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Dynamic Re-optimization of a Spacecraft Attitude Controller in the
Presence of Uncertainties

Nishant Unnikrishnan, §. N, Balakrishnan, and Radhakant Pachi,

Abstract—Online trained neural networks have become
popular in recent years in the design of robust and adaptive
controllers for dynamic systems with uncertainties due to their
universal function approximation capabilities. This paper
discusses a technique that dynamically reoptimizes a Single
Network Adaptive Critic (SNAC) based optimal controller in
the presence of unmodeled plant uncertainties. The SNAC
based optimal controller designed for the nominal plant model
ne more retains optimality in  the
uncertainties/unmodeled dynamics that may creep up in the
system equations during operation. This calls for a strategy to
re-optimize the existing SNAC controller with respect to the
original cost function but corresponding to new constraint
{state} equations. The controller re-optimization is carried out
in two steps: (f) synthesis of a set of online neural networks that
capture the uncertainties in the plant equations on-line () re-
optimization of the existing SNAC controller to drive the states
of the plant to a desired reference by minimizing the original
cost function. This approach has been applied in the online re-
optimization of a spacecraft attitude controller and numerical
results from simulation studies are presented here.

[. INTRODUCTION

ANY difficult real-life control design problems can be

formulated in the framework of optimal control theory.
Dynamic programming formulation offers the most
comprehensive solulion 1o compule nonlingar optimal
conlrol in a slale feedback form [1]. However, solving the
associaled  Hamilion-Jacobi-Bellman  (HJB)  equalion
demands large amounts of computation and slorage space
dedicated for this purpose. An innovalive idea was proposed
in [2] 1o gel around this numerical complexily by using an
*Approximate Dynamic Programming (ADP) formulation.
In on¢ version of this approach, called the Dual Heuristic
Programming, two neural networks are used Lo solve lor the
oplimal conlrol solution (Adaptive Critic (AC) design).
Optimal solution is reached afler the two networks ileratively
train each other successfully. There are various types of AC
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designs available in literature. An interesied reader can refer
to [3] for more details.

A significant improvement 10 the adaptive crilic architecture
was proposed in [4]. L is named Single Nelwork Adaplive
Critic (SNAC) because it uses only the crilic network for
optimal control sclution. SNAC is applicable to control-
affine systems for which conwrollers are synithesized with a
quadratic cost function, SNAC e¢liminates the ileralive
training loops between the aclion and crilic nelworks and
eliminales the approximation error due 10 aclion nelworks.
There has been a lot of inlerest in the use of neural networks
for direct closed loop controller design that guaraniee
desired performance in presence of uncerlainties and
unmodeled  dynamics. [5], [6). An adaptive optimal
controller that makes use of online neural networks Lo
approximale parametric/unmodeled nonlinear uncerlainlies
for general control alfing systems of (he [orm
X, =flxp+g(X ), is developed in this work. The

uniqueness of the method proposed in this work is that the
online function approximating network can be used to re-
oplimize in real time an existing Single Network Adaplive
Critic [4] based optimal controller thal has already been
designed for a nominal system. This method is also unique in
that unmatched uncertainties can be dealt with. Section 2
discusses approximate dynamic programming and the Single
Newwork Adaplive Critic technique for optimal control
design. Seclion 3 details the online approximalion of sysiem
uncerlainties and the Lyapunov based online weight update
rule used in this work. Online re-oplimization of the SNAC
conlroller is discussed in seclion 4. A spacecrall allilude
conlrol problem has been chosen as a test bed [or the online
re-oplimization Lechnique. The problem has been presented
in section 5. The presence of paramelric uncertainties in the
system model causes unmodeled nonlinearities 10 be present
in the system equations. The objeclive is dynamic re-
optimization of the SNAC controller designed for a nominal
model to make the spacecrafl aulitude track specific reference
values. Resulls are illusiraled in section 6 and conclusions
are drawn in section 7.

