
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mechanical and Aerospace Engineering Faculty 
Research & Creative Works Mechanical and Aerospace Engineering 

01 Jan 2006 

Dynamic Re-Optimization of a Spacecraft Attitude Controller in Dynamic Re-Optimization of a Spacecraft Attitude Controller in 

the Presence of Uncertainties the Presence of Uncertainties 

Nishant Unnikrishnan 

S. N. Balakrishnan 
Missouri University of Science and Technology, bala@mst.edu 

Radhakant Padhi 

Follow this and additional works at: https://scholarsmine.mst.edu/mec_aereng_facwork 

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
N. Unnikrishnan et al., "Dynamic Re-Optimization of a Spacecraft Attitude Controller in the Presence of 
Uncertainties," Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 
2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on 
Intelligent Control, Institute of Electrical and Electronics Engineers (IEEE), Jan 2006. 
The definitive version is available at https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776688 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Mechanical and Aerospace Engineering Faculty Research & Creative Works by an 
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use 
including reproduction for redistribution requires the permission of the copyright holder. For more information, 
please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229162273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng
https://scholarsmine.mst.edu/mec_aereng_facwork?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776688
mailto:scholarsmine@mst.edu


Proceedings of the 2006 IEEE WeBO3.2
International Symposium on Intelligent Control
Munich, Germany, October 4-6, 2006

Dynamic Re-optimization of a Spacecraft Attitude Controller in the
Presence of Uncertainties

Nishant Unnikrishnan, S. N. Balakrishnan, and Radhakant Padhi,

Abstract Online trained neural networks have become
popular in recent years in the design of robust and adaptive
controllers for dynamic systems with uncertainties due to their
universal function approximation capabilities. This paper
discusses a technique that dynamically reoptimizes a Single
Network Adaptive Critic (SNAC) based optimal controller in
the presence of unmodeled plant uncertainties. The SNAC
based optimal controller designed for the nominal plant model
no more retains optimality in the presence of
uncertainties/unmodeled dynamics that may creep up in the
system equations during operation. This calls for a strategy to
re-optimize the existing SNAC controller with respect to the
original cost function but corresponding to new constraint
(state) equations. The controller re-optimization is carried out
in two steps: (i) synthesis of a set of online neural networks that
capture the uncertainties in the plant equations on-line (ii) re-
optimization of the existing SNAC controller to drive the states
of the plant to a desired reference by minimizing the original
cost function. This approach has been applied in the online re-
optimization of a spacecraft attitude controller and numerical
results from simulation studies are presented here.

I. INTRODUCTION

M ANY difficult real-life control design problems can be
formulated in the framework of optimal control theory.

Dynamic programming formulation offers the most
comprehensive solution to compute nonlinear optimal
control in a state feedback form [1]. However, solving the
associated Hamilton-Jacobi-Bellman (HJB) equation
demands large amounts of computation and storage space
dedicated for this purpose. An innovative idea was proposed
in [2] to get around this numerical complexity by using an
'Approximate Dynamic Programming (ADP)' formulation.
In one version of this approach, called the Dual Heuristic
Programming, two neural networks are used to solve for the
optimal control solution (Adaptive Critic (AC) design).
Optimal solution is reached after the two networks iteratively
train each other successfully. There are various types of AC
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designs available in literature. An interested reader can refer
to [3] for more details.
A significant improvement to the adaptive critic architecture
was proposed in [4]. It is named Single Network Adaptive
Critic (SNAC) because it uses only the critic network for
optimal control solution. SNAC is applicable to control-
affine systems for which controllers are synthesized with a
quadratic cost function. SNAC eliminates the iterative
training loops between the action and critic networks and
eliminates the approximation error due to action networks.
There has been a lot of interest in the use of neural networks
for direct closed loop controller design that guarantee
desired performance in presence of uncertainties and
unmodeled dynamics. [5], [6]. An adaptive optimal
controller that makes use of online neural networks to
approximate parametric/unmodeled nonlinear uncertainties
for general control affine systems of the form
Xk+l = f(Xk) + (Xk)Uk is developed in this work. The
uniqueness of the method proposed in this work is that the
online function approximating network can be used to re-
optimize in real time an existing Single Network Adaptive
Critic [4] based optimal controller that has already been
designed for a nominal system. This method is also unique in
that unmatched uncertainties can be dealt with. Section 2
discusses approximate dynamic programming and the Single
Network Adaptive Critic technique for optimal control
design. Section 3 details the online approximation of system
uncertainties and the Lyapunov based online weight update
rule used in this work. Online re-optimization of the SNAC
controller is discussed in section 4. A spacecraft attitude
control problem has been chosen as a test bed for the online
re-optimization technique. The problem has been presented
in section 5. The presence of parametric uncertainties in the
system model causes unmodeled nonlinearities to be present
in the system equations. The objective is dynamic re-
optimization of the SNAC controller designed for a nominal
model to make the spacecraft attitude track specific reference
values. Results are illustrated in section 6 and conclusions
are drawn in section 7.

