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A DIFFERENTIAL EQUATION APPROACH TO SWEPT VOLUMES

D. Blackmore
Dept. of Math., New Jersey Inst. of Technology,

and Courant Inst. of Mathematical Sciences
New York University, New York, NY 10012

Abstract

A novel approach to the analysis of swept
volumes is introduced. It is shown that every smooth
Euclidean motion, or sweep, can be identified with a
first-order, linear, ordinary differential equation. This
sweep differential equation provides useful insights
into the topological and geometrical nature of the
swept volume of an object. A certain class,
autonomous sweeps, is identified by the form of the
associated differential equation, and several properties
of the swept volumes of the members of this class are
analyzed. These results are then applied to generate
swept volumes for a number of objects.
Implementation of the sweep differential equation
approach via computer-based numerical and graphical
methods is also discussed.

Intr i

An object in space undergoing a continuous
Euclidean motion sweeps out a region in Euclidean
space called its swept volume. The geometrical analysis
and modeling of swept volumes plays a vitally
important role in several facets of manufacturing
automation, including NC machining, robotics and
spatial motion planning (see [1], (2], [4], [6], [8]-[10], [12],
[13], and [15]-[18]). Not only is it necessary to use both
existing and new mathematical tools to describe the
topology and geometry of swept volumes; it is crucial
to the utility of these mathematical techniques that
they be readily adaptable to efficient, cost-effective
computer implementation. In recent years,
considerable research has been devoted to the
discovery of mathematical methods for investigating
swept volumes and to the design of algorithms and the
development of associated computer software for the
integration of these analytical techniques into actual
automated systems. The work in [1], [2], [4],[6]-[13], [15}-
[18], and [20] represents a sample of some of the more
successful efforts.

In this paper we give a rather brief description of
what appears to be a novel approach to the study of
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swept volumes - one which fully explores the Lie
group structure of the set of Euclidean motions via the
theory of differential equations. We begin by giving
precise mathematical definitions of sweep and swept
volume which are couched in the language of Lie
group theory (see [19]). From this there follows a
natural identification of a smooth sweep with a system
of first-order, linear, ordinary differential equations
which we call the sweep differential equation. It
follows from the theory of differential equations that
the form of the sweep differential equation and the
initial position of an object completely determine the
swept volume of the object. Consequently, it is logical
to classify sweeps according to the properties of their
sweep differential equations, as certain types of
differential equations are likely to produce swept
volumes with particularly simple features. In this
vein, we next identify and analyze the class of
autonomous sweeps which are the sweeps having an
autonomous differential equation. We follow this
with several results concerning the geometry of
autonomous swept volumes which are applied to a
number of specific instances. In the penultimate
section, we indicate how our differential equations
approach is especially well-suited to numerical and
graphical implementation with the aid of a computer.
We conclude with some pertinent remarks on our
method and its possible extensions and
generalizations.

2. Sweep Differential Equations

The swept volume of an object in Euclidean n-
space R" is generated by a 1-parameter family of
Euclidean motions of the form § + Ax (translation plus
rotation), where x is a generic, and § is a fixed vector in

R", and A is a matrix in the special orthogonal group:

SO(n) = { A: A is a real, orthogonal, nxn matrix with det A = 1}

SO(n) is a real analytic Lie group of dimension (n/2)(n-
1). See [19] for details. Let Euc(n) be the Lie group of
Euclidean motions in R". It is clear from the form of



Fuclidean motions that the Euclidean group Euc(n) can

be identified with-R" xSO(n); hence it is a real analytic
Lie group of dimension (n/2)(n+1).

2.1 Definition.

A sweep is a continuous mapping & : [0,1} ->
Euc(n) such that o(0) is the identity. We say that the
sweep is smooth if it has continuous derivatives of all
orders. Every sweep can be written in the form

Gt(x) =) + A x 1
where £(0) = 0, A(0) = I, the identity matrix, &(t) € R",
A(t) € SO(n), and o, is the value of G at t for every 0<t

<1

We shall confine our attention, for the most
part, to smooth sweeps. This is certainly not
unreasonable since most sweeps encountered in
practice are apt to be at least piecewise smooth.

2.2 Definition.
Let R" > Mand o be a sweep in R". The swept
volume of M under ¢ is the subset of R" defined by

SeM) =U { oy(M) : 0 <t <1}

Each of the sets Gt(M) = { ot(x) :x € M} is a t-section of
Ss(M).