II. APPROXIMATE DYNAMIC PROGRAMMING

A. Outline

In this section, we attempt to oulline the principles of
approximate {discrele} dynarmic programming, on which the
SNAC approach is based on. An inleresied reader can find



more delails about lhe derivalions in [7]. In discrete-lime
formulation, the aim is to find an admissible control &7, ,
which causes the system described by the stafe equation

Xen = F (X, UL) (n
o follow an admissible trajectory that oplimizes a sensible
performance index J_ given by

Nl

o= Y W.(X.U) (2)

k=l
where, the subscript & denotes the lime slep. X, and U,
represent the nx1 stale vector and mx1 control vector,
respectively, al ime siep & . The aim is 10 find U, as a

function of X, , so that the control ¢can be implemented in the

closed loop sense. First, the cost funclion from lime slep &
is denoted as

[t )

g, o= _Z WX Uy) (3)

A=t
Then J_ can be rewriuen as
Jo=W i “4)
2-1

where W, and J, =3 ¥, represent the atility function al

taksl
lime step & and the cost-fo-go from lime step k-1 10 N,
respeclively. The nxl costate veclor al lime slep & is
defined as

ar,
s ()

For optimal conirol (stationary) equation, \he necessary
condition for optimality is given by
af
2o
o, ()
The optimal control equation can be wrillen as
r
a‘.}}k antl
—_—tl =10 ?
[auj““[ au*] Ao )
Using Eq.(7), on the optimal path, the costate equation can

be expressed as
ar ) (oax,., Y
A _(_ax‘] +[—an ] A (8)

Eqs.(1). (7) and (&) have 10 be solved simultancously, along
with appropriale boundary conditions, for the synlthesis of
oplimal control.

B. Single Network Adaptive Critic(SNAC)

The SNAC technique retains all powerlul tealures of the dual
network Adaplive Crilic  (AC) methodology, while
eliminaling the action network completely. Delails of the AC
methodology have been provided in [7]. Note that in SNAC
design, the crilic nelwork captures the functional relationship
between X, and J4,,,, whereas in AC design the critic

network capture the relationship belween X, and 4, . Nole
that the SNAC method is valid only lor the class of problems
where the oplimal control egualion Eq.(7) is explicily
solvable for control variable {7, in terms of the siate variable
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X, and costale variable 4, ,. Delails regarding the neural

network training and convergence checks can be oblained
[rom [4].

Ill. NEURAL NETWORK BASED ADAFTATION AND ONLINE
WEIGHT UPDATE RULE

In this section, we discuss a novel technique that is used 10
caplure paramelric uncertainties/ unmodeled nonlinearities
that may be present in the plant dynamics but are nol
considered in the system model used for controller design.
The uncerlainly approximation is achieved using an online
nevral network in ¢ach system equation,

Consider the class of nonlinear systems with the following
slructure

Xypn = FIX g (XU, )
where X, e R and U, e R” are the s1ate and control veclors

at time slep & respectively. The conwrol vector drives the
system from an inilial point to a final desired point
optimizing a sensible performance index J, given by
Jooo= ; ‘Pk(xk' UJ&)

Il is assumed thal a pre-designed SNAC oplimal conirol
lrajectory I/ is available to drive the nominal system in
Eq.(9) along a desired trajectory. Let the aclual plant have
the structure

Xea=fiXo+g(X W, + DX {11y
where the controller U, will have to be re-optimized 1o

oplimize the planl performance with the unmodeled
dynamics B¢X,) present. Since the lerm D(X,) in the plant

(10

equation is unknown, the first siep in conwoller re-
optimization is to approximate the uncertainty in the plant
equation, For this purpose a virtual plant is defined [lirst, Let
X represent the vector of states of the viral plant. The
dynamics of this virtual plant is governed by

X =X+ gl X W+ BIX )+ K (X, = X%), X 0y=x(01(12)
where K, is a hurwilz malrix. We assume Lhat we have all
the actual plant states, X, , available for measurement at

every step. The term D(X,) is lhe neural nelwork
approximation of the unmodeled dynamics of the sysiem
which is a function of the actual plant slale. Subiracling
Eq.(11) from Eq. (12) we have
XGM—XJL=IA)(X,\.)—D(X,\.)+K,(XJE—XEL) or
B, =DX)-D(X)-K E,
seen Lhat as D(X)—D(X) approaches zero, Lhe expression
becomes an exponentially slable dilferential equalion, f.e.

E—0 as lime k —eo, Defining D(X,)=[d(X,)...d,(X)] ,

where £, =X° -X,_. Il can be

where d(X,} dencles the unmodeled dynamics in Lhe

dilferential equation for the /* stale of the system. The

approach in (his study is w0 have ‘n’ neural networks (one



for each component of the unmodeled dynamics) for simpler
development and analysis.
If all channels are separated, Lhe state equations become

X, = O+ glx e, +d(X,) {13)
and
X = flx )+ gl +d(X ) —ke, (14)
where ¢ =07 —x, .
Subtracting £q.(13) from Eq.(14) gives
X x = d(X - d(X ) ~ke, (15)