II. APPROXIMATE DYNAMIC PROGRAMMING

A. Outline
In this section, we attempt to outline the principles of

approximate (discrete) dynamic programming, on which the
SNAC approach is based on. An interested reader can find
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more details about the derivations in [7]. In discrete-time
formulation, the aim is to find an admissible control Uk,
which causes the system described by the state equation

Xk+1 = Fk (Xk, Uk) (1)

to follow an admissible trajectory that optimizes a sensible
performance index J, given by

N-1

J = E Tk (Xk, Uk) (2)
k=1

where, the subscript k denotes the time step. Xk and Uk
represent the nxl state vector and mxl control vector,
respectively, at time step k. The aim is to find Uk as a
function of Xk , so that the control can be implemented in the
closed loop sense. First, the cost function from time step k
is denoted as

N-1

J'k L Tw(Xk,U) (3)
k=k

Then JC can be rewritten as

JCk =Pk + (4)
N-1

where Tk and JCkl =Y TP represent the utility function at
k=k+l

time step k and the cost-to-go from time step k +1 to N,
respectively. The n xl costate vector at time step k is
defined as

ajCkaX (5)3Xk
For optimal control (stationary) equation, the necessary
condition for optimality is given by

Ck =0 (6)
aUk

The optimal control equation can be written as
aT a

T

) k+1 )
=

0 (7)

Using Eq.(7), on the optimal path, the costate equation can
be expressed as

k k(ax) ka1 ) k+1 (8)

Eqs.(l), (7) and (8) have to be solved simultaneously, along
with appropriate boundary conditions, for the synthesis of
optimal control.

B. Single Network Adaptive Critic(SNAC)
The SNAC technique retains all powerful features of the dual
network Adaptive Critic (AC) methodology, while
eliminating the action network completely. Details of the AC
methodology have been provided in [7]. Note that in SNAC
design, the critic network captures the functional relationship
between Xk and Ak,' whereas in AC design the critic
network capture the relationship between Xk and Pk . Note
that the SNAC method is valid only for the class of problems
where the optimal control equation Eq.(7) is explicitly
solvable for control variable Uf in terms of the state variable

Xk and costate variable Ak, Details regarding the neural
network training and convergence checks can be obtained
from [4].

III. NEURAL NETWORK BASED ADAPTATION AND ONLINE
WEIGHT UPDATE RULE

In this section, we discuss a novel technique that is used to
capture parametric uncertainties/ unmodeled nonlinearities
that may be present in the plant dynamics but are not
considered in the system model used for controller design.
The uncertainty approximation is achieved using an online
neural network in each system equation.
Consider the class of nonlinear systems with the following
structure

Xkl = f (Xk ) +g(Xk )Uk (9)
where Xf E Rn and Uf E Rn are the state and control vectors
at time step k respectively. The control vector drives the
system from an initial point to a final desired point
optimizing a sensible performance index J, given by

J, = L Tk (Xk, Uk)
k=l

(10)

It is assumed that a pre-designed SNAC optimal control
trajectory U is available to drive the nominal system in
Eq.(9) along a desired trajectory. Let the actual plant have
the structure

Xk+l f(Xk)+g(Xk)Uk +D(Xk) (11)
where the controller Uk will have to be re-optimized to

optimize the plant performance with the unmodeled
dynamics D(Xk) present. Since the term D(Xk) in the plant
equation is unknown, the first step in controller re-
optimization is to approximate the uncertainty in the plant
equation. For this purpose a virtual plant is defined first. Let
Xa represent the vector of states of the virtual plant. The
dynamics of this virtual plant is governed by
Xak+l = f(Xk) + g(Xk)Uk + b(Xk) + K,(Xk _Xak) Xa (0) = X(0) (I12)
where KT is a hurwitz matrix. We assume that we have all
the actual plant states, Xk, available for measurement at

every step. The term D(Xk) is the neural network
approximation of the unmodeled dynamics of the system
which is a function of the actual plant state. Subtracting
Eq.(I 1) from Eq. (12) we have
Xaki+ Xk= D((Xfk) D(Xk) + KT(Xk -Xak) or

k+13 D(X) -D(X)- KEk where Ek xa, Xf. It can be

seen that as b(X)-D(X) approaches zero, the expression
becomes an exponentially stable differential equation, i.e.

