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Absh;d 
Recently the synthesis methodology for the infinite time 

optimal neuro-controllers for PDE systems in the framework of 
adaptive-critic design has been developed [ 1,2]. In this paper, first 
we model an experimental setup representing one dimensional 
heat diffusion problems. Then we synthesize and implement an 
adaptive-critic based neuro-controller for online temperature 
profile control of the experimental setup. 

1. Introduction 
Many chemical processes involving heat and / or mass 

transfer or chemical reactions are modeled by partial differential 
equations of the parabolic type. The dynamic behavior of most of 
the diffusional process is well understood and the parameter and 
the boundary conditions are well known [3]. Whereas in our 
experimental setup it was not only desired to synthesize and 
implement the optimal neuro-controller, but also to study the 
behavior of the system and then model its parameters. The first 
attempts to treat parameter identification in distributed systems 
involved approximating the system by a lumped model. The 
method assumed the system to be linear and developed a transfer 
function approximating the distributed model. Various methods 
for estimation of diffusivity of a rod have been compared in [4]. In 
this reference [4], the governing partial differential equation is 
approximated by a finite difference method and the dynamic (time 
series) data is used for parameter identification. We follow a 
similar approach in our study but for a more complicated system 
where it is not only desired to amve at a model of thermal 
diffusivity of the system but also to find a mathematical model of 
the distributed source (control) term. 

The design of controllers for PDE based systems have been 
studied and implemented in [3], (51 and [6]. The control of a 
diffusional process by approximating it as a lumped-parameter 
system, with the technique of finite Fourier transform has been 
studied and implemented in [3]. In studies [4] and [5], the control 
is designed by approximating the distributed parameter system 
into lumped parameter system using an integral transform. In all 
these studies it was desired to maintain a particular temperature 
profile in the steady state for the thermal system. In our study, we 
do not use any of these transforms, instead we follow the 
methodology of adaptive critic design as studied in [ 1,2] and use 
dynamic programming methodology for optimal controller 
synthesis. The advantages of adaptive critic design include optimal 
control of the plant maintaining a feedback structure of the 
controller in real time from any initial state in the domain of 
interest to the desired final state. In addition, this method can 
handle linear and nonlinear problems directly, retaining the same 
structure. 

In our current study a linear heat diffusion equation with 
Neumann boundary conditions has been considered and the 
optimal neuro-controller has been successfully implemented on 
the experimental setup for on-line temperature profile control. 

2. Experimental Setup and its Modeling 
In this section we discuss the development of the 

experimental setup which would represent the one dimensional 
heat diffusion problem. The main difficulty encountered, related to 
the development of the mathematical model of the experimental 
setup. As opposed to most studies e.g. [3,5,6], neither the behavior 
nor a model of the experimental setup was available for controller 
synthesis and implementation. The main objective of this section 
is to model the experimental setup including the model of each 
heater. 

2.1. Analytical Background 
The linear diffusion problem is described by 

(1) -= 
at 

The Neumann boundary conditions are 

-)I ” C Y , ,  = O  

-1 y=v, = O  
(3) 

Note that T(0 ,y )  represents any initial profile within the domain 

of interest y,, 5 y 5 y ,  and T ( t , y )  represents the transient or 
dynamic temperature profile over the entire domain y ; Q) is 
the thermal diffusivity and p ( y )  is the heat input / heat generated 
by means other than thermal conduction. In this discussion it will 
be referred to as the source term distribution over the entire 
domain. u(t ,y)  is the control term denoting the current load at 
which the heater is operating. Its value is 1 for a particular heater 
if it is ON at 100% of its load and is 0 if it is OFF. 

2.2 Experimental Setup 
In order to present an overview of the hardware setup to 

implement the one dimensional diffusion problem, note that the 
diffusion problem is represented using a series of aluminum slabs 
and heaters placed one after another as shown in Fig.]. Ten 
heaters and nine aluminum slabs were assembled. Mica heaters 
were selected for their small thickness of 0.025”elements. These 
heaters are 6in. in diameter. Aluminum slabs were used for their 
high thermal conductivity. They are also 6in. in diameter, and %in. 
thick. A hole of 0.125”in diameter was drilled radially into the 
side of each of the aluminum slabs in order to place a 
thermocouple within the slab. 
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Fig.1 Cross section of Experimental Setup 
Since these holes facilitate temperature measurements they were 
2” deep. K-type thermocouples were used for the temperature 
measurement; their tips were placed at the bottom of 2” deep hole. 

