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AUTOLANDING OF AIRCRAFTS WITH VARYING GLIDESLOPES 
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University of Missouri-Rolla. Rolla, MO 65401 
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Abstract 

In this paper, adaptive critic based neural 
networks have been used to design a controller for a 
benchmark problem in aircraft autolanding. The adaptive 
critic control methodology comprises successive 
adaptations of two neural networks, namely 'action' and 
'critic' network (which approximate the Hamiltonian 
equations associated with optimal control theory) until 
closed loop optimal control is achieved. The autolanding 
problem deals with longitudinal dynamics of an aircraft 
which is to be landed in a specified touchdown region 
(within acceptable ranges of speed, pitch angle and sink 
rate) in the presence of wind disturbances and gusts using 
elevator deflection as the control for glideslope and flare 
modes. The performance of the neurocontroller is 
compared to that of a conventional Proportional-htegral- 
Differential @ID) umtroller. Neurocontroller's capabilities 
are Mer explored by making it more generic and versatile 
in the sense that the glideslope angle can be changed at will 
during the landing process (multiple trajectories). Flight 
paths (trajectories) obtained for a wide range of glideslope 
angles in presence of wind gusts are compared with the 
optimal flight paths which are obtained by solving the 
Linear Quadratic Regulator (LQR) formulation using 
conventional optimal control theory. 

1. Introduction 

Adaptive Critics based neural networks have been 
used to solve aircraft control problems [ 1,2]. Adaptive 
critic method determines optimal control law for a system 
by successively adapting two neural networks, an action 
network ( which dispenses the control signals) and a critic 
network (which 'learns' the desired performance index for 
some function associated with the performance index). In 
this study, these networks approximate the Hamiltonian 
equations associated with the optimal control theory. The 
adaptation process starts with a non optimal arbitrarily 
chosen control and the critic network coerces the action 

network towards the optimal solution at each successive 
adaptation. During the adaptations, neither of the networks 
need any 'information' of a optimal trajectory, only the desired 
cost needs to be known. Furthermore, this method determines 
optimal control policy for an entire range of initial conditions 
and needs no external training as in other form of 
neurocontrollers. 

Aircratl autolandmg is a very challenging problem for 
an adaptive critic based neurocontrol application because (i) 
an aircraft cannot be trained through crashing as in the case of 
other problems like inverted pendulum or a robot (ii) 
conventional linearized controllers cannot emulate pilot 
responses to emergencies. The autolanding problem deals 
with linearized aircraft dynamics in the vertical plane; the 
aircraft has to be landed in a specified touchdown region 
withm acceptable ranges of speed, pitch angle and altitude rate 
in presence of wind disturbances. The elevator deflection is 
the only control that guides the aircraft's trajectory for 
glideslope as well as flare modes. The design of adaptive 
critic based newowntroller for single and multiple trajectories 
has been presented in the subsequent sections. Training the 
conboller for multiple trajectories enables the pilot to change 
the glideslope angle (angle of descent) at will during the 
landing process, which makes the neurocontroller adaptable 
and multifaceted. Also, the optimal flight paths are obtained 
by solving the LQR formulation using conventional optimal 
control theory. 

2. Aircraft Autolanding 

During aircraft landing, the final two phases of a 
landing trajectory consist of a "glideslope" phase and a "flare" 
phase. Glideslope is characterized by a linear downward 
slope; flare by a negative exponential. At approximately 50 
feet above the runaway surface, the flare is initiated to elevate 
the nose of the aircraft, bleed off airspeed, and cause a soft 
touchdown on the runaway surface. From the flare-initiation 
point until touchdown, the aircraft follows a control program 
which decreases both vertical velocity and air speed. 

0-7803-4122-8/97 $10.0001997 IEEE 2288 



2.1 Linearized aircraft equations of motion 

The linearized equations of motion defme 2-D 
incremental aircraft dynamics in the longitudinal /vertical 
plane. They constitute the bare airframe velocity 
components, the pitch rate and the angle along with the 
aircraft position. These equations are developed by 
assuming that the aircraft is flying in a trimmed condition( 
i.e., zero translational and rotational accelerations). Small 
perturbations U, w, q about the mean values are considered 
and equations of motion are expanded to first order to yield 
complete longitudinal linearized equations in terms of 
stability derivatives (X, X,,, Xq Z ,  Z,,, Zq M,, M,,, hiq ) and 
control derivatives (X, X, Z ,  Z ,  nil, M r )  [31. 
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forward velocity, U, hence from the system model equations 
described by equations (2.1) the effect of the incremental 
forward velocity U is neglected. The resulting system model 
has five state variables namely a, q ,8, x and h . e,, is the 
most important control command which controls the aircraft 
elevator servomechanism and consequently the pitch up 
during landing. It can be obtained from Figure 1 by the 
altitude commands (bed) which have different values for 
glideslope and flare modes as 