Given a smooth sweep o, let us find a
differential equation having the solution x = x(t) which

generates the sweep. Setting x = x(t,x) = 6,(x) =
E()+A()x" and differentiating, we obtain

x=EB + Ax ("=d/dp

Solving x = & + Ax” for x° using the fact that AAT = A'A
=1, where T denotes the transpose, and substituting in
the above equation yields

x=E® +AA" (x-E®)

It follows from this derivation that x(t) = ct(x") is the

unique solution of this differential equation satisfying
the initial condition x(0) = x". This suggests the
following concept.

2.3 Definition.
Let 5y(x) = E()+A()x be a smooth sweep in R".
The smooth vector field
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Xg () = E_, +B®) (x-E®)

where B(t) = A(t)AT(t), is called the sweep vector field
(SVF) of ¢ and

x= X (1) @

is called the sweep differential equation (SDE) of ©.

As (2) is linear, a solution such that x(0) = x°
exists on the whole unit interval [0,1] (see [5]). This
shows that there is a one-to-one correspondence
between smooth sweeps and SDE's. Given this
correspondence and the fact that the evolution of an
object in a vector field is completely determined by the
initial position of the object, it is quite logical to classify
sweeps in terms of their SDE's. In this way it is to be
expected that we will find special classes of sweeps
which generate swept volumes exhibiting a variety of
particularized geometric and topological features. We
shall identify one such class in the next section.

3. Autonomous Sweeps

It is well-known that differential equations
whose vector field does not explicitly depend on ¢, i.e.
autonomous differential equations, have a raft of
useful properties (see [5]). For example, their orbits in
phase space generate a (local) flow in R" which has
additive group structure. Therefore, it is quite natural
to single out the class of autonomous SDE's as one that
should lead to readily computable topological and
geometric features of the resulting swept volumes.

3.1 Definition,

A smooth sweep is said to be autonomous if its
SDE is autonomous; i.e., X4 in (2) does not depend on t.
In the context of Lie group theory, a necessary and
sufficient condition for ¢ : [0,1] -> Euc(n) to be

autonomous is that 6 be what is called a 1-parameter
subgroup (see [19]). There is, however, a far more
elementary way of characterizing autonomous sweeps.

We take the partial derivative of X, with respect
to t and set it equal to zero, whence

3, X = - BE - BE) + Bx=0

The independence of x and t implies that this equation
holds for all x and t if and only if B =0and & - B =d/dt
[e*B&] = 0. This, in turn, is equivalent to A = BA, with
B constant, and € '° £ = b, with b constant. Here e®is
the usual matrix exponential (c.f. [3,[5], and [19]). But A
= BA with A(0) = I has unique solution A(t) = e®.



Moreover, since AAT = I we infer that

T.
tB, tB\T _ t(B+B)).
e (e) = BB

o(n), where

= I which implies B + B =0,50Be

o(n) = { B: Bis areal, nxn skew-symmetric matrix}

We have now essentially proved the following
result.

3.2 Theorem.
Let 6,(x) = &(t) + A(t)x be a smooth sweep. Then

the following are equivalent:
(i) The sweep is autonomous.

(ii) AA" = Bis constant and AT i = b is constant.

(i) A®) =e®,Be o(n) and £ = e® b withbe R™.

(iv) The SDE of 6 is x = Bx + b, where B € o(n) and
be R

This result establishes an interesting link
between Lie group and Lie algebras. It is a standard
result that o(n) can be identified with the Lie algebra of
SO(n) consisting of its left invariant vector fields.
Consequently, one could use Theorem 3.2 to prove
that the Lie algebra of Euc(n), which we denote by e(n),
can be identified with the direct sum R" & o(n).

It is easy to show that any sweep which is purely
translational or rotational is autonomous. It is also
not difficult to find examples of non-autonomous
sweeps. For example,

o =1(0) (52t (<)

is a smooth sweep in the plane which is not
autonomous, as can be readily verified by using (ii) of
Theorem 3.2 .

