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Abstract— Combining the principles of dynamic inversion 
and optimization theory, a new approach is presented for 
stable control of a class of one-dimensional nonlinear 
distributed parameter systems, assuming the availability a 
continuous actuator in the spatial domain. Unlike the existing 
approximate-then-design and design-then-approximate 
techniques, here there is no need of any approximation either 
of the system dynamics or of the resulting controller. Rather, 
the control synthesis approach is fairly straight-forward and 
simple. The controller formulation has more elegance because 
we can prove the convergence of the controller to its steady 
state value. To demonstrate the potential of the proposed 
technique, a real-life temperature control problem for a heat 
transfer application is solved. It has been demonstrated that a 
desired temperature profile can be achieved starting from any 
arbitrary initial temperature profile. 

I. INTRODUCTION 
ontrol of distributed parameter systems (DPS) has 
been studied both from mathematical as well as 
engineering point of view. An interesting brief 

historical perspective of the control of such systems can be 
found in [11]. There exist infinite-dimensional operator 
theory based methods for the control of distributed 
parameter systems. While there are many advantages, these 
operator theory based approaches are mainly limited to 
linear systems [8] and some limited class of problems like 
spatially invariant systems [3]. Moreover for the purpose of 
implementation, the infinite-dimensional control solution 
needs to be approximated (e.g. truncating an infinite series, 
reducing the size of feedback gain matrix etc.) and hence is 
not completely free from errors. Such a control design 
approach is known as “design-then-approximate”.  

Another control design approach is “approximate-then-
design”. Here, the partial differential equations describing 
the system dynamics are first approximated to yield a finite 
dimensional approximate model. This approximate system 
is then used for controller synthesis. In this approach, it is 
relatively easy to design controllers using various concepts 
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of finite-dimensional control design. An interested reader 
can refer to [6] for discussions on the relative merits and 
limitations of the two approaches. 

An “approximate-then-design” approach to deal with the 
infinite dimensional systems is to have a finite dimensional 
approximation of the system using a set of orthogonal basis 
functions via Galerkin projection [10]. This technique 
normally leads to high order lumped system representations 
to adequately represent the properties of the original 
system, if arbitrary orthogonal functions are used as the 
basis functions. For this reason, in recent literature 
attention is being increasingly focused to come up with 
reduced-order approximations. One such powerful 
technique is Proper Orthogonal Decomposition (POD). Out 
of numerous literatures published on this topic and its use 
in control system design (both for linear and nonlinear 
DPS), we cite [4], [6], [7], [10], [14], [15] for reference. 
However, there are a few important drawbacks in the POD 
approach: (i) the technique is problem dependent and not 
generic; (ii) there is no guarantee that the snap-shots will 
capture all dominant modes of the system and, more 
important, (iii) it is very difficult to have a set of ‘good’ 
snap-shot solutions for the closed-loop system prior to the 
control design. This is a serious limiting factor if one has to 
apply this technique for the closed-loop control design. 
Because of this reason, some attempts are being made in 
recent literature to adaptively redesign the basis functions, 
and hence the controller, in an iterative manner. An 
interested reader can see [1], [2], [15] for a few ideas in 
this regard.  

Even though the “design-then-approximate” and 
“approximate-then-design” approaches have been used in 
practice for designing the controllers for DPS, and attempts 
are being made to generalize and refine the techniques, a 
fundamentally different technique is presented in this 
paper, which is applicable for a class of one-dimensional 
nonlinear distributed parameter systems. This has been 
done by combining the ideas of dynamic inversion [9], 
[12], [16] and optimization theory [5]. The formulation 
assumes a continuous controller in the spatial domain. In 
addition to the above important advantage, the formulation 
has elegance in the sense that we can prove the 
convergence of the controller to its steady state value.  

To demonstrate the potential advantages, we have 
applied the technique to a real-life heat transfer application 
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to achieve a desired temperature profile. Numerical results 
are very promising. We have simulated the system from a 
number of random initial conditions to validate the claim. 
Also note that even though a constant temperature profile 
(with respect to time) is chosen for the numerical studies 
(because of practical significance), the formulation 
presented is capable of tracking ‘time-varying’ target 
profiles. Moreover, even though we have chosen an 
exponential target profile (again for practical significance), 
the formulation presented can track any ‘arbitrary’ smooth 
trajectory that satisfies the spatial boundary conditions. 

