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Proper Orthogonal Decomposition Based Modeling and Experimental 
Implementation of a Neurocontroller for a Heat Diffusion System 

P. Prabhat, S .  N. Balakrishnan’, D. C. Look Jr., R. Padhi 

Dept. of Mechanical and Aerospace Eng. and Engineering Mechanics 

University of Missouri-Rolla, MO, 65409, USA 

Abstract , 

Experimental implementation of a dual neural network based 
optimal controller for a heat diffusion system is presented. Using 
the technique of Proper Orthogonal Decomposition (POD), a set of 
problem-oriented basis functions are designed taking the help of 
experimental data as snap shot solutions. Using these basis 
functions in Galerkin projection, a reduced-order analogous 
lumped parameter model of the distributed parameter system is 
developed. This model is then used in an analogous lumped 
parameter problem. A dual neural network structure called 
adaptive critics is used to obtain optimal neurocontrollers for this 
system. In this structure, one set of neural networks captures the 
relationship between the states and the control, whereas the other 
set captures the relationship between the states and the costates. 
The lumped parameter control is then mapped back to the spatial 
dimension, using the same basis functions, to result in a feedback 
control. The controllers are implemented at discrete actuator 
locations. Modeling aspects of the heat diffusion system from 
experimental data are discussed. Experimental results to reach 
desired final temperature profiles are presented. 

1. Introduction 
Distributed Parameter Systems (DPS) arise in various application 
areas such as thermal processes, vibrating structures, fluid flow 
systems and so on. The control of DPS, which are governed by a 
set of Partial Differential Equations (PDEs), is an active field of 
research. 

Because of their inherent nature, DPS problems have infinite 
number of modes and hence are otherwise known as infinite 
dimensional systems. Since it is impossible to deal with an infinite 
problem taking into account all of its modes, there is a need for 
developing approximate finitedimensional models (preferably of 
small order) which should describe the system as accurately as 
possible. One techniques of a low-order finitedimensional model 
development is Proper Orthogonal Decomposition (POD), 
followed by Galerkin projection [Ravindran]. In this approach, a 
set of problem-oriented orthogonal basis functions is first designed 
to approximately span the solution space of the original system. It 
is done through the so-called “snap -shot solutions”, which by 
definition are supposed to be the representative solutions of the 
system at arbitrary instants of time. These basis functions, when 
used in the Galerkin projection scheme, lead to a low-order finite 
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dimensional approximate model of the system. This low-order 
model can then be used for control design using the known 
techniques for finitedimensional systems. 

In this paper, we first present an overview of the experimental 
setup, which represents a one-dimensional heat diffusion system 
with insulated boundary conditions. Then we discuss the use of 
experimental data to design the basis functions. The system 
parameters are identified by matching experimental trajectories 
with simulation results. Then the method of synthesizing the 
optimal control for lumped parameter systems using adaptive-critic 
based neural networks is applied. The lumped parameter control is 
finally mapped back to the spatial dimension, using the same basis 
functions. This idea of combining POD and adaptive critic 
technique was proposed in [Padhi]. Experimental results are 
presented in this paper, which validate the approach. 

2. SvstemModel and Experimental Setup 
2.1 System Model 

The diffusion problem is modeled in this study as 

2652 

where x( t y ) is temperature profile at time t E [to,  t f  ] and spatial 

position YE [ yo ,  y / ] ,  a ( y )  is thermal difhsivity and S( t  8) 

represents overall source (control) term. Since we use distributed 
control of the thermal diffusion system, we formulate the discrete 
actuators as follows: 

where S,,,(t,y) is source term distribution for heater-m and Mu is 
total number of discrete actuators. We define 

S,(t,Y) $DB(Y)q,(Y) %( t )  (3) 

where, D(y) ab)/  k ( k being thermal conductivity), q,(y) is 
distribution of thermal power source term for heater- m located at 
y = y,,, at full (100%) load and u, ( t )  is the control magnitude in 
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percentage load of heater- m . The boundary conditions (insulated 
at both ends) are given by [;br(t, y ) / & ] ,  