E-*0 as time k-co. Defining D(Xf) [dl(Xk). d(Xk)]T,
where di (Xk) denotes the unmodeled dynamics in the
differential equation for the ith state of the system. The
approach in this study is to have 'n ' neural networks (one
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for each component of the unmodeled dynamics) for simpler
development and analysis.
If all channels are separated, the state equations become

Xk+1 = f(xk) +g(xk)uk +d(Xk) (13)
and

Xak+l f (Xk) +g(Xk)Uk+ d(Xk) krek (14)
wheree ~awhr k - X k - Xk .
Subtracting Eq.(13) from Eq.(14) gives

1Xk = d(Xk) d(Xk) kTek (15)
Let us assume that there exists a neural network with an
optimum set of weights that approximates d(Xk) within a

certain accuracy of e . Thus we have
d(Xk) = WTQ(Xk) +8 (16)

Also d(Xk) Wk q(Xk), where Vk (Xk) is the output of the

actual neural network. "4k represents the actual network
weights. Substituting Eq.(16) into Eq.(15) we get

X k+1Xk+ Wk (Xk) WT (Xk) i-kek (17)
or

ek+1 = Wk (Xk) £i k,ek (18)

where V W= k-W, is the difference between the optimal
weights of the neural network that represents d(Xk) and the
actual network weights. Define a series of Lyapunov
functions Li, (i = 1, 2...n) such that

Lk= pek +(k Wk) (19)
where p is a positive definite term and F is the learning
rate of the neural network.
We can see that

L+= pe12 +T 17-1 (20)
Subtracting Eq. (19) from Eq. (20), we obtain the difference
equation

ALk= pek -Pe+-pekVk lr klWk rWk (21)
If the weight update rule

Wk+1 = wk -fFkek+l Flk (22)
is used, it can be shown that the online neural networks
approximate the uncertain nonlinearities accurately and all
the weights remain bounded. In Eq. (22), a is a sigma
modification constant that is used to ensure weight
boundedness even if PE conditions are not fully satisfied. On
using Eq. (22) as the weight update rule the difference
equation Eq. (21) reduces to

ALk= (p- 1+k+2Fa)e 2 + (k -p)e2 + (JI|W|1 + £2)
-.2 - 2

(1 2Fu)WW

(23)

To ensure a negative AL , the conditions that need to be
satisfied are

p+k <(1 -2Fa), kx<p, 2Fu<1 (24)
a is an upper bound on QTQf . Once the design parameters in
the weight update rule are chosen to satisfy the conditions, in
Eq.(24), we obtain the inequality condition for ALk as

(25)ALk <-Me2 + 8

Eq. (25) can be rewritten as

ALk <0 if |ek > gM
where

M=p_k", f/=-5|W 2

(26)

(27)

IV. DYNAMIC RE-OPTIMIZATION OF THE SNAC
CONTROLLER

In this section we discuss how the costate equations get
updated online and how the updating helps in re-optimizing
the critic network. The steps of this process are detailed
below.
Note from subsection II.B that the main components of the
SNAC controller design architecture are the critic network,
the optimal control equations, the state equations and the
costate equations. Let the plant equation used in the SNAC
controller design be given by Xk+1 = f(Xk ) + g (Xk)Uk (Eq.
(9)). The performance index used in the SNAC synthesis is

Jc =7'vk (Xk Uk ) (Eq. (10)). Let the actual plant equation be
k=1

written as Xk+1 f(Xk) +g(Xk)Uk + D(Xk) (Eq. ( 1)).
In the SNAC architecture, the critic network is trained to
represent the mapping between Xk and Ak+1 for the cost

function given by Eq. (10) subject to the nominal state
equation Eq. (9). The actual plant is given by Eq. (11) where
the uncertainty D(Xk) is present in the system dynamics.
The critic network has not been trained with the actual state
equation and hence is not the optimal critic for the actual
plant. On close examination it can be seen that the costate
equations will have to be modified so that an online training
routine can help the critic capture the optimal relation
between Xk and Ak,1 The uncertainty in the actual plant
dynamics is captured by the online neural network and is
represented by D(Xk). It should be noted here that the inputs
to the neural network are the states of the actual plant which
we assume are readily available for measurement at every
time step.
Revisiting the costate equation (Eq. (8)), it can be seen that
there is a term that involves (Xk+1 aXk ) . An essential part of
the actual plant equation is the uncertainty D(Xk) . This term

will have to be incorporated into the costate equation to
ensure optimality of the costate. On replacing D(Xk) with

D(Xk) in Eq. (30) and using it in the costate equation, the
new costate equation can be written as

a f(X) ( agX(
axk axk axk k

The uncertainty approximation d(X,) for a state equation is

given by Wk((X,) (output of the online neural network).