II. PROBLEM DESCRIPTION 

A. System Dynamics 
In this paper the following system dynamics is considered 

, , , ... , , , ...x f x x x g x x x u       (1) 

where the state ,x t y  and controller ,u t y  are continuous 
functions of time 0t  and spatial variable 0,y L . x

represents /x t  and , , ...x x  represent /x y , 2 2/ , ...x y

respectively. We assume that appropriate boundary 
conditions (e.g. Dirichlet, Neumann etc.) are available to 
make the system dynamics description (1) complete. Note 
that here both ,x t y  and ,u t y  are scalar functions. The 
control variable appears linearly, and hence, the system 
dynamics is in the control affine form. Furthermore, we 
assume that , , , ... 0 ,g x x x t y . In this paper, we do 
not take into account those situations where control action 
enters the system dynamics through the boundary actions 
(i.e. boundary control problems are not considered).  

B. Goal for the Control Design 
The controller should make sure that the state variable 

*, ,x t y x t y  as t  for all 0,y L , where * ,x t y

is a known (possibly time-varying) profile in the domain 
0, L . It is assumed that * ,x t y  is continuous and smooth 

in y t  and satisfies the spatial boundary conditions, 
which simplifies our task. This is because we do not have 
the control action at the boundary, and hence, it will be 
difficult to guarantee *, ,x t y x t y  at the boundary, 
unless * ,x t y  itself satisfies the boundary condition. 

III. CONTROL SYNTHESIS

First, let us define an output (an integral error) term as  
2*

0

1 , ,
2

L
z t x t y x t y dy          (2) 

Note that when 0z t , *, ,x t y x t y  everywhere in 
0,y L . Next, following the principle of dynamic 

inversion [9], [12], [16], we attempt to design a controller 
such that the following first-order equation is satisfied 

0z k z              (3) 

where, 0k  serves as a gain; an appropriate value of it has 
to be chosen by the control designer. To have a better 
physical interpretation, one may choose it as 1/k ,
where 0  serves as a “time constant” for the error z t

to decay. Using the definition of ( )z t  in (2), (3) leads us to 
2* * *

0 02
L Lk

x x x x dy x x dy         (4) 

Substituting for x  from (1) in (4) and simplifying we get 
*

0
, , , ...

L
x x g x x x u dy           (5) 

where
2

* * *

0 0
, , , ...

2
L Lk

x x f x x x x dy x x dy

Note that the value for ,u t y  satisfying (5) will 
eventually guarantee that 0z t  as t . However, 
since (5) is in the form of an integral, no unique solution 
can be obtained for ,u t y  from it. To obtain a unique 
solution, however, we have the freedom of putting an 
additional goal. We take advantage of this fact and aim to 
obtain a solution for ,u t y  that will not only satisfy (5), 
but at the same time, will also minimize the cost function 

2

0

1 ,
2

L
J r y u t y dy            (6) 

In other words, we wish to minimize the cost function in 
(6), subjected to the constraint in (5). An implication of 
choosing this cost function is that we wish to achieve our 
objective with minimum control effort. In (6), 

0 0,r y y L  is the weighting function (which needs 
to be chosen by the control designer). This weighting 
function gives the designer the flexibility of putting relative 
importance of the control magnitude at different spatial 
locations. The choice of 0r y c  (a positive constant)  
means the control magnitude is given equal importance at 
all spatial locations.  

Next, following the technique for constrained 
optimization [5], we formulate the augmented cost function 

2 *

0 0

1
2

L L
J r u dy x x g u dy         (7) 

where  is a Lagrange multiplier, which is a free variable 
needed to convert the constrained optimization problem to 
a free optimization problem. In (7), there are two free 
variables, namely u  and  and J  has to be minimized by 
appropriate selection of these variables.  