2.2 Experimental Setup 

A schematic of the hardware setup to implement the one- 
dimensional diffusion problem is given in Figure 1 and the actual 
heat diffusion system is shown in Figure 2. It consists of a series of 
aluminum slabs and heaters. placed one after another. Ten heaters 
and nine aluminum slabs were assembled. Mica heaters were 
selected for their small thickness of 0.000635 meters (0.025”) of 
the heating element. The heaters are 0.1524 meters (6”) in diameter 
and have a lead bulge of 0.00508 m(0.2”) thick on one of their 
faces where the leading wires are connected to the heater. 
Aluminum slabs 0.1524 meters (6”) in diameter, and 0.0127 meters 
(OS”)  thick were selected for their high thermal conductivity. A 
notch was cut on one of the faces of the aluminum slabs to 
accommodate the lead bulge of the heater. A hole of 0.003175 m 
(0.125”) in diameter was drilled radially into the side of each of the 
aluminum slabs in order to place a thermocouple within the slab. 
Since these holes facilitate temperature measurements, they were 
placed diametrically opposite to the notch to measure the 
temperature at a point farthest away from lead bulge of two heaters 
assembled on either sides of the slab. In order to minimize the 
effect of discontinuity in heat conduction on the temperature 
measurements due to the presence of the notch, two consecutive 
slabs were rotated by 90”. K-type thermocouples were used for the 
temperature measurement; their tips were placed at the bottom of 
holes 0.0508 m (2”) deep. 

The software used for input and output of data, namely 
thermocouple reading and heater control was LabVIEW (installed 
on a PC with Pentium-I processor). The heaters were connected to 
120 volts power supply through Solid State Relays (SSR). The ON 
and OFF sequence as well as load control of the heaters was 
possible. In order to control the operating load of the heaters, they 
were switched ON for a predetermined period of time during each 
cycle time. During each cycle, the data was written to a digital I/O 
for predetermined number of times after an interval of thirty-five 
milliseconds (limited by the SSR specification), updating the status 
of each of the heaters to ON or OFF depending on the current 
desired load for each heater. The heater level cycle time N ,  is 
calculated using N ,  = O.O3SN, , where N, is number of times data 
was written to digital I/O during each cycle. The cycle time used in 
this research is 4.5 Sec. 

2.3 Finite Difference Model 

A main task of this research was to estimate the system parameters 
a(y)  and B(y)q,(y) before synthesizing the control. Towards this 
goal, we have used a finitedifference approximation of the system 
dynamics to propagate its bthavior. The Tri-Diagonal Matrix 
Algorithm (TDMA) [Anderson] was used in this regard. Using a 
backward finite difference method in Eq.(l-3) and rearrangingthe 
resulting equations, the system dynamics can be written as 

= 0 .  

-Aix;+, + Bi4 - Ci$-, = Di (4) 

where k represents the time increment and i represents the spatial 
increment and the matrices are given by: 

The parameters of the numerical simulation using TDMA were 
selected such that the experimental results were in agreement with 
the simulation results. For acceptable numerical simulation results 
the truncation error must be small and the finite difference 
representation of the marching method needs to meet the 
conditions of consistency and stability [Anderson]. To keep the 
size of round-off errors small, it is required that 
A,  >O,  B, >O,  C, > O  and B, > A ,  +e,. These conditions are 
satisfied our study. For modeling we picked 217 nodes with 
At =0.01 Sec and Ay= 5 . 2 6 7 ~ 1 6 ~ m .  These results were 
simulated at 10 Sec intervals. 

2.4 Estimation of System Parameters 

2.4.1 Estimation of Thermal Difisiviiy: The first step in modeling 
the system was to amve at a value of thermal diffusivity a ( y ) ,  
which in our case was assumed to be constant over the entire 
spatial domain. The TDMA simulations were made to match the 
cooling curve plots of eleven thermocouples by selecting different 
values of ff by trial and error. In our case a = 0.085 mZ / Sec lead 
to a very close match between the experimental and simulation 
results and we selected this value for the control synthesis. 

2.4.2 Estimation of Control Effect: Modeling of the control effect 
was a bit involved. The development has to properly account for 
the discrete nature of the heater locations. Besides it should be 
done in such a form so as to make it amenable for the control 
synthesis and implementation. For this reason, we had to need to 
find an approximation of the 6 function suggested in [Padhi] for 
incorporating the control effect at discrete spatial locations. 

One can notice that the effect of any heater is strongly felt in a 
small neighborhood of its actual location. In the analytical and 
experimental studies of thermal processes by [Dournanidis], the 
heat input by a point source term has been described by a Gaussian 
power density function. Following this philosophy, we at tempted 
to represent the effect of heater - m at 100% load as B(y)q,,, (y) , 
where p(y) is as defined in Subsection 2.1 and q,(y) is the 
distribution function for the source. For any other load less than 
1 OO%, we augment this term by a load factor term 0 I U, ( t )  I 1  

and write the actual effect of control as b(y)q,O,) U,@). The 
goal of control design then is to come up with values for U, ( t )  for 
m = I, ..., Mu. As a limitation for the actuator used in this 

experiment, U, ( t )  can have only integer values. 