Here is a curious result. Although we have just
established that smooth planar sweep need not be
autonomous, we can also prove that autonomous
sweeps are actually quite ubiquitous in the plane in a
certain sense. If we define y = x - &, the SDE can be
written in the form

y=B{t)y

It can be shown that every A(t) e SO(2) may be written
in the form

AW =Y

where

0 -aft)
0= oy ')

Hence, the differential equation for y is
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. .70
Y=°‘(1 o)y

Assuming that & does not vanish, as we may do at
least on subinterval of [0,1] unless A is the identity
matrix, and introducing a change of independent

variable via dt/dt = & this equation is transformed into
the following autonomous system:

dy (0-1
dt (1 0 )y
We shall now describe the phase portraits of the
SDE's for autonomous sweeps in the plane (n = 2) and

in 3-space (n=3). When n=2, it follows from Theorem
3.2 (iv) that the SDE is

<G R
%) B 0 J0o)7 (B
If b# 0 and P = 0, the orbits are straight lines parallel to

b (translation). Suppose B # 0, then (3) has just one
stationary point at x* = ﬁ—](-b2 /b))- A calculation shows

3

that (x1 + B_l b2 )2 +(x2 - B_l b1 )2 = constant are integral
curves of (3). Hence the orbits are all circles with center
x_ (rotation). For the case n=3, we can convert the SDE
into a simple normal form by a standard construction
of linear algebra (c.f. [3] and [5]). As B is skew-
symmetric, its eigenvalues have zero real parts and B
has a unitary diagonalization. Using the real parts of
the eigenvalues as columns, we construct a real,
orthogonal matrix R such that

0-00
R'BR=A=|a 0 0
000

where o = [B?z + B§3 +B§3]]/ 2 Consequently, the change

of variables x = Ry transforms the SDE into the normal

form
0 -w 0\(N1 G
y=Ay+c=|o 0 0[] 2 [+|% @
000/\y;) \g

where ¢ = R b. For the case of ® = 0 and ¢ # 0, the orbits
are straight lines (translation). If @ # 0, then define the
lineL=(y:y, =-a" c2,y2=(|)'1 ¢; }. In this case the

circular cylinders (y, + o’ S, )+ ( Yo - o’ < =
constant are invariant surfaces for (4). If =0, the



motion of (4) is essentially two-dimensional, where
every point of L is a stationary point of (4) and the
orbits are circles with centers on L which lie in planes
parallel to the y,y, - plane (rotation about L). When ¢, #
0, L is an orbit and all other orbits are helices contained
in the invariant circular cylinders (twist motion along
L). This last case is illustrated in Fig. 1.

Fig. 1 An autonomous sweep in 3-space.

LG trical Applicati

Given an object M contained in R, the swept
volume Sy(M) generated by a smooth sweep is
completely determined by M and the flow induced by
the SDE. Hence, at least in theory, we can determine all
the topological and geometrical properties of 545(M)
from a thorough analysis of the trajectories of the SDE.
We shall demonstrate how this line of reasoning can
be applied for smooth autonomous 2-dimensional and
3-dimensional sweeps.

Let us assume that M is of finite extent and has a
measure of regularity. In particular, we assume that M
is a compact, n-dimensional submanifold of R" whose

boundary aM is piecewise-smooth (for example, say
that M is diffeomorphic with a compact, n-
dimensional polyhedron in R"). A theorem of Weld
and Leu [20] states that

S4(M) = M U 54(0M)

and this simplifies to S5(M) = Se(oM) if M N ot(M) =0
for some 0 <t <1. A related result of Wang and Wang
[18] shows that the swept volume is obtained from an
envelope of the boundary. We infer from these results
that S4(M) can be determined by computing the swept
volumes of (n-1)-dimensional manifolds. Even with
this reduction of dimension, there are a number of
possible pitfalls which must be taken into account. For
example, the swept volume may develop singularities
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such as the degeneration of a ruled surface into a
developable one [20], or the collapse to a lower
dimensional object at some points.

In view of these dimension reduction results,
we shall study the swept volume of Q, where Q is an
(n-1)-dimensional submanifold of R" which is
smoothly diffeomorphic with a compact polyhedron in
R™!. Consider £ : Qxl0,1] -> S,(Q), where Z(x,t) = 0,(x),
and define £, = o, Note that %, is a Euclidean mapping

of Q onto ct(Q) for all 0 <t < 1. A useful notion
introduced in [20] is given in the following.

4.1 Definition.

The sweep 6 is of type 1 with respect to (w.r) Q
if o, : Q -> S5(Q) maps interior points into interior
points and boundary points into boundary points for
all 0 <t <1. Otherwise o is of type 2 w.r.t. Q.

If o is of type 1 w.r.t. Q, the swept volume S4(Q)

cannot exhibit any of the singularities delineated
above.

Our characterizations of the phase portraits for
autonomous sweeps in R? and R’ can be applied to
extract a great deal of information about the swept
volume of Q. We shall denote the interior of Q by
int(Q), where int(Q) = Q\3Q. The description of the
phase plane for (3) together with standard properties of
flows (see [5]) leads directly to a proof of the following.

