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AN OPTIMAL CONTROL BASED TREATMENT STRATEGY FOR PARTURIENT
PARESIS USING NEURAL NETWORKS

RADHAKANT PADHI*

S. N. BALAKRISHNAN**

Department of Mechanical and Aerospace Engineering and Engineering Mechanics

University of Missouri - Rolla, MO 65409, USA

Abstract. An optimal on-line feedback treatment strategy is developed for the parturient paresis of cows, based on nonlinear
optimal control theory. A limitation in the development of an existing mathematical model for calcium homeostatis is addressed
and the model is extended to incorporate control inputs. An optimal feedback controller is synthesized for the nonlinear system
using neural networks. Though the main aim of this paper is to solve the bio-medical control problem, the methodology presented
in this paper is a general computational tool, which can be applied to solve a fairly general class nonlinear optimal control

problems.
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1. INTRODUCTION

Calcium (Ca) has various crucial physiological roles in animals.
Besides maintaining the integrity of the bone structure, Ca ions are
involved in the activity of a large number of enzymes [Griffin]. A
mathematical model for the calcium homeostatis problem of cows
was first developed by Ramberg et. al. [Ramberg]. The one-
dimensional model has recently been modified to a two-dimensional
model by El-Samad et. al. [El-Samad]. This model clearly describes
the Ca homeostatis problem in healthy cows. It also attempts to
explain a disease with the onset of parturition (calving), commonly
known as parturition paresis (milk fever), for some animals. This
fever is caused by the hypocalcemia, which occurs when the
complex internal control mechanism for maintaining calcium
homeostatis fails, because of a sudden and severe outflow of
calcium.

Except for very special class of problems (like the Linear Quadratic
Regulator problems, for example), it is quite difficult to obtain a
state feedback controller in an optimal control formulation. The
method of dynamic programming handles this problem by
producing a family of optimal paths [Bryson]. One great drawback
of the dynamic programming approach, however, is that its solution
warrants a prohibitive amount of computation and storage
requirements. The main idea pursued in this paper is based on the
model-based adaptive critic methodology for optimal control
proposed by Balakrishnan & Biega [Balakrishnan]. The
methodology synthesizes two sets of neural networks. One set of
networks, named as the ‘critic networks’, captures the relationship
between the states and costates. The other set of networks, named as
the ‘action networks’, capture the relationship between states and
control. After successful iterative off-line training between the
action and critic networks, it results in a feedback form of the
optimal controller. The methodology allows the philosophy of
dynamic programming to be carried out without the need for
excessive computation and storage requirements. An interesting
discussion about the philosophy of the adaptive critic designs can be
found in [Werbos]. The optimal control synthesis methodology
described in this paper retains all the features of the adaptive-critic
methodology. However, we have been successful in completely
eliminating the ‘action networks’. For that reason, we no longer
require the iterative training loops between the action and critic
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networks. Consequently, the computation time in synthesizing the
neural controller is reduced considerably and this paper can be
viewed as a significant improvement of the model-based adaptive
critic methodology.

From a system theoretic point of view, the milk fever problem of
dairy cows can be thought of as follows. Before the onset of
parturition, the internal Ca homeostatis mechanism operates at a
stable equilibrium point. However after the parturition, due to the
outflow of Ca, the equilibrium point shifts to a new value. With
respect to this new equilibrium point, the earlier one can be thought
of as an initial condition. Depending on the parameters, the
dynamics may drive the system from this initial condition to the
new equilibrium point (in which case, the animal is supposed to be
normal) or, it may drive the system away from this new equilibrium
point (in which case, the animal is supposed to suffer from the
disease). As pointed out by Oetzel et. al. [Oetzel], a common
treatment strategy for the milk fever patients is the intravenous
infusion of Ca sait. The goal of this paper is to come up with an on-
line feedback optimal control (medication) strategy based on this Ca
salt infusion process. The controller is based on the nonlinear
system dynamics of Ca homeostatis and is synthesized taking the
help of neural networks.

2. CALCIUM HOMEOSTATIS IN COWS
2.1 Existing Model

A dynamic model for the Ca homeostatis problem was first
developed by Rabmerg et. al. [Ramberg]l. The model has recently
been modified to the following two-dimensional model, by El-
Samad et. al. [El-Samad].