For heater - M (located at y,,,), we write the source term as a 
Gaussian distribution function given by 

where k, is scaling factor, a m i s  standard deviation The 
parameters of the distribution in Eq.(6) are found by minimizing 
the cost function: 
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We also imposed a constraint that the maximum values of 
p(y)q,(y) should be matched by the Gaussian model. The 
system constraint is given by 

bmGm ( km 9 om, Y m  ) = max [B ( Y k m  cV>l (8) 

where km is the scaling factor and om is the standard deviation for 
heater-m. To compute an average value of B ,  we define 

fim = (B,Cm (y)),,, and then derive the following 

3. Formulation as a Lumped Parameter Problem 
3.1 Problem Definition 

The objective of our study was to find an optimal control for the 
system described by Eq.(l-3). We rewrite these equations as: 

where u ( t y ) = $ ~ , ( y ) v ( t y )  
m=l  

The objective is to find an optimal control u ( t , y ) ,  which 
minimizes the quadratic cost function: 

'I+=-Y/ 

J = ;  J J [ q 2 ( t , y )  + ru2(t,y)]dYdt 

(12) 10 Yo 

,If- 

=- j (q (x ,x )+r (w) )d  
10 

where q l o ,  r > O  are the weights on state and control 
respectively. Note that there should not be any confusion between 
the q in Eq.(12) with the q, in Eq.(3, 7-9), which represent two 
different quantities. 

One can note that even though we introduce a continuous control 
variable v(t  y )  in Eq.(l I) ,  the actual control to be implemented 
u( l , r )  still remains discrete. The introduction of continuous 
control v(t  y ) was dictated by our choice of using the continuous 
basis functions later in Eq.(14). This definition leads to a 
seemingly different definition of control as defined in Eq.(l-3). 
However modeling of the system as discussed in Section-2 
essentially leads to identification of the system parameters whereas 
in this section our definition is based on development of a model 
from a controller synthesis perspective. As parameter identification 
and modeling for controller synthesis are two different aspects of 
the system, the above definition of control in Eq.(l1) does not lead 
to any conflict with the definition in Eq.(l-3) from the control 
implementation point of view. 

3.2 Proper Orthogonal Decomposition: Design of Problem 
oriented Basis Functions 

The main objective for using the POD technique in this study was 
to find an optimal set of basis functions to span an ensemble of 
data. Let {U, ( y )  : 1 I i I N, yo I y I y ,  } be a set of N snapshot 
solutions of the dynamic system. The goal of the POD technique is 
to design a set of basis functions which has the largest mean square 
projection on the snapshots. In other words, it was desired to 
design a function @ , which maximizes the cost function: 

- Y  2 

Y /  

where (@,?= J @ ( y ) y ( y ) d y .  The objective is to seek 

@ = wi Vi , where the coefficients y are to be determined such 

that 4, maximizes I in Eq.(13). In the process we obtain N 
orthonormal basis functions Qi, i = 1,. . ., N . Depending on the 
energy content, this eigen spectrum is truncated to retain only 
&' I N eigen functions for using in the Galerkin projection. An 
interested reader may see [Ravindran] for a detail discussion on the 
basis function design procedure. 

In this research the experimental data generated for modeling the 
heaters was treated as snapshots to be used in the POD modeling. 
As the objective of collecting the snapshots was to develop 
problem oriented basis functions, which were continuous over the 
entire spatial domain, spline curve-fits were used to generate data 
between the consecutive thermocouple readings. Further, the 
snapshots were collected from the experimental dta at equal 
intervals of time. 572 snap shots qU) were collected, which 
represented the dimension of the untruncated eigenspectrum. To 
reduce the order of the system for finding the (&') orthonormal 

r j N  
eigenfunctions, the ratio z d j  / z d j  was plotted for different 

values of 3 .  It was observed that 99% of the ratio is accounted 
for by the first three eigenvalues. Hence a third-order model was 
considered accurate to capture the essential characteristics 
contained in the snap shots. To validate the previous conclusion, 
the above procedure of basis function calculations were repeated 
by doubling the number of snapshots from experimental data by 
halving the time interval considered earlier. There was, however, 
no appreciable change and hence the earlier computation was good 
enough. 