Lel us assume that there exisls a neural network with an
oplimum set of weights that approximales ¢(X,) wilhin a
certain accuracy of € . Thug we have
dAX) =W p(X ) +& (16)
Also d(X,)=W g(X,), where W,"g(X,) is the oulpul of the
actual neural network. W, represents the actual network
weights. Subslituting Eq.(16} into Eq.(15) we gel
X =X, =W X -W (X, )—¢ ~ke, (17)
or
e, =W (X )—c ~ke, (18)
where W, =W, —W, is the difference between the optimal
weights of the neural network Lhat represents 4(X,) and the
actval nelwork weights, Define a series of Lyapunov
functions L, .(; =1.2...n) such Lhal
L= pe + (W T'W,) (19)
where p is a posilive definite term and T is the learning
rate of the neural network.
We can see Lhat
'1=P"-’f'..+'f'7’§'1r'“"m (20)
Subtracting Eq. (19) from Eq. (20), we obtain the difference
equation

&l,,\:pe:'l—pff+w:']r_l WL«I—WI ]q_ll’pk (2D
If the weight update rule
“:}hl =wx _r(akeb] _rawn (22)

is used, il can be shown thal the online neural networks
approximate the uncertain nonlingarities accuralely and all
the weights remain bounded. In Eq. (22), ¢ is a sigma
modification conslant that i used to ensure weight
boundedness even if PE conditions are nol lully satislied. On
using Eq. (22) as the weight update rule the dilference
equation Eq. (21) reduces o

AL =(p=l+k +2T e +(k, - el + (|| + &%) -
- aa-2ra| ] -ofif
To ensure a negalive af,, Lhe conditions that need o be

satished are

pHk <(l-2Me), k <p 2lg<] 24)
« is an upper bound on ¢" ¢ . Once the design parameters in
the weight updale rule are chosen 10 satisfy the condilions, in

Eq.(24), we oblain the inequality condition for Az, as

AL -Mc +j (25)
Eq. (25) can be rewritlen as
AL 50 if o> 2 (26)
where
M=p-k, B=o|Wf+s 27

IV. DYNAMIC RE-OPTIMIZATION OF THE SNAC
CONTROLLER

In this seclion we discuss how Lhe costate equalions get
updated online and how the updating helps in re-optimizing
the critic network. The steps of this process are delailed
below.

Note rom subsection ILB that the main components of the
SNAC controller design architecture are the critic network,
the oplimal control equations, the state equalions and Lhe
coslale equations. Lel the plant equation used in the SNAC
conlroller design be given by X, = f(X,)+g(X )/, (Eq.
{9)). The performance index used in the SNAC synthesis is
I, =i4’k(xk,uk) (Eq. (10)). Let the actual plant equation be

P
writlen as X, = f(X,)+g(X U, + D(X,) (Eq. (11)).

In the SNAC archilecture, the crilic network is trained 1o
represent the mapping between X, and A, , [for the cosl
function given by Eg. (10) subject 10 the nominal stale
equation Eq. (9). The actual plant is given by Eq. (11) where
the uncertainty ¢X,) is presenl in the system dynamics.
The crilic nelwork has nol been trained with the actual slale
equation and hence is not the optimal critic for the aclual
plant. On close examination it can be s¢en that the costale
equations will have 10 be modified so thal an online Iraining
routing can help the critic capture the oplimal relation
between X, and A, ,. The uncertainly in the actual plant
dynamics is captured by the online neural network and is
represented by D(X, ). It should be noted here thal Lhe inputs
Lo lhe neural nelwork are the slates of the aclual planl which
we assumne are readily available for measurement at every
lime slep.

Revisiling the costate equation (Eq. (8)). iL can be seen that
there is a term that involves (JX,,,/9X,). An essential parl of
the aclual plant equation is the unceriainty D(X,). This term

will have 10 be incorporaled inlo the costate equalion Lo
ensure oplimality of the costale. On replacing D(X,) with

D(x,) in Bq. (30) and using it in the costate equation, the
new coslale equation can be wrillen as

A =[%]+[[af()(k)]+[ag(xk)]u*+[3[)(XR)HT al (28)

X, X, ax, X,
The uncerlainly approximation 4(X,) for a state equation is
given by W/@(X,) (outpul of the online neural network).

The partial derivative lerm (BJ(Xk)fan] can be wrillen as
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Wi(3g(X,)/3X,). Since the basis functions, (X} are

chosen by the control designer, the partial derivative of Lhe
basis (uncltions can be calculated offline. This ensures Lhal
the costate equation gets updaled online as the online neural
network approximates the uncerlainty. The reoptimization
scheme is represented in Figure .