2

ll [Sat] {Kp(r"zl )}"' f(zl )Satz {Zz}_Vd] [¢))

" Vol
2, :Kl(r_zl)

where, Z, = Ca concentration (gm/L) in the blood plasma, Z, =
rate (gm/day) at which Ca is supplied to blood plasma from

intestine, Z,, Z, = rate of change of Z, and Z, respectively
wrt. time (1), Vol =total plasma volume (L), Vd = total Ca
clearance from the plasma (gm/L), r = set point, for Ca



concentration regulation (gm/L), K p = constant for the internal

proportional block (L/day), K ; = constant for the internal integral
block (L/day’), Sat,(.), Sat,(.) are the saturation values,

i
f(Zl)_—. 1_2_:[((1’1 +a2z,)(a3 +a4z,)], z, <r <.

1, L 2r
multiplicative reduction factor, reflecting the effect of plasma Ca
concentration on rate of Ca supply from intestine, where
a,,a,,0,,q, are constants.

2.2 Modifications to the Model

Since biological systems are seldom prone to hard-nonlinear
saturation functions, we propose to change the hard-nonlinear
saturation functions to hyperbolic tangent functions. Towards the
development of a mathematical model with external control term,
we are primarily interested in a medication strategy with
intravenous Ca infusion, which is infused directly to the blood
plasma. Because of direct infusion, the rate of change of Ca ( Z 1) in

the blood plasma is assumed to be change instantaneously by the
rate of external Ca infusion. However, the externally infused Ca is
assumed to reflect in the blood plasma with efficiency 7. With this

observation, we can write

% =V—104:Al tanh{&(‘;—_z—l)}—b—f(zl) 4 tam{%}'vd] +nv 2

2 =Kz(r"zl)

where, A1 = Satl, A2 = Satz. We consider

Al , AZ, K p? K ; as system parameters and V is the external

control. As an observation, In Eq.(1), the equilibrium point is given

by [z]o zg ]r = [r vV, ]T, whereas in Eq.(2), the equilibrium

point is given by [210 Zg}r = [r A, tanh™ (VC, 14, )]T

Thus, in our modified model, the final equilibrium point after
parturition is parameter dependent. Intuitively this makes more
sense, since different animals are supposed to settle at different
equilibrium points.

2.3 Reformulation for Control Development

Our main aim is to regulate the system, described in Eq.(2), about
its equilibrium point. Hence, we re-write the system dynamics in
terms of deviations from the desired (equilibrium) point. Towards

0

this, we define [ZI}= % +[yl], and re-write the system
% Zg ¥,

dynamics as

-K
A tanh! "y‘}
A
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=— + :

% Vol nv
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Since our final aim is to synthesize a neural network based
controller (described in Section-3, in detail), for faster convergence
in the training process of the networks, it is a standard technique to
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input all the variables, in some sort of a normalized fashion.
Towards this end, we define the new variables

'x] = (yl /ylnom )’ x2 = (yZ/yZnam)’ where, ylnom and

Y2,om are the nominal values of 'y, and Y, respectively. The
normalized system is given by:

1 ~
g | ) P sal) v ene|

1nom

- Kl (-ylnom / y2nom) X,
where, X = [xl X, ]T and

~ ) f(‘x])=f(zlo+x1ylnam)

=K, % Y om ®)
1

0
+
g,(x,)=A4, tanhl———z2 Zz Y 210m

2

3. OPTIMAL CONTROLLER SYNTHESIS
3.1. Optimality Conditions

g,(x,)= A tanh!

The discussion in this section is in the general framework. The
discrete system dynamics considered in this paper is expressed as

Xin = Fk(Xk’Uk) 6)

where, the subscript k denotes the time step. X « € R”" and

U (ER ™ represent state and control vectors respectively at time

step K . Similarly, we consider a general scalar cost function to be
of the form.