3.3 Finite -dimensional Approximation: Galerkin Projection 

After obtaining basis functions, we expand x ( f , y )  and ~ ( t ,  y )  as 

YO 

N 

i=l 

)=I j = l  

One can notice that we consider the same basis functions for 
x ( t , y )  and v ( f ,  y )  . We assume that the same basis functions are 
capable of representing the state as well as the control since 
eventually we aim for a state feedback control. Substituting 
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Eq.(14) into Eq.(lO), taking the inner product with the basis 
function @], j = I,. . . , fi and carrying out some algebra we obtain: 

i = A ' t + B r i  (15) 

where 2 ,..., Xi]', C =[;, G2 ... ci]' and 

Similarly, after carrying out some algebra [Padhi] we also observe: 

q ( x , x ) = ? ~  2, r ( u , u ) = 3 ~ ~  (17) 

where Q=diag(q,  q2 ... q f i ) ,  R = r B ,  which enables us to 
write the cost function in Eq.(13) as 

4. Adaptive Critic Based Optimal Control Synthesis 
4.1 Optimal Control Formulation 

The adaptive critic based optimal control synthesis is based on the 
discretetime representation of system dynamics and cost function. 
For this reason, we need to have an analogous optimal control 
formulation of the lumped system in the discrete time framework. 
Introducing A t  as the step size in time, we can write: 

x k + l  = A D  x k  B D  ' k  (19) 

] (20) 
1 

J = - [ 2 (,tkTQDik + b:& irk ) 
2 k = l  

where A , = I + k A ,  B D = A t B ,  Q,=AtQ, R , = k R .  
Following the principle of approximate dynamic programming 
[Balakrishnan], one arrives at the following optimal control and 
costate equations respectively on an optimal trajectory. 

fii = -R;' BDTAk+, (21) 

' k  = QDxk + ADT/z,+l  (22) 

In the cost function Eq.(18, 20), we used Q =diag(l  1 1) and 

R = lO3diag( 1 1 1) . We have used Af = 0.01 Sec as the sample 
time in Eq.( 19-22), 

4.2 Adaptive-Critic Controller Synthesis 

Adaptive-critic optimal control design technique is based on the 
iterative and mutual training between critic and action neural 
networks. In this study we use the available experimental snap 
shots for adaptive critic neural network training, in addition to 
using these for basis function calculations. 
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We synthesize critic networks (assuming the action network to be 
optimal), as follows (Figure 3). 

1. Generate a set of .Ek values. For each kk , follow the steps 
below. 
a. 

b. 

c. 

Get fi, from the action networks 

Get 2, t, from the state equation, Eq.( 19) 

Input ik+, to the trained set of critic network at 
( k  + 11' time step, to get A,,, 
Calculate target critic A i  from costate equation, Eq.(22) d. 

2. Train the set of critic networks with input kk and output di 
for the critic network, using all the input-output data together. 

We synthesize action networks (assuming the critic network to be 
optimal), as follows (Figure 4). 

1. Generate a set of kk values. For each kk , follow the steps 
below. 
a. 

b. 

c. 

Get fik from the action networks 

Get d,  +, from the state equation, Eq.( 19) 

Input ik+, to the trained set of critic network at 
( k +  I )  * time step, to get A*+, 
Get the target optimal control 6; from Eq.(21) d. 

Train the set of action networks with input kk and output 

l?;, using all the input-output data together. 

2. 

Once this process of action synthesis is over, we revert to critic 
synthesis again. The alternate critic and action network training 
process is continued till no noticeable change in the output is 
observed in the outputs in the successive training steps. After that, 
the action networks represent the optimal relationship between the 
state and control. For further details, one can refer to 
[ Balakrishnan, Padhi]. 

4.3 Neural Network Structure 

In our current implementation we have used a multi-layer feed 

forward network of the form T C ~ , ~ , ~  for the critic training and 

similar network for the action training. Here, T C ~ , ~ , ~  denotes a 
neural network with 3 neurons in the input layer, 5 neurons in the 
hidden layers and 3 neurons in the output layer. We have taken 
tangent sigmoid function for all the hidden layers and linear 
function for the output layer. 