Y

Optinsl Control
Equation

h 4

Figurel: Dynamic Reoplimization of SNAC Controller

The steps lor dynamic (onling) crilic re-oplimizalion are as
follows:
1. Foreach step &, follow the steps below:

* Input X, to the critic network to obtain A4, =47,

+ Calculate U,, form the oplimal control equation since
X, and A, are known.

¢  Gel X, from the state Eq.(11) using X, and &,

»  Get d(X,) as the output of the online neural network

¢ Input X, to the critic network 10 get 4, ,

o Using X,,, and A ,, calculaie A, from the updated

coslate EQ.(28)

2. Train the critic network for X,; the output being

corresponding 4 .
3. Updale lime slep £ 1o k+1
4. Conlinue steps 1-3.

V. SIMULATION STUDY: SPACECRAFT ATTITUDE
CONTROLLER

A. Probiem Description and Optimality Conditions

The case study in this paper is a spacecrafl aulitude controller

synthesis [8]. The governing equations of spacecrall

dynamics are nonlinear and such control problems camnot be

solved wilh lingar control methods.

The rotational motion equation for rigid spacecraft acting

under the influence of ¢xternal Lorques can be expressed as
Jor==Cfo--U 29

where 7 denotes the moment ol inertia lensor, & is lhe

angular velocity vector, and ¢ is the control lorque. The

skew symmelric malrix £ is given by

0 -& @
Q=|e, 0 -q (30)
@, @ 0

The evolution of spacecraft orientation is described in terms
of quaternions by the kinematic equations

y .
§=-MQo, r{4=—5a}rq (31

where ¢, =(¢9" ¢,) is lhe quaternion and ¢=[g, q, &)
is its veclor parl. The matrix A7(@) is deflined as

MQy=q,d +T (32)
where /7, is he 3x3 identily matrix and the skew symmetric

matrix T i$ given by

0 -4 @
T=|g, 0 —g (33)
- ¢ 0]
The four elements of the qualernion are defined as
g =¢s5mn{@/2)., q,=cos{f/2) =123 (34)

where & is the magnitude of the Euler-axis rotation angle
and ¢, ’s are the direction cosines of the Euler axis relative 1o

the reference plane. The targel quaternion veclor was
selected 1o be g, =[0001] ., The values of the body rates and

control torques at equilibrium point are @ =[0000] and
U,=[000] . Nexl, Lthe devialed state is defined as
X=lw, @,,9,9,9.,49.F and  deviaed
w=l/ =, In terms of these variables, the error dynamics of

control

the system is
@, == "', +Ju

qc*i wcl - qci‘wcz qcz &)‘3
. .38 Foaln — G0, (3%)
q,=05

2% %2 Ga®s

_cha‘?d - (f'ﬂw.ez - {{:3&)13

where the relation belween the error quaternion vector and
the spacecrall qualernion veclor is

(L = Qf‘]qs (36)
The malrix @, is defined as
~q,3 Gz G
Q, = G~y G 4 (37)

dn Gy dn o

%2 T3 4 T
Now an optimal regulator problem can be formulated to
drive X — 0 wilh a cost lunclion, J, as

[(x7Q, X + R ") ar (38)

=1
<2
where @ z0and R, >0 are weighting malrices for state and
conlrol respectively. The state equalion and cost funclion
were discrelized as follows

[Xon]= X+ Ar[FOX D+ 20X u,] (39
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Az, =§%(X:Qw X, 4R, u )
&=l

Next, using ¥, =(X] Q, X, +R,u"at/2 in Eqs.(7) and (8), the

(40)

optimal control and costate equation can be obtained as
follows:

a, ==R YA, (41)

oF,

A =arQ, X, +[—} A (42)

X,
In Eq. (42), F, represents the expression on the right hand
side of Eq. (39). For ihis problem we chose Ar=001,
Q. =diagNd* 1 1L 10° 10° 1 0 and R =2000xi,. For
SNAC synthesis, we chose seven sub-nelworks each having a
4-1 structure for the critic network.
B. Uncertainty
The moment of inertia used to design the SNAC controller
was
0.49 0.02 -0.03
J =002 048 0.027
=0.03 0.027 0.45
The uncerlainlies were chosen as
0.49%x0.5 0.02x03 -0.03x0.3
A =[0.02x03 048x0.5 0.027x0.3 |kgm’
—0.03x0.3 0.027x0.3 0.45x0.5

The aim of the regplimization scheme was 1o reoplimize Lhe
existing optimal SNAC controller (for the nominal model) 1o
make Lthe spacecraft optimally track the desired reference
posilion. Let J =J/+AJ. Addilional unknown external

kgm?® (43)

(44)

lorques (D, =05x[sin(r) sin¢ry sin] ) were  also
introduced in the system body rale equations. Now the new
body rale error equation becomes

@,==1""Qle, +J u+ D, (45)
Eq. (45) can be expressed in terms of the known model with
the uncerlainty lumped up in each slate equation as shown in
Eq. (46).