N-1

Jzz ‘Pk(Xk, Uk) D

k=1

where, IV represents the number of discrete time steps. Note that

when N — oo, Eq.(7) represents an infinite time problem.
Following the above representation of the cost function, we denote

the cost Jfunction from time step k as

N-1
J, = ,;2 \P/? (X o Ur ) Then we can breakup and re-write
=%

_ N-1
Ji =¥, +J,, where, ¥, and J,, = Z\PE represent the
K=k+1
utility function at time step k and the cost-to-go from time step
k+1 to N respectively. We define the X1 costate vector at
3,

For optimal control, the necessary

time step k as J’k =
k

9, = (). After some algebra,

k

condition for optimality is given by

this leads to
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Similarly, the co-state propagation equation, on the optimal
trajectory can be derived as

=0 ®)

T

al{lk aX k+1 A . )

x, || ox,

We have used Eq.(6), (8) and (9) for the synthesis of the neural
networks. We will consider a fairly general class of special cases,

A =

where Eq.(8) is explicitly solvable for U ¢ @s a function of X, and

ﬂk +1- The bio-medical problem of our study falls under this class.

3.2. Optimality Conditiens for Calcium Regulation Problem

Assuming Af to be the step size in time, the discretized state
equation can be written as

1 ~,
Xk+1 =Xk +N m[gl(}q}‘):f()qk) gZ’(’;C?Jc)—VcI] +77uk (10)
—I<l ylnon/y2no X

It is clear that the medication problem falls under the class of
regulator problems, the regulation being carried out about the

equilibrium point X = 0. Following the standard practice for
regulator problems, we assume a quadratic cost function of the form

J:%E(X,‘TQDX,(+RD ukz) an

k=1

r . . .
where, X X =[x‘k xzk] is the state vector. Using this

expression for lPk in the optimality conditions derived earlier
Eq.(10) & (12), we artive at the following equations for optimal
control and costate dynamic equations.

u, =-R'n 0]4, a2

oF+ Y

A, =4, +A OX, + —a-X—k

A (13)

At each time step k the coupled equations (10), (12) & (13) have
to be solved simultaneously, together with the boundary conditions

(X, specified and Ay =0, N —> o0), to obtain the solution
for U, . One can notice QD =QAt and RD = RAt, to be
compatible with continuous and discrete time formulations.

3.3 Procedure for Neural Network Based Controller Synthesis

The schematic of the controller synthesis procedure is outlined in
Figure-1. This discussion is in the general framework as well.

State Generation for Neural Network Training

We follow the procedure outlined below to generate the states for
training the networks.

pefine, S, = {allX,: | X,.< ¢ }.

i=12, 3,... where, C; is a positive constant. Notice that for
(o) SCZ SC3 <..., Sl QSZ c S3 C .... Thus, for some
i=I, S ; will include the domain of interest for initial

conditions. Hence, to begin the control synthesis procedure, we fix

a small value for the constant C, and train the networks for the
states generated within S 1 - Once the critic networks converge for
this set, we keep on increasing the constant C, this way till the set
S ;includes domain of interest for the initial conditions. In this
paper, we chose ¢, =0.05, ¢, =¢, +0.01 (i—l) for

i=2,3,... and continued till { =1, where ¢, =1. 1t should
be noted that any other scheme to generate the training sets should
also be fine.

Neural Network Training )

We have assumed that the parameters of the problem
(K p? K,, A, A,) are not fixed and they can vary, within
Thus,

minimum and values.

known maximum
K, elk, .k, K elK ..k
A e [Alrnin’Almax] and A, € [AZmin ’A2max]' We have

assumed that the parameters remain constant for any particular
animal and hence, for a typical state trajectory. In order to capture

I'min > ** I'max 17

the relationship between X, andA,,, with varying parameters,

we construct an augmented vector X ,'("p , which serves as the input
to the neural networks. However, since the individual elements of
X ,‘c"p vary widely in magnitude, we construct a normalized vector,

to serve as the input. In our bio-medical problem, we have

T
X =y K P K, A A, s where
e T X X % 2 A
. P nom I'nom Lnom 2nom
p . ,nom,Al'wm and AZnom are the normalizing values
nom

for K » ,K I ,Al and A2 respectively.

One can notice that since U « 18 @ known function of X ¢ and
/1k +1» after successful training of the networks, we can directly

calculate the associated optimal control U, from Eq.(8). We
synthesize the neural networks in the following manner [Figure 1].