5. Experimental Results 
5.1 Control Implementation 

The action network was implemented online, after training it 
offline. The error in temperature at each heater location with 
respect to the desired temperature was used as inputs for the 
control load calculations. Since no sensors were available at the 
exact heater locations (except for the end points with Heater-1 and 
Heater-] 0), linear interpolation of temperature of two adjacent 
thermocouple readings was used. Since the thermocouple readings 
are susceptible to external noise, in order to reduce the effect of 
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noise the temperatures were sampled at 1000 sampleshec from the 
first and second channels of digital I/O and were passed thorough a 
Bessel Filter at a cutoff frequency of 20 hertz using LabVIEW. 
The median of 80 temperature samples collected was used as the 
final temperature reading for calculation of control. 
Controller implementation at each time step can be carried out as 
follows. 

Get the temperature readings at time t ,  
Find the error (state) with respect to the desired temperature 
profile 
Use linear interpolation to get states for all the 217 nodes. 
This represents x( t,, y )  

Compute 2, from x( t,, y )  using the basis functions 

Use 2, in the action network to obtain G 
Get the desired continuous control v( t, y )  from 

Round U, ( t  ) to the nearest integer after computing 

5.2 Results for Control of Temperature Profiles 

The desired profile in the current experiment was to drive the 
system starting from room temperature to 75" C, constant 
temperature profile. The temperature plot is shown in Figure 5 
where the final temperature profile in the steady state reaches the 
desired temperature profile (the desired profile is plotted as '*' at 
the final time). The corresponding control values are plotted in 
Figure 6. 

It is clear from the results in Figure 5 that the adaptive critic based 
neurocontroller is successful in driving the system to the desired 
final temperature profile; the closeness to the desired profiles at the 
end points, however, is not as good as at the interior regions. This 
phenomenon was found to occur in every experiment. Similar 
discrepancies were observed in the control readings too. It can be 
noted that in Figure 6, the controls at the boundary nodes are not 
zero in the steady state. The reason for this behavior can be 
attributed to the physical setup: total insularity at both ends was 
not physically realizable. This means there is continuous heat 
dissipation from the system that is not completely accounted for in 
the controller synthesis. But this heat loss from the system is not 
negligible compared to the heat flux input to the system. The heat 
loss being dominant near boundaries prevents any temperature rise 
in the steady state. One way to achieve better accuracy at the end 
points is to tighten the insulation. Another way is to account for 
radiation effects in the mathematical model. One should exercise 
caution during the estimation of the model parameters to make sure 
that the assumptions in arriving at the math model are satisfied to 
the best possible extent. 

In order to demonstrate the versatility of the adaptive critic 
controller, we selected a parabolic profile with the maximum 
desired temperature at the center of the setup. Figure 7 shows a 
plot of the history of the temperature readings at the 10 heater 
locations. The experiment was started from an arbitrary initial 
profile, where all the thermocouple readings are close to of 35' +/- 
5' C. A plot of the actual control to achieve the desired profile is 
presented in Figure 8 .  It is clear that the controller achieved the 
desired profile in the steady state. 

Even though we have presented only representat-e results, the 
adaptive critic based controller was successful in achieving several 
other desired profiles as well, indicating that the feedback optimal 
control synthesis approach based on the dual network concept is 
versatile enough to implement in real-life problems. 
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6. Conclusions 
The feasibility of using an adaptive critic based feedback 
neurocontroller for reaching desired temperature profiles in a 
thermal diffusion system has been demonstrated. This study has 
also shown that for thermal systems the POD method of obtain 
reduced order models for designing controllers actually works in 
practice. Furthermore, we have demonstrated how to estimate the 
parameters for a distributed parameter system for use in the design 
of a control system. Experimental results indicate the potential of 
POD based models and adaptive critic based neurocontrollers for 
use in distributed parameter system applications. Although the 
system used in this study is a linear DPS, there is no linearity 
assumption in the development of the control synthesis, which 
implies that the adaptive critic methodology can be used for 
nonlinear systems as well. 

Thermocouples 

TC-l TC-5 TC-11 

Aluminum Insulator 
Slab ., 

I I  I I  I Heaters I h-10 

H-2 H-9 

Figure 1 : Cross section of experimental setup 

Figure 2: Experimental setup for heat diffusion 

Proceedings of the American Control Conference 
Denver, Colorado June 4-6, 2003 



Network 

Figure 4: Schematic of action synthesis Figure 3: Schematic of critic synthesis 
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Figure 5 : Temperature history for desired parabolic profile 
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Figure 6 :  Control load history for Figure 5 
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Figure 7:  Temperature history for desired parabolic profile Figure 8: Control load history for Figure 7 
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