@ ==J"Qa + I+ D (46)

Il can be seen from Eq. (46) that the unknown erms are
essenlial 1o obtaining equilibrium condilions. In a discrele
formal, the structure of the virtwal plant used in this problem
was

af =@ + A=, I+ D v K, ey (47)

In Eq. 47). D=[d, 4, d,]. d, represents the output of

the i online neural network, Trigonomelric basis [unclion

neural networks were used in Lhis study for approximaling

the unmodeled dynamics. Vectors €., i=1.2.3 which have a

structure  C, =(1 sin{x)cos(x)]” were created. By using

kronecker products [9] to represent the neuron interactions,

bagis vector & was composed as & = kron(kron(C,.C,).C,) .
The discretized error equations can be written as

[Xoo)=X, + [ £(X)+g(X 0, +1D7 000T {48)
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where [D7 0007 represents the uncertainly thal appears in
the error equations. [H7 0001 represents the vector of neural
netwok outputs. These outpuls are used to replace the
uncertaintics denoted by (27 000) in Eq. (48), giving rise to

[Xeo = X 4+ 8] £OG+ 200D 1D 000 ] (49
Expression for oplimal control is the same as Eqs. (41). The
coslale equation though changes 10

or T
A

[3

(50)

where F, represents the expression on the right hand side of

Eq. (49). During each iteration of the simulation, the critic
network was updated. The online training was carried oul
using the error vector { X, ) at that instanl as the input and the

new target costate { 4, ) as the gutpul.

V1. RESULTS

Figure 2 illustrales the performance of the three online
networks used to approximate the unknown nonlinearities. It
is clear that the online nelworks caplure the uncerlainlies
quickly. The states of the spacecrall have been ploued in
Figures 3 to 5. Each plol has the nominal stale trajectory
(state ajectory of the plant if uncertainties were not
accounted for) and the state trajectory oblained by online
reoplimization of the critic network. Figure 6 details nominal
control and reoptimized control Lrajeclories.

oL, | [ | I | | | .
- et =T T Tl =
8 o=l ! ! | Body tatos (Reoplimized SNAC)
; ; | | === Body rtes {Nominal SNAC)
K E

|

|

1 -
o ¥ 4 ] ] 10 12 1" 16 18 0

1 1 I I 1 1 1 1 1
-l =3 t u - T y ¥ E—
| | | | | | | | |
1 1 1 1 1 1 1 1 1 1
: : ! 1 : ! ! ! 1 |
L&

5 @ 10 1w 14 18 18 20
time(sec)

Figure 3: Body rale trajeclories

-]




uatemion {Heopomized SMALC) |
Exiatermion {Mominal SNAC)

12 14 18 18 a0

| | | l I ! | |
| | ] Chusiomuen (Rncplimizad SHAC)
gafbB- - — - — ] ===—= Oumermecn (Nominad SNACH

| T T T T T

I
| f— s L L
— Flirepimizod SHAC Gontred
| i ~——— Mominal SHAC ¢ontial
T T T T T
& & 1" 12 14 16 14 20

1 A ! A
o z 4 [ B 1o 12 14 16 1@ 20
time(sec)

Figure 6: Control wajectories { ¢,.4, )

VII, CONCLUSIONS

Although there bave been stralegies 1o compensale for plant
uncerlainties and to design conlrollers that stabilize sysiems,
there has not been any concerted effort to dynamically re-
optimize the conwroller in the presence of uncerlainties. In
this study, we have developed a scheme (0 re-oplimize a pre-
designed oplimal SNAC controller for control affine sysiems
in the presence of unmodeled/parametric uncertainties. This
methodology has been simulaied and results have been
shown for a spacecrall atlilude control problem, This method
is unigue in that unmatched uncertainties and nonlinearities
can be compensated for. The impact of reoptimizing
controllers in space operations is crilical as il saves a lot of
elfort (physical and monetary).
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