Generate S ; » as described in Section 3.2.1. Construct X ,';"p Input
X ,i"p to the networks to get /1,( +1- Let us denote it as A : e
Calculate U, knowing X, and A,,,, from optimal control
equation [Eq.(9)]). Get X 1+1 from the state equation [Eq.(6)], using
X, and U, . Construct X, . Input X7} to the networks to

get ﬂk 42 - Calculate /1,‘ +1» form the costate equation [Eq.(8)]. Let
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us denote this as A ;c +1- Train the networks, with all X ,i"p as input
and all correspondingﬂ ;( 41 @soutput.

3.3.3. Convergence Condition

Fix C; to the same values that have been used for the training of the
n'etworks: Generate a set Sf of states, exactly the same manner
used to generate S,- . Fix a tolerance (20l ) value (we have fixed

tol = 0.1, for the bio-medical problem). By using the states from
c .. . .

S,- , generate the target outputs, as described in Section-3.3.1. Say

the outputs are A ;i, "',...,ﬂ ; Generate the actual output

from the networks, by simulating the trained networks with the

states from S,f . Say the values of the outputs are
3 i
Wi -4

El

/1;7',1;’,...,/1:". Check  whether < tol’

\a =1,...n. If yes, we assume that the networks have
converged.
4. MEDICATION STRATEGY

At any time step K , the control magnitude U/ ¢ is computed on-

‘line, using the using the neural networks synthesized off-line,
outlined in Section-3. To address an implementation concern, if the

computed control U, <0, we forcefully make U, =0, since a

negative infusion rate is not feasible in practice. However, it should
be noted that even though this condition was incorporated, it was
never encountered in our simulations. The Ca infusion process is
continued for an hour. The condition of the patient is projected for
some specified future time, say for a week (which is normally
required for an animal to restore the Ca regulation internally). This
is done using the homogeneous system dynamics. If the projected

states show X; —> 0 and X, = 0 (i.e. the patient recovers
without further medication), and X, trajectory never enters a

predetermined region (X, ¥, . <~0.03, in our case), STOP
medication. Else, continue medication for another hour.

One should note that this paper does not deal with any new drug
development. Rather, it attempts to make use of the advanced
control theory concepts, to optimally use the available intravenous

Ca infusion drug, thereby aiming to improve the effectiveness of the
drug substantially.

5. NUMERICAL RESULTS
5.1 Numerical Values

For our numerical experimentation, we chose the values for
parameters 7, VC,O,VC,, Vol as used in [El-Samad]. However,

for the parameters K p? K Iz A19 A2 we carried out the

simulations with various combinations of parameter values and
plotted the phase plots [Figure 2]. From the qualitative nature of the
phase plots, we fixed the parameter values for which the plots
showed instability (indicating the onset of milk fever) for a number
of initial conditions. The diagonal elements of the weighting matrix
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on the states in the cost function () were chosen as

Qll =4/ (O‘OI/ylnom )2 and Q22 =1/ (50/y2nnm )2 » where,

Q= l:g“ g”] The off diagonal elements le and Q21 were
21 2

set at zero. The weighting value on the control R was chosen as

(77/ 20)2 Q,, - For the discritization purpose, we fixed At =30

Sec. We synthesized our numerical results for two drugs, assuming
n =20% for one drug and 5 =30 % for the other. The nature of

the results were similar and results for 5 =209 are given in this
paper.
5.2 Analysis of Simulation Results

As mentioned in [Oetzel], the current practice of Ca infusion to treat
parturient paresis is to infuse 10.8 gm of Ca in 12 min. We refer to
this as impulse medication. We attempted to compare our results
with this medication scheme, which is currently in practice. For the
numerical simulation with impulse medication, we assumed a
constant rate of infusion (control) of (10.8gm/12min) for 12
minutes, and then assumed it to be zero for rest of the time.