It is well-known [5] that the necessary condition of 
optimality is given by  

           0J                (8) 

where J  represents the “first variation” of J . However, 
we know that 
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*

0 0

*

0

*

0

*

0

L L

L

L

L

J ru u dy x x g u dy

x x g u dy

ru x x g u dy

x x g u dy

        (9) 

From (8) and (9), we obtain 
* *

0
0

L
ru x x g u dy x x g u dy   (10) 

Since (10) must be satisfied for all variations u and ,
the following equations should be satisfied simultaneously: 

* 0ru x x g            (11) 
*

0

L
x x g u dy            (12) 

Note that (12) is nothing but (5a). From (11) u  can be 
expressed as 
       */u r x x g         (13) 
Substituting this expression for u  from (13) in (12),  can 
be expressed as 

2* 2

0
/

L
x x g r y dy

       (14) 

Substituting the expression for  from (14) back in (13), 
we finally obtain 

*

2* 2

0
/

L

x x g
u

r y x x g r y dy
       (15) 

Note that as a special case, if r y  is a constant 0c

and , , , ...g x x x , then the expression in (15) 
simplifies to 

        
*

2*

0

L

x x
u

x x dy
       (16) 

IV. CONVERGENCE ANALYSIS

Note that when *, ,x t y x t y  (i.e. perfect tracking 
occurs), there is some computational difficulty in the sense 
that zero appears in the denominator of (15) and (16). This 
leads to the impression that as *, ,x t y x t y , it leads to 

singularity in the control solution, i.e. u . Even though 
this seems to be intuitively obvious, it does not happen. To 
see this we intend to show that when *, ,x t y x t y ,

*, ,u t y u t y , where * ,u t y  is defined as the control 
required to keep ,x t y  at * ,x t y .

Note that when *, ,x t y x t y  and *, ,u t y u t y ,
from (1) we can write 

* * * *x f g u             (17) 
where * * * *, , ,f f x x x , * * * *, , ,g g x x x

From (17a-b), we can write the control solution as 

       * * *
*

1,u t y f x
g

         (18) 

Note that the solution * ,u t y  in (18) will always be of 
finite magnitude, since by our assumption of the class of 
DPS, * * * *( , , , )g g x x x  is always bounded away from 
zero. Equation (18) helps us to verify the convergence of 
the actual controller, which is carried out here. 

First we notice that at any point 0 0,y L , the control 
solution in (15) leads to 

*

*0*
0 0 0

2*

0
0 2 2*

0 0

2,

L

L

L

x y x y
dy

f y x yx y x y g y
k x y x y dy

u t y
x y x y g y

r y dy
r y

(19)

We want to analyze this solution for the case when 
*, ,x t y x t y 0,y L . Without loss of generality, we 

analyze the case in the limit when *, ,x t y x t y  for 

0 0/ 2, / 2 0,y y y L , 0  and *, ,x t y x t y

everywhere else. In such a limiting case, let us denote 
0,u t y  as 0,u t y . Then, in the limit 0,u t y  can be 

shown to be equal to *
0,u t y  as in (20).  

0 0

0 0

*

0

0

*

2* * * *2 2
0 0 0

2 2
0 2 2*, ,

0 2

2

*
0 0

, ,
0

, , , , , , , , ,
2

, lim
, , ,

, ,
lim

y y

y y

x t y x t y
y

y

x t y x t y

kx t y x t y g t y x t y x t y f t y x t y dy x t y x t y dy
u t y

x t y x t y g t y
r y dy

r y

x t y x t y
2* * *

0 0 0 0 0 0 0

2 2*
0 0 0

0
0

* *
0 0 0

0

, , , , , , ,
2

, , ,

1 , , ,
,

kg t y x t y x t y f t y x t y x t y x t y

x t y x t y g t y
r y

r y

f t y x t y u t y
g t y

(20)

59



The above analysis is true 0 0,y L . Hence 
*, ,u t y u t y  as *, ,x t y x t y 0,y L . Note that 

combining the results in (15) and (18), we can finally write 
the control solution as 

* * *
*

*

2* 2

0

1 , if  , , 0,

, , otherwise
L

f x x t y x t y y L
g

x x gu t y

x x g
r y dy

r y

 (21) 

V. A MOTIVATING NONLINEAR PROBLEM

A. Mathematical Model 
A real-life nonlinear heat transfer problem is selected to 

demonstrate the theoretical developments presented in 
Section III. The problem is to achieve a desired 
temperature profile along a fin of a heat exchanger. The 
schematic of the problem is depicted in Figure 1.  