The software used for input and output of data was LabVIEW 
installed on a Pentium PC. The temperature readings from the 
thermocouples were linearized in LabVIEW using the cold 
junction compensation temperature. The heaters were connected to 
a 120 volts power supply through Solid State Relays (SSR). The 
ON and OFF sequence as well as load control of the heaters was 
achieved using LabVIEW. To control the operating load of the 
heaters, they were switched ON for a predetermined period of time 
during each cycle time, Eq.(4). During each cycle, the data was 
written to a digital VO for predetermined number of times after an 
interval of thirty-five milliseconds (limited by the SSR 
specification), updating the status of each of the heaters to ON or 
-OFF depending on the current desired load for each heater. 
Cycle Time(Sec) 4.035 x Number of times data written to digital 

For development of the model for this system, data was written to 
the digital I/O 100 times during a cycle time of 3.5 sec. 

2.3. Modeling 
The methodology and results of modeling the setup are 

presented in this section by noting that various approaches for 
identification of parameters for distributed systems have been 
discussed by Goodson and Polk in [7,8]. Some of the methods 
discussed are finite differences, modal approximation, Laplace 
transform and infinite product expansions, analytic solutions and 
characteristic methods. A finite difference scheme was used in this 
study to discretize the system and the Tridiagonal Matrix 
Algorithm (TDMA) [9,10] was used for numerical simulation. By 
matching the simulation results with experimental results, the 
mathematical model of the system was developed. 

Some of the primary equations involved in TDMA 
development are recapitulated below. Using backward finite 
difference method, Eq.(l) can be written as 

VO during each cycle (4) 

( 5 )  

where, k represents the time (1) increment and i represents the 
space (y) increment. Eq.(5) can be rearranged into the standard 
form of the descritzed equation for TDMA applications as 
follows[ IO]: 

-A,qt, + B,qk - C,qfi = 0, (61, 

(7) 

C , = L , a n d  a 
AY 

Similar development can be folkowed for homogeneous part of 
Eq.(l). 

2.3.1 Model of a(y), B(y) 
In this heat diffusion problem represented by Eqs. (1)-(3) it is 

desired to find terms for the coeficients a(y) and B(y). This 
was achieved in two steps. Initially, experiments and simulations 
were conducted to arrive at a form of thea(y) . To do so the 
control term, P(y)u(t,y), was neglected while arriving at a model 
of a ( y )  . This was possible because the system is linear in nature 
and it was desired to find a solution of the homogeneous equation 
part of Eq. (1) first. And, in the: second phase of modeling, the 
control term was included based on the superposition principal. 

2.4 Experimentation and Numerical Simulations: 
Results of some experim’ents that were conducted for 

modeling the setup are presented in this section based on the 
selection of the parameters of the numerical simulation using 
TDMA such that the experimental results were in agreement with 
the simulation results. 

For the numerical simulation results to be acceptable, the 
truncation error must be small and the finite difference 
representation of the marching method needs to meet the 
conditions of consistency and siability [9]. To keep the size of 
round off errors down, it is sufficient [ 113 that 

A + > O  , B , > O , C , > O  and . B , > 4 + C i  (1  1) 
These conditions are satisfied by the numerical scheme 

chosen here. Also, since the coefficients Ai,B, and Ciare always 
positive, the numerical results are stable. The number of grids, 
which gave numerically consistent results, was determined after 
choosing various numbers of gridls for simulation. It was observed 
that if number of grid points selected was 217 nodes, the 
numerical results were consisterit with the experimental results. 
Further, this lead to development of grid independent solution. For 
the numerical simulation of TDhlA, some of the parameters used 
were b = O.lsec and Ay = 5.267 x 104meters. The results were 
simulated at 10 sec interval. To simulate the results after each 10 
sec interval, the temperature prcdile over the entire domain that 
was obtained at the last iteration was used as the initial condition 
for the next set of simulation. 

