ1:7 þ x
x� 1; ð1aÞ

at ¼ 0:312f 2t ; ð1bÞ

where at is decline curve parameters of concrete under
uniaxial tension (if at = 0 the curve becomes a horizontal
line corresponding to fully plastic behavior while in case
of at = ? the curve becomes a vertical line correspond-
ing to the fully brittle behavior). ft is concrete tensile
strength.
The stress–strain relationship as shown in Fig. 6 for con-

crete under uniaxial compression is described in Eq. (2).

y ¼ x

adðx� 1Þ2 þ x
x� 1; ð2aÞ

ad ¼ 0:157f 0:785c � 0:905; ð2bÞ

where ad is the declining parameter of concrete under uni-
axial compression; fc is concrete compressive strength.

4.1.2 Other Data of Concrete Models
(1) The dilation angle w is a ratio of vertical shear strain

increment and strain increment, which is taken as 38
degrees.

(2) Flow potential eccentricity e is a small positive number
that defines the rate at which the hyperbolic flow
potential approaches its asymptote. This paper takes a
value of 0.1.

(3) National standard of the people’s republic of China
(2002) recommend,

�f3=f �c ¼ 1:2þ 33ðr1=r3Þ1:8 ð3Þ

From FE model analysis, r1 = -16.66 Mpa, r3 =

-1.73 Mpa, before the concrete cracks. So

�f3=f �c ¼ 1:2þ 33ð16:66=1:73Þ1:8 ¼ 1:7585

Fig. 4 Test setup (mm).

Fig. 5 Concrete uniaxial tensile stress–strain curve.

Fig. 6 Concrete uniaxial compressive stress–strain curve.
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The ratio of initial equibiaxial compressive yield stress to
initial uniaxial compressive yield stress rbo/rco was taken as
1.76.

(4) The ratio of the second stress invariant on the tensile
meridian, q(TM), to that on the compressive meridian
Kc was taken as 2/3.

(5) The viscosity parameter l used for the visco-plastic
regularization of the concrete constitutive equations in
Abaqus/Standard was taken as 0.0005.

4.1.3 Prestressing Tendons
CFRP tendons were modeled as linear elastic while steel

strand and epoxy-coated steel strand were modeled as
bilinear hardening model (Fig. 7).

4.2 Finite Element Model Description
4.2.1 Symmetry
Because the PC panels investigated had two axes of

symmetry, it was possible to represent the full slab by
modeling only one fourth of the panel (Fig. 8). This reduced

the analysis time (Wei et al. 2007). A linear elastic unit was
also used to model the portion that stayed as elastic during
testing.

4.2.2 Element Type and Meshing Scheme
The 3D eight-node solid element C3D8 (Tuo 2008) was used

to model the concrete. The T3D2 element was used to repre-
sent the prestressing strands or tendons. The model contained
6,144 nonlinear concrete elements, 3,072 three-dimensional
linear elastic solid elements, and 432 prestressing tendons ele-
ments. CFRP tendons (or epoxy coated steel tendons) were
divided into 96 elements. Element sizes were 25.4 mm 9

38.1 mm 9 12.7 mm. A meshed model is shown in Fig. 9.

4.2.3 Bonding Between Reinforcement and Concrete
This is a technique used to place embedded nodes at

desired locations with the constraints on translational
degrees-of-freedom on the embedded element by the host
element (Fig. 10). The rebar was modeled as embedded
regions in the concrete in the interactive module, and making
the concrete for the host. Thus, rebar elements can only had
translations or rotations equal to those of the host elements
surrounding them (Garg and Abolmaali 2009).

4.2.4 Boundary Conditions
Due to symmetry, only a quarter of the panel was modeled

as shown in Fig. 8. The nodes on symmetry surfaces were
constrained in X and Y directions, respectively. At the
supports, nodes were constrained in the z direction.

4.2.5 Prestressing Effect
Prestressing effect is usually modeled through either (1)

initial strain or (2) initial temperature load. This study used
initial temperature load to apply the prestressing load. The
applied temperature t (�C) can be obtained from Eq. 4.Fig. 7 Prestressed Reinforcement Material curve.

Fig. 8 Modeling scheme of one fourth of the panel.

Fig. 9 FE model of one fourth of the panel.
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C ¼ � P

c � E � A ð4Þ

C is coefficient of linear expansion taken as 1.0 9 10-5

(MPa/ �C); E is modulus elasticity of the tendon, in MPa;
A is the cross-sectional area of the prestressing tendon in
mm2; P (in N) is prestressing force calculated based on the
recorded force during pretension process and with consid-
eration of loss of prestressing effect.

4.2.6 Convergence Considerations
Convergence issues were resolved with the following

considerations:

(1) Loading steps were adjusted in consideration of the
anticipated time of concrete cracking and the automatic
time step was adopted.

(2) Constitutive relationship was modified by introducing
the coefficient of viscosity. A higher viscosity coeffi-
cient would make the structure of ‘‘harder’’. Through
extensive trials, a viscosity coefficient of 0.0005 was
found to be helpful with convergence.

(3) In cases of computation time being more critical than
accuracy (Jiang 2005), the force and displacement

convergence criteria were adjusted to reduce the
computation time.

5. Validation of FE Model

5.1 Force–Displacement Relationships
The failure load for the numerical analysis was defined as

peak load in the force –displacement relationship. Table 3
lists the failure loads and corresponding midspan displace-
ments of the experimental work and the numerical analysis.
The error of analysis was within 7 %. The difference in
results can be a consequence of underestimation of the
concrete’s fracture energy. The error of analysis for midspan
displacement ranged from 5 to 23 %.
Relatively large deviation between the analytical and

experimental results was observed in panels ST-FRC, ECT-
NC and CFRP-NC. This may be due to the fact that data of
material concrete of these panels may be incorrect, such as
concrete material parameters of panel CFRP-NC are much
higher than others (Table 3), but its midspan displacement is
significantly smaller. Panel ST-FRC and ECT-NC also have
the same problem. So in this paper, on the basis of a large

Fig. 10 Rebar was modeled as embedded regions.