Figure 1: Pictorial representation of the physics of the problem 

First we develop a mathematical model from the 
principles of heat transfer [13]. Using the law of 
conservation of energy in an infinitesimal volume at a 
distance y  having length y , we write 

y gen y y conv rad chgQ Q Q Q Q Q     (22) 
where yQ  is the rate of heat conducted in, genQ  is the rate 
of heat generated, y yQ  is the rate of heat conducted out, 

convQ  is the rate of heat convected out, radQ  is the rate of 
heat radiated out and chgQ  is the rate of heat change. Next, 
from the laws of physics for heat transfer [13], we can 
write the following expressions 

/yQ kA T y            (23a) 

genQ S A y             (23b) 

1convQ h P y T T          (23c) 

2

4 4
radQ P y T T         (23d) 

/chgQ C A y T t          (23e) 
In (23a-e), ,T t y  represents the temperature (this is the 

state ,x t y  in the context of discussion in Section III), 
which is a function of both time t  and spatial location y ;

,S t y  is the rate of heat generation per unit volume (this is 
the control u  in the context of discussion in Section III) 
for this problem. The meanings of various parameters and 
their numerical values used are given in Table 1. 

Table 1: Definitions and numerical values of the parameters 

Parameter Meaning Numerical 
value 

k Thermal conductivity 180 / oW m C

A Cross sectional area 22 cm

P Perimeter 9 cm

h Convective heat transfer 
coefficient 

2 05 /W m C

1
T Temperature of the medium 

in the immediate 
surrounding of the surface 

30 C

2
T Temperature at a far away 

place in the direction 
normal to the surface 

40 C

Emissivity of the material 0.2  
Stefan-Boltzmann constant 8 25.669 10 /W m

Density of the material 32700 /kg m

C Specific heat of the material 860 /J kg C

The values representing of the properties of the material 
were chosen assuming the material to be Aluminum. The 
area A  and perimeter P  have been computed assuming a 
fin of dimension 40 4 0.5cm cm cm . Note that we have 
made a one-dimensional approximation for the dynamics, 
assuming uniform temperature in the other two dimensions 
being arrived at instantaneously. 

Using Taylor series expansion and considering a small 
0y , we can write 

/y y y yQ Q Q y y        (24) 
Using (23-24) in (22), and simplifying it leads to 

1 2

2
4 4

2

1T k T P
h T T T T S

t C y A C C
 (25) 

Next, for convenience we define 1 /k C ,

2 /Ph A C , 3 /P A C  and 1/ C .
Using these definitions, (25) can be written as 

1 2

2
4 4

1 2 32

T T
T T T T S

t y
  (26) 

Along with (26), we consider the following boundary 
conditions 
       0 , / 0y w y L

T T T y       (27) 

where wT  is the wall temperature. Insulated boundary 
condition at the tip has been used with the assumption that 
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either there is some physical insulation at the tip or the heat 
loss at the tip due to convection and radiation is negligible 
(mainly because of its low surface area).  

The goal for the controller is to make sure that the actual 
temperature profile *,T t y T y , where we chose 

*T y  to be a constant (with respect to time) temperature 
profile, as follows 

* y

w w tipT y T T T       (28) 

In (28) we chose the wall temperature 0150wT C , fin tip 
temperature 0130tipT C  and the decaying parameter 

20 . The selection such a *T y  from (28) was 
motivated by the fact that it leads to a smooth continuous 
temperature profile across the spatial dimension y .

In our simulation studies, we selected the control gain as 
1/k , 30 sec . r y  was assumed to be a constant 
0c , and hence, we were able to use the simplified 

formula for the control in (16) (instead of (15)). Because of 
this, a numerical value for r y  was not necessary for the 
simulation studies. 