4.2 Theorem.

Let o be a smooth autonomous sweep in the
plane, and let Q be smoothly diffeomorphic with the

interval [0,1]. Suppose that X, , the SVF of 6, is
transverse (i.e. not tangent) to int(Q). Then when oisa
translation, it is of type 1 w.r.t. Q. In fact, the mapping
3 is a smooth diffeomorphism. If ¢ is a rotation and X
€ Q,theno is of type 1 w.r.t. Q. More precisely, X is
either a smooth diffeomorphism or it induces a
smooth diffeomorphism of QxS1 onto S4(Q), where S]

is the unit circle. The analog of this result for n =3 is
obtained similarly from the phase space analysis of (4).
Figures 2 and 3 illustrate a rotational sweep 6 of Q
which may be type 1 or type 2 depending on whether
the SVF of o is transverse to Int(Q).

4.3 Theorem.

Suppose that ¢ is a smooth autonomous sweep
in R, Q is smoothly diffeomorphic with regular m-gon
(m>2) in the plane, and X, is transverse to int(Q). Then
when o is a translation, ¢ is of type 1 w.r.t. Q and Y isa
smooth diffeomorphism. If o is a rotation about L and
L N Q = @, then either ¥ is a smooth diffeomorphism
or it induces a diffeomorphism of QxSl onto 54(Q).



WhenLNnQ=@anda’ | ¢, | is sufficiently large, T is a
smooth diffeomorphism and a fortiori ¢ is of type 1

w.r.t. Q. The sweep 6 is of type 2 when o lc, | is small

enough. Figures 4 and 5 illustrate a helical sweep
which may be type 1 or type 2 depending on whether

-1 .
@ lc,l is large or small.

Fig. 2 A rotational sweep of a square polygon which is
type 1 since SVF is transverse to Int(Q).

Fig. 3 A rotational sweep of a square polygon which is
type 2 since SVF is not transverse to Int(Q).

5. Computer Implementation

The differential equation approach is ideally
suited to computer-based numerical and graphical
analysis. There are a large number of standard codes
based on methods such as Runge-Kutta, Adams-
Moulton, Adams-Bashforth and Milne, or some
combination thereof, which produce accurate (errors
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Fig. 5 A helical sweep of a circular disk which is type 2.

typically of order h*), robust (stable), fast and efficient
(typically of polynomial time) numerical solutions of
differential equations as well as graphical displays of
the trajectories (see [14]). It should therefore be
relatively easy to develop software for analyzing and
modeling swept volumes. In such an endeavor, one
expects to be able to take advantage of the fact that
SDE's generate isometric flows in order to produce
faster programs.

In certain situations one is confronted with
what may be termed an inverse problem. A sweep is
observed and it is required that data be collected in
order to describe the SDE analytically. This can be done
to any desired degree of accuracy as follows. Choose a
base point x° in the object and n-1 additional points
.. X, each lying on a different member of a set of
n-1 mutually orthogonal straight lines through ’.
Partition the unit interval by introducing time 0 = ty <
t, ... <t =1 (on a normalized time scale). Then mark

the locations of the points as they move in the sweep



at times t, t;, ..., t . This determines &(t,) and A(ty) for
k=0, 1,..., m Using a standard interpolation scheme,

we can approximate &(t), A(t), £(t), and A(t) for all t.
Thus, we may approximate the sweep and SDE to any
prescribed degree of accuracy by using sufficiently fine
partition. This procedure can be carried out
algorithmically.

6. Concluding Remarks

The method of sweep differential equations
appears to have great potential as a tool for analyzing
swept volumes and their intersections. We have only
scratched the surface of this potential here, and we
expect to generalize our result and explore other
applications of this approach.

So far, we have confined the geometrical
applications of our method to autonomous swept
volumes. Of course, it is easy to verify that a smooth
sweep can be approximated to any degree of accuracy by
an autonomous sweep by sufficiently restricting the t-
interval. But this does not really make an effective case
for studying only autonomous sweeps, since the
partitioning process needed to implement such an
approach would tend to compromise the utility of the
SDE method. Hence, it is necessary to demonstrate the
applicability of the SDE method to more general swept
volumes.

We have presented a general idea of how to
implement our method with the aid of a computer.
Some of the ideas were incorporated into the program
which produced the figures presented in this paper. It
is our intention to develop software for further SDE
implementation and to test it in working automated
manufacturing system.
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