=glideslope angle = 2.75' vorglideslope) 

The pitch stability augmentation system consists of 
proportional plus rate feedback combined with pitch 
command (emd ) to develop the required aircraft elevator 
angle ( 6,, control) as shown in Figure 2. Since the aircraft 
is flying under reduced power at landing, the throttle and the 
autothrottle have the minimum effect [3]. Hence for designing 
the controller only one control variable is considered i.e. SE 
(equation (2.1)). The horizontal and vertical wind gust 
components, U, and y can be obtained from the Dryden 
spectra for spatial turbulence distribution [3]. Once the 
control from the pitch augmentation system and the gust 
components are known, the flight of the plane can be 
simulated for glideslope and flare modes by solving equation 
(2.1) using Runge-Kutta method by assuming initial 
conditions on the states as w(O)=I.O ft/s, q(O)=O.I Ws, 
e(O)=O.Ol WS, ~(0)=-6245 ft, h(0)=300 ft. 

3. Adaptive Critic Based Controller for 
Aircraft Autolanding 

U, a, q , B  are the incremental horizontal velocity 
(Ws), angle of attack (deg), pitch rate (deg/s) and pitch 
angle (deg). x and h are the horizontal range (fi) and 
altitude (ft). SE and 4 are elevator deflection and throttle 
settings (control variables), VrM is the nominal 
velocity(235.6 ft/s), and U, and y are the wind gust 
components obtained from Dryden spectra for spatial 
turbulence distribution. 

2.2 Design of conventional PID controller 

3.1 Single trajectory: 

Training on single trajectory means that the adaptive 
critic controller is designed for a constant glideslope angle (in 
our case 2.75") for glideslope and flare modes. The 
autolanding problem needs to be formulated in the 
Hamiltonian formulation [4], so that the required target 
equations for action and critic networks are obtained and the 
required boundary conditions are satisfied. The system 
equations in Hamiltonian formulation are of the form 

'k+]  = f k ( X k * U k )  (3.1) 

Thrust is used to counter changes in the incremental 
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Equation (3.1) represents state space representation of a 
system in discretized form. Note that U, here represents 
control at step k. The performance index to be minimized 
is of the form 

N-l 

k-i 
4 = ( P ( N , x N )  + ' uk(xk9u&) (3.2) 

where Ukis the Utility. Next, the Hamiltonian is defined as 

Lagrange's multipliers are given by the following equation 
H k  = U k  + f k  (3.3) 

(3.4) 

- [ g) ',+I 
6 H k  
6% 

costate equation :A ,  = - - 
6 U k  + - ,k=i..N - 1  
a ' k  

(3.4) 
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+- a U = O  ,k=i,.,N - 1 
' k  

(3.5) 

T 
boundary conditions : 

= 0 ,  [ E j T d x i = o  ' 

Equation (3.4) in this formulation provides the target for the 
critic network and the optimality equation (equation (3.5)) 
provides the target for the action network. Equation (3.6) 
supplies the split boundary conditions necessary to solve 
equations (3.4)-(3.5). The first condition holds only at final 
time k=N, whereas the second one holds only at initial time 
k=i. In this application, the system starts with a known 
initial state xi. So, the second condition holds since di=0 
and there is no constraint on the value of Since 
there is no constraint on the final state x,, which is typical 
of a infihite horizon problem, it follows from the first 
equation that AN ~ &&AN i.e. the terminal condition is the 
value of the final costate A,. Also, since all states reach 
steady state, so @=O, hence AN=O. 

To begin the training procedure, the system 
equations given by equation(2.1) are expressed in the 
desired form (X(t+l) = AX(4 + Bu(t), equation 3.1) and 
hence discretized using a sample time of 1 sec without the 
effect of wind gust components. X(4 = state vector=[w(t) 
q(t) 6(4 x@) x v) h(t) h '(t)] and u(t) = control= dE(t). The 

utility U(x(0) is a quadratic function and puts the constraints 
on the states x and h and the control variable (SE) and the only 
way the networks get information about the commands is 
through the utility which is defined as 

t - 0  

(3.7) 

where a], a,, a, are the respective weightings on the various 
elements of the utility function and are determined by 
experimentation. For this problem the values for the various 
weightings are chosen to be as al = 0.01, a, = 1.0 and 4 = 

0.009. The values of h,and h &, are obtained for glideslope 
and flare modes and tan y, = tan(2.75) = 0.0480. The cost 
function is represented by J. A initial arbitrary stabilizing 
control may be assumed initially as 

(3.8) 

Equations (3.4) and (3.5) give the target for the critic 
network and action network 

7 

1 - 1  

6; (t) = -2e-4( C(Xi ( t ) )  

(3.9) 