Table 3 Failure loads and corresponding displacements.

Failure load Midspan displacement at failure load

PTest (kN) PFE (kN) PTest/PFE dTest (mm) dFE (mm) dTest/dFE

ST-NC 98.21 101.4216 0.97 54.31 51.82 1.05

ST-FRC 90.55 88.1972 1.03 42.75 34.8868 1.23

94.4248a 0.96a 42.5018a 1.01a

ECT-NC 82.51 88.3596 0.93 27.46 34.8623 0.79

85.5892a 0.96a 29.4543a 0.93a

ECT-FRC 94.36 93.43 1.01 44.02 41.05 1.07

CFRP-NC 93.39 99.5872 0.94 36.45 45 0.81

91.4712a 1.02a 33.4368a 1.09a

CFRP-FRC 92.85 97.0472 0.96 44.11 40.00 1.10

a Results of which the concrete material parameters were adjusted.

50 | International Journal of Concrete Structures and Materials (Vol.9, No.1, March 2015)



number of comparative analyses, these panels was analyzed
again after adjusting the concrete material parameters, the
results see Table 3 and Fig. 11.

The error of the failure loads was within 6 % and the error
of the midspan displacement was within 10 % with the
adjusted concrete model.
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Fig. 11 Experimental and numerical applied load—midspan displacement curves.
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5.2 Failure Modes
Figures 12 and 13 compare the damage observed during

the experiments with the damage predicted in the simula-
tions. In the experiments, testing was terminated when brittle
failure (concrete crushing) occurred. Figure 12 shows that at
the peak load, concrete crushing occurred at the top of the
panel at midspan, and flexural cracking (maximum principal
plastic strain) was observed at the bottom surface of the
panel near midspan. Figure 13 illustrates of the calculated
compressive strain distribution of the panels. As shown in
this figure, the failure due to the concrete crushing could be
well predicted with the analysis.

6. Parametric Analysis

The influence of the concrete dilation angles, viscosity
parameters, and prestressing effect on the analytical results
was investigated through parametric analysis of panel ST-
NC-SL.

6.1 Effect of Concrete Dilation Angle w
The dilation angle of a material is a measurement of the

expansion of volume occurring when the material is under
shear (as illustrated in Fig. 14) (Zhao and Cai 2010). For a
Mohr–Coulomb material like concrete, the value of dilation
angle generally varies in between zero (non-associative

flow rule) and the friction angle (associative flow rule).
(Tuo 2008) recommended 30� for concrete material. How-
ever, in this paper, the analytical results with a value of 38
were the most closest to the experimental results.
From Fig. 15 it can be seen, as the dilation angle

increased, the displacement capacity and the failure load of
the panel was significantly increased while the required
number of iterations to obtain a converged results decreased.

6.2 Effect of l Viscosity Parameter
Material models exhibiting softening behavior and stiff-

ness degradation often lead to severe convergence difficul-
ties in implicit analysis programs, such as Abaqus/Standard.
A common technique to overcome these convergence diffi-
culties is the use of a visco-plastic regularization of the
constitutive equations, which causes the consistent tangent
stiffness of the softening material to become positive for
sufficiently small time increments.
The lower value of the parameter would result in more

accurate calculation and more computation time. The

Fig. 12 Observed failure mode of test specimen (Panel ST-
NC-SL shown).

Fig. 13 Calculated maximum principal plastic strain distribution (Panel ST-NC-SL shown).

Fig. 14 Dilation angle.
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influence of the value of the viscosity parameter on the
analytical results is shown in Fig. 16. As shown in this
figure, with decreasing of the value of viscosity parameter,
the displacement capacity and failure load increased and the
required number of iterations to reach a converged solution
increased. When the viscosity parameter was taken as
0.0005, the calculation results were close to the experimental
results. On the premise of no apparent loss calculation
accuracy and efficiency, proposals should be taken as far as
possible to the lower value.

6.3 Effect of Prestressing Force
Figure 17 shows the influence of the prestressing effect.

As shown in this figure, increasing the prestressing effect
(from 60 to 140 %), resulted in increasing of the cracking
load (from 37 to 69 KN and decreasing of displacement
capacity.). However, the post-cracking stiffness and the peak
load the panels was not sensitive to the prestress effect since
the post-cracking curves was parallel to each other with
varied prestressing forces.

7. Conclusions

In this paper, finite element analysis of PPC bridge deck
panels was conducted using concrete damage plasticity

model. Based on the validation of finite element model
against experimental results and parametric study with var-
ied values of dilation angle, viscosity parameter, and pre-
stressing force, following conclusions can be made:

(1) The concrete damage plasticity model in ABAQUS can
predict the concrete crushing failure mode in PPC
panels. The numerical error of the failure loads and
mid-span displacement was within 6 % and 10 %,
respectively.

(2) It was feasible and accurate enough to simulate the
prestressing effect by applying temperature load to
prestressing strands or tendons.

(3) Under tri-axial compression state in the case of this
paper, the ratio of initial equibiaxial compressive yield
stress to initial uniaxial compressive yield stress rbo/
rco was taken as 1.76 and was shown accurate to
predict the behavior of PPC panels.

(4) Increasing prestressing effect resulted in increasing of,
the cracking load and decreasing of displacement
capacity of the PPC panels as shown in the parametric
study in this paper.

(5) Lower values of viscosity of parameter increased
calculation accuracy and increased the calculation time.
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