We assumed K , = 2000 livday, K » = 2100 livday?, A, =60
gm/day and A, =90 gm/day. These parameters lead to an unstable

trajectory for the initial condition x, =0,

A - - N
=—2 [tanh 1(Vr,o/ Az)—tanh I\ Az)], indicating
2nom
a diseased animal. Starting with this initial condition, we first

X2 min

propagated the homogeneous system, till X, dropped below X, .,

a known value. Then we collected the corresponding value of X,

value at that time and considered the state values at that time as our
initial condition for the application of control. Accordingly, in our
simulation plots we set the initial time to zero. We have presented
all the simulation plots only for two days (48 hours). This is to have
a magnifying effect near parturition, to clearly see the effect of
control.

Figures 2-4 show the results by assuming the control efficiency
n=20% and Xx,_, ¥, =—0.05. 1tis clear that both the

continuous and the impulse medication work fine in recovering the
animal. Moreover the actual amount of Ca infused to the system in
the 6 hr. long medication is m, =15.78 gm, a comparable value to

10.8 gm. However, as seen in Figure-2, the trajectory of the
deviated amount of Ca per unit volume of the blood pool from its
equilibrium value enters the positive domain, which means the
presence of extra Ca in the pool than necessary. This may lead to
the potential threat of hypercalcemia [Oetzel]. Moreover, the same
trajectory for the impulse medication again drops below —0.04
gnvlit, a sufficient low value, before recovering back. On the other
hand, the continuous medication shows a much smoother trajectory.
It never goes to the positive side. Moreover after termination of the
medication, even though the trajectory drops a little before
recovering back, it always remains well above the danger level of
—0.03 gm/lit for all future time. Figure-3 depicts the trajectory of
the rate of Ca resorption from intestine. The two plots for impulse
and continuous control are quite close to each other. It indicates that
by continuous control we did not do anything drastically wrong to
the absorption in intestine. It operated as it would have operated
under the impulse control. Figure-4 depicts the control trajectory



under the on-line optimal medication. At time f = 6 hrs, the
contro! is purposefully terminated. Moreover one can notice, as
compared to the impulse input of 10.8 gm in 15 min, which
corresponds to 1036.8 gm/day, the control magnitude at any
particular time in the continuous scheme is much lesser.
Consequently the system is pulled towards the equilibrium point in
a much smoother way. We also simulated the system with

Xt Vinom = —0.03. It was surprising to see that the impulse

control did not work. It means the current practice of quick infusion
works only after the condition of the patient becomes sufficiently
bad. Before that the impulse infusion is ineffective. However, the
on-line continuous scheme was successful in recovering the cow
irrespective of its starting time.

One of our main aims was to see that the proposed methodology
and the synthesized controller work from a variety of initial
conditions, which is even more useful in a practical case. Towards
this end, we assumed a large number of random parameter values
and random initial states and simulated the system. Figures 5-8
show some of the simulated results, which clearly indicate that the
proposed scheme works for all these cases. For clarity of the
figures, only ten such cases are presented. However, similar results
were obtained for a very large number of cases. In fact, in none of
the large simulation cases the nonlinear neuro controller failed.
Moreover, as another important observation, in no case the

L Neurl Netwarks Lald

..... ' Optireat Conol Co-suate Equasion
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Figure 1: Schematic of optimal control synthesis using
neural networks
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trajectory of Ca deviation per unit volume of blood pool was found
to enter the positive domain , avoiding the hypercalcemic problem.

6. CONCLUSIONS

After suggesting a modification to an existing model for the calcium
homeostatis of cows, we have successfully synthesized an on-line
feedback optimal medication strategy for the parturient paresis
problem. The proposed medication scheme improves the
effectiveness of the drug substantially, as compared to the impulsive
quick infusion process, currently in practice. It was found that
whereas the current practice can be effective only after the
condition of a cow deteriorates, the proposed continuous medication
process could be initiated at any time. Moreover, the on-line
continuous infusion never leads to the hypercalcemic problem.
Further, whereas as the current practice of quick Ca infusion has a
non-zero probability of failure for patient animals, the simulation
studies shows that the probability of failure for the proposed on-line
optimal continuous medication scheme is zero, for all practical
purposes. In this paper, we have also come up with a systematic
approach for the state feedback solution of optimal control
problems associated with the nonlinear systems, for a fairly general
class of problems, which can be viewed as a significant
improvement of the existing adaptive-critic based optimal control
design methodology.
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