[A, (t+l)] is a 7 x  1 matrix of the critics at the next time step 
corresponding to each state and [A*, (03 are the 
corresponding targets at current time step. Since the utility 
function in equation (3.7) is defined in terms of the states, 
[ 6U(x(t))/6yo ] is available. [B] is the 7 x 1 control matrix. 
The training procedure for the neurocontroller is shown in 
Figure 3. The initial conditions on the states are taken to be as 
in the PID controller case and the action (architecture N,,,,2,1) 
network and critic network (architecture N,,,,,,,) are converged 
for the whole trajectory at each successive adaptation. 
Training takes 12 adaptive critic cycles where the networks 
are converged for 10000 epochs each time. Simulation using 
adaptive critic controller is done in the same way as with the 
PID controller except that the control signals are taken from 
the converged action network instead of the pitch stability 
augmentation system. 

3.2 Multiple trajectory 

In order to exploit the versatility of the 
neurocontroller, it is trained on multiple flight paths (i.e. 
multiple glideslope angles ranging between 2 to 7 degrees). 
The networks are not trained on any particular trajectory, but 
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for random values of states in the desired ranges. In order 
to facilitate easy online implementation, glideslope angle is 
introduced as a state in the system equations, i.e. y,(t) = 
y,,(t+l). This means that it is an input in the action 
network so the pilot can vary the glideslope angle anytime 
during the landing process. Hence the same neurocontroller 
can output appropriate control for a wide range of 
glideslope angles. 1 O6 random points are used to train the 
action and critic network each time and training takes place 
in 17 adaptive critic cycles. 

3.3 Optimal control for aircraft autolanding 

Optimal control theory provides the formulation of 
a discrete-time linear quadratic regulator for linear systems 
with quadratic performance indices for the free final state 
(infinite horizon) class of problems which leads to closed 
loop control [4]. The closed loop optimal control problem 
is again formulated as a two point boundary value problem 
as described in section I11 before. The quadratic cost 
function is of the form 

(3.10) Jo = --E 1 "  (.,'exk + u,TRuJ 
k-0 

For our problem, the plant (A, B) and cost-weighting (Q, R 
) matrices are time invariant. The cost weighting matrices 
can be obtained from equation (3.7). This formulation 
demands that the constant nominal velocity, VTAs be 
introduced as a state, which triggers uncontrollability in the 
system. To obviate this, a fictitious control is introduced in 
the system equations which controls this state, and to 
minimize its effect in the system dynamics it is weighed 
very heavily in the cost weighting matrix, R. Once these 
matrices are known, steady state optimal gains can be 
obtained from the eigenvectors of the Hamiltonian matrix 
[4] which can be used to find the optimal trajectories. 

4. Results and Conclusions 

Flight path (in presence of gust) using the PID controller 
for a 2.75 " is shown in Figure 4. After approximately 22 
seconds of the flight of the aircraft, the flare mode is 
initiated. The plane does not immediately respond to 
follow the c o d  glideslope trajectory because of its 
inertia, rather, it gradually approaches the desired 
c o d .  Similar behavior is seen in Figure 5, which 
shows the flight path obtained with the neurocontroller 
trained on single trajectory(2.75" glideslope). A very high 
elevator deflection (control, Figure 6) is needed for the 
first 3-5 secomls to wmmence the landing process because 
of the desired abrupt change in the flight path. Figures 7 
compares the optimal flight paths with the flight paths of 
the aircraft generated by the neurocontroller trained for 
multiple trajectories for the same set of initial conditions 

(i.e. horizontal range, x =-6245.65 ft  and altitude, h = 
300.0 ft) but different glideslope angles (y, = 2.75", So, 
7"). In Figure 8 the glideslope angle is changed from 2.75" 
to 7.0" after the aircraft reaches 150.0 ft  altitude in presence 
of gust. Note that this change in the glideslope angle is 
made online through the same action network. Simulation 
stiuts with the initial conditions corresponding to a glideslope 
of 2.75" and at 150 ft altitude the glideslope angle is changed 
to 7.O"and simulation continued with the initial conditions 
that prevail at that altitude. This is not the case With the 
optimal trajectories which have to be simulated as two 
separate c~ses. Hence, the same neurocontroller is capable 
of genedug d p l e  flight paths and also enables the pilot 
to change the flight path at anytime during the landing 
process. This makes the neurocontroller more versatile than 
the present controllers. Fiuthemoe, it is found that to solve 
the autolanding problem using the conventional linear 
quahtic regulator (LQR) method, the formulation needs to 
be more rigid (only quadratic cost functions). Note that we 
have used the glideslope mode in Figures 7 and 8. Switching 
to flare mode is straightforward. This research was 
supported by NSF (National Science Foundation), Dr. Paul 
Werbos is the program manager. 
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