The partial derivative term (ad(Xk)IaXk) can be written as
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Vf(-T (Xf)I8Xf). Since the basis functions, (Xf) are

chosen by the control designer, the partial derivative of the
basis functions can be calculated offline. This ensures that
the costate equation gets updated online as the online neural
network approximates the uncertainty. The reoptimization
scheme is represented in Figure 1.

XkCritic

FD Equation o SNC C

The steps for dynamic (online) critic re-optimization are as
follows:
1. For each step kp, follow the steps below:

* Input Xfr to the critic network to obtain 2Jk+m = k+
* Calculate Uq,form the optimal control equation since
XTh ando 1i are known.
* Get Xk+1 from the state Eq.(II) using Xk and Ufk
* Get d(Xk) as the output of the online neural network
0 Input Xk+l to the critic network to get Ak2
* Using Xk+I and Ak,2' calculate 2k+1 from the updated

costate Eq.(28)
2. Train the critic network for Xk; the output being

3.
4.

corresponding ,, 1

Update time step k to k +1
Continue steps 1-3.

0 - O3 2

Q= C03 ° -N
_- O2 N 0_

(30)

The evolution of spacecraft orientation is described in terms
of quaternions by the kinematic equations

1
q =M(Q)co, 442 2 q

(31)

where q =[qT q4 ]T is the quaternion and q =[q1 q2 q3]T
is its vector part. The matrix M(Q) is defined as

M(Q) = q4I3 +T (32)
where 13 is the 3x3 identity matrix and the skew symmetric
matrix T is given by

0 - q3 q2

T= q3[ -

--q2 ql °
The four elements of the quaternion are defined as

qi = cisin(0/2), q4 =cos(0/2) i =1,2,3

(33)

(34)
where 6 is the magnitude of the Euler-axis rotation angle
and ci s are the direction cosines of the Euler axis relative to

the reference plane. The target quaternion vector was
selected to be q, = [O00O]T. The values of the body rates and
control torques at equilibrium point are Go [000 0]T and
U = [O OO]T . Next, the deviated state is defined as

X = I )Ie2 Se3 q,j q,2 q,3 q,4]T and deviated control
u _ U - Ut. In terms of these variables, the error dynamics of
the system is

C;), J-J1Qjcot +J1u

q,4w)el q,3w)e2 qe2w)e3

q= 0.5 qe3 eI q,4wJ,2 q,lcoj3 (35)
e qe2oJej qel)Oe2 qe4)e3

- qe)jel qj20)e2 qj3)e3 _

where the relation between the error quaternion vector and
the spacecraft quaternion vector is

V. SIMULATION STUDY: SPACECRAFT ATTITUDE
CONTROLLER

A. Problem Description and Optimality Conditions
The case study in this paper is a spacecraft attitude controller
synthesis [8]. The governing equations of spacecraft
dynamics are nonlinear and such control problems cannot be
solved with linear control methods.
The rotational motion equation for rigid spacecraft acting
under the influence of external torques can be expressed as

J)= -QJ+ U (29)
where J denotes the moment of inertia tensor, ct is the
angular velocity vector, and u is the control torque. The
skew symmetric matrix Q is given by

q, Qtlqs
The matrix Q, is defined as

-qt3 qt2 qtl qt4

Qt qt4 - qtl qt2 qt3

qtl qt4 qt3 -qt2
-qt2 -qt3 qt4 -qtl

Now an optimal regulator problem can be
drive X X 0 with a cost function, Jc as

JC 2-f(XTQ X+R U2)dt
0

(36)

(37)

formulated to

(38)

where Q, > 0 and Rw > 0 are weighting matrices for state and
control respectively. The state equation and cost function
were discretized as follows

[Xkll] Xk +At[f(Xk)+g(Xk)Uk] (39)
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Jc = 2 (XTQw Xk + Rw U2 )At
k=l2

(40)

Next, using T'P (XT Q, +R' U2)At/2 in Eqs.(7) and (8), the

optimal control and costate equation can be obtained as
follows:

(41)uk R '(J )T Akl
TTa~F,k AtQ,Xk ]'kI +

In Eq. (42), Fk represents the expression on the right hand
side of Eq. (39). For this problem we chose At =0.01,
Q =diag[105 1 1I I O 05 0] and R =2000x3 . For
SNAC synthesis, we chose seven sub-networks each having a
4-1 structure for the critic network.
B. Uncertainty

The moment of inertia used to design the SNAC controller
was

I0.49
J = 0.02

L
-0.03

0.02 - 0.03
0.48 0.027 kgm2
0.027 0.451

(43)

The uncertainties were chosen as

F0.49x 0.5 0.02x 0.3 -0.03x 0.3
AJ= 0.02x0.3 0.48x0.5 0.027x0.3 kgm2 (44)

-0.03x0.3 0.027x0.3 0.45x0.5
The aim of the reoptimization scheme was to reoptimize the
existing optimal SNAC controller (for the nominal model) to
make the spacecraft optimally track the desired reference
position. Let Jn= J + AJ. Additional unknown external

torques (D =0.5 x [sin(t) sin(t) sin(t)]T ) were also
introduced in the system body rate equations. Now the new
body rate error equation becomes

C;e =-Jn1QJCOe+ Jn1U +Dt (45)
Eq. (45) can be expressed in terms of the known model with
the uncertainty lumped up in each state equation as shown in
Eq. (46).

cie =-J-QJco + J-'u + D (46)
It can be seen from Eq. (46) that the unknown terms are
essential to obtaining equilibrium conditions. In a discrete
format, the structure of the virtual plant used in this problem
was

Wa 6ea + At J QJ +JUk + D+ K(co, coa) (47)

In Eq. (47), D= Fd d2 d3_. di represents the output of

the ith online neural network. Trigonometric basis function
neural networks were used in this study for approximating
the unmodeled dynamics. Vectors Ci, i =1,2,3 which have a

structure Ci = [ sin(xi) cos(xi )]T were created. By using
kronecker products [9] to represent the neuron interactions,
basis vector D was composed as D = kron(kron(C1,C2),C3)O.

The discretized error equations can be written as

[Xk+l] Xk +At[f(Xk) +g(Xk)Uk +[D00 0]]

where [DT 0 0]T represents the uncertainty that appears in
the error equations. [DT 0 0]T represents the vector of neural
netwok outputs. These outputs are used to replace the
uncertainties denoted by [DT 0 0]T in Eq. (48), giving rise to

[Xkl ] Xk + g[f(X)+(Xk)Uk + [ 00 ] (49)
Expression for optimal control is the same as Eqs. (41). The

(42) costate equation though changes to

,k = At QW Xk.+
k

+l

[aX kr
(50)

where Ffr represents the expression on the right hand side of
Eq. (49). During each iteration of the simulation, the critic
network was updated. The online training was carried out
using the error vector ( Xf ) at that instant as the input and the
new target costate ( 1,,) as the output.

VI. RESULTS

Figure 2 illustrates the performance of the three online
networks used to approximate the unknown nonlinearities. It
is clear that the online networks capture the uncertainties
quickly. The states of the spacecraft have been plotted in
Figures 3 to 5. Each plot has the nominal state trajectory
(state trajectory of the plant if uncertainties were not
accounted for) and the state trajectory obtained by online
reoptimization of the critic network. Figure 6 details nominal
control and reoptimized control trajectories.

2

0

-2 U n ----- cUnertainty
4~~~~~~~~-Online NN output_

-4
0 2 4 6 8 10 12 14 16 18 20

2

0

0 2 4 6 8 10 12 14 16 18 20
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-5O L
0 2 4 6 8 10 12 14 16 18 20

time(sec)

Figure 2: Uncertainty approximation
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05

0.5
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Figure 3: Body rate trajectories
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VII. CONCLUSIONS

Although there have been strategies to compensate for plant
uncertainties and to design controllers that stabilize systems,
there has not been any concerted effort to dynamically re-
optimize the controller in the presence of uncertainties. In
this study, we have developed a scheme to re-optimize a pre-
designed optimal SNAC controller for control affine systems
in the presence of unmodeled/parametric uncertainties. This
methodology has been simulated and results have been
shown for a spacecraft attitude control problem. This method
is unique in that unmatched uncertainties and nonlinearities
can be compensated for. The impact of reoptimizing
controllers in space operations is critical as it saves a lot of
effort (physical and monetary).
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