B. Analysis of Numerical Results 
First we chose an initial condition (profile) for the 

temperature as obtained from the expression 
0, 0,mT y T x y , where 0150mT C  (a constant value) 

serves as the mean temperature and 0,x y  represents the 
deviation from mT . Taking 50A  we computed 0,x y  as 

0, / 2 / 2 cos 2 /x y A A y L . Applying the 
controller as synthesized in (21), we simulated the system 
in (26-27) from time 0 0t t  to 5 minft t . The 
simulation results obtained are as in Figures 2-5. We can 
see from Figure 2 that the goal of tracking *T y  is met 
without any problem. To see the error of tracking effect 
more clearly we have plotted the deviation profile  

*T y T y  in Figure 4, which shows that the deviation 
profile approaches to zero for all 0,y L  with time.  

The associated control (rate of energy input) profile 
,S t y  obtained is as in Figure 3. This figure shows that 

the required control magnitude is not much in the entire 
spatial domain 0, L  and for all time 0 , ft t t   (hence the 
question of control saturation may not arise in 
implementation). It is important to note that even as 

*,T t y T y , there is no control singularity. In fact the 
control profile develops (converges) towards the steady-
state control profile given in (17). To see this effect clearly, 
we have plotted the ,fS t y  and *S y  in Figure 5. The 
closeness of the two plots justifies this claim. 

To demonstrate that similar results (as in Figures 2-5) 
will be obtained for any arbitrary initial condition of the 

temperature profile 0,T y , next we considered a number 
of random profiles for 0,T y  and carried out the 
simulation studies. We generated the ‘random profiles’ 
using the relationship 0, 0,mT y T x y , where 0,x y

was generated using the concept of “Fourier Series”, such 
that it satisfies 2 2

1 max
0,x y k x , 2 2

2 max
0,x y k x

and 2 2

3 max
0,x y k x . Note that constants 1 2 3, , 0k k k

are judiciously selected so that it allows sufficient 
flexibility to generate a large number of smooth profiles 
and yet does not lead to too much (unrealistic) waviness in 
the profiles. The values for 

max
x ,

max
x  and 

max
x  were 

computed using an envelope profile sin /envx y A y L .
The norm used is the 2L  norm defined by 

1/ 2
2

0

L
x x y dy . We selected the value of parameters 

50A , 1 2k  and 2 3 10k k . For more details about the 
generation of these random profiles, the reader is referred 
to [14]. The results obtained are similar in the sense that the 
objective of *,T t y T y  is met. We also noticed that 
the control (rate of energy input) magnitude is not high 
and, more important, the control profile develops 
(converges) towards the steady-state control profile. Due to 
space limitations, these results are not included here. 

Figure 2: Evolution of the temperature (state) profile from a 
sinusoidal initial condition 

Figure 3: Rate of energy input (control) for the evolution of 
temperature profile in Figure 4 
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Figure 4: Evolution of the deviation of the temperature profile in 
Figure 4 from the desired final temperature profile 

Figure 5: Comparison of the steady state rate of energy input 
profile obtained with the ideal case 

VI. CONCLUSIONS

Combining the principles of dynamic inversion and 
optimization theory, we have presented a general control 
synthesis technique. The technique is fairly straightforward 
and is applicable to a class of one-dimensional nonlinear 
distributed parameter systems. The convergence of the 
controller to its steady state value has been proved (and 
shown from numerical simulations as well). An important 
novelty of the technique is that it is independent of the 
“design-then-approximate” or “approximate-then-design” 
philosophies reported in the literature, and hence, there is 
no need of any approximation either of the system 
dynamics or the controller obtained. For implementing the 
controller, one may still have to discretize it (which will 
depend on the size of the spatial grid); however that is not 
the focal point of this paper. Note that the technique 
presented in this paper can easily be implemented on-line 
since we essentially obtain a closed form solution for the 
controller in state feedback form. In addition, since the 
control is in a state feedback form, it retains the benefits of 
a state feedback controller (like noise suppression). To 
demonstrate the potential of the proposed techniques, a 
real-life temperature control problem for a heat transfer 
application has been solved. It has been verified that a 
desired temperature profile can be achieved starting from 
any ‘random’ initial temperature profile.  
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