The experiments were conducted by heating the setup by the 
heaters until a desired temperature was reached. Temperature data 
was collected from all 11 thermocouple readings with respect to 
time. 

2.4.1 Model Of Heater-1 
This section describes the dwelopment of a model for heater- 

1 shown as H-1 in Fig. 1. In order to accomplish this, only heater 1 
was kept ON at 100% of its load capacity. Fig.2 is an illustration 
of the resulting experimental results of this setup. When the 
heater-I was turned OFF, Fig.3 depicts the temperature response 
for the 11 thermocouples. 

As discussed in Sec. 2.3.1, the first step of modeling the 
system was to arrive at a value of a(y); this essentially means 
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predicting the system behavior by homogeneous part of Eq.( 1). 
The TDMA algorithm was used for simulation with the initial 
temperature profile generated by linear interpolation between the 
1 lthermocouple readings at the initial time represented in Fig. 3. 
In our initial attempt of simulation, a ( y )  was assumed to be 
constant over the entire domain. The TDMA simulations were 
made to match the cooling curve plots of the 11 thermocouples in 
Fig.3 by selecting different values of a. The plots below show 
the best possible match that could be obtained for the TDMA 
simulation and the experimental results. It can be noted in Fig.2 
that the chosen value of a = 8.5x10-'mZ /sec , leads to very good 
match between experimental results with that of TDMA 
simulations. Also the current choice of 01, as constant over the 
spatial domain, can be justified by our simulation results. 

IF- 7%- 

Fig. 2 Experimental results and 
TDMA simulations for heating 

curve of heater-I 
As discussed above, Eq. (1) represents the system response in the 
presence of source term. Fig.2 is the corresponding dynamic 
system response to heater 1 ON. While modeling the heating 
curve, attempts were made to determine a distributed source term 
model of p(y)  . Although, the heater is physically located at only 
one of the nodes of the discretized system for TDMA simulation, 
a point source term model was not able to represent the system 
behavior as observed in the dynamic system response in Fig.3. 
That is why a distributed source term model was developed which 
could represent the system behavior. TDMA simulation as 
discussed above was used to amve at this model of the heater-] 
shown in Fig.4. It can be noted that in this TDMA simulation, 
u(t ,y)  was assumed to be 1 for heater-I, which was to represent 
that the heater-1 was switched ON at 100% load capacity. u(t ,y)  
was zero for ail other heater models since they were switched 
OFF. The initial temperature for TDMA simulation was 26'C, 
room temperature, in Fig.3. By trial and error a distributed source 
term model was made as shown in Fig.4, which 
represents p ( y )  for heater-]. Using the p ( y )  distribution shown 
in Fig.4, the experimental results were forced to be in agreement 
with the simulation results for all 1 1  thermocouple results as 
shown in Fig.2. 

Fig 3. Experimental results and 
TDMA simulations for 

cooling curve of heater-I 
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Fig. 4 Source term model for heater-I 
The choice of above model forP(y) as shown in Fig.4, can be 
justified in terms of the effect of the source term over the domain 
of interest. As in Fig. 4, the maximum effect of the heater-I is on 

the two sides adjacent to its physical location. And, in general, the 
effect of the heater decreases as we move farther away from the 
heater location. By effect, we mean the heat flux generated in the 
system, which in turn leads to temperature rise. It can be noted that 
even though the source term, which represents a heater in the 
experimental setup which is located at node-I (extreme left) in the 
descretized system, is being represented by a distributed source 
term model as in Fig.4. The justification for selection of a 
distributed model for the heater can be validated by our 
experimental and simulation results, which are in agreement. This 
procedure was repeated to find a distributed source term model of 
each heater. 

3. DiffusionKonduction Optimal Control Problem 
After development of the model of the system, it was desired 

to synthesize the optimal neuro-controller, which we discuss here. 
In the beginning of this section we recapitulate the methodology 
for dynamic programming of a distributed parameter system as 
discussed in [l], and proceed to develop the optimal diffusion 
problem. 

3.1 System Dynamics (State Equation) 
We consider a two-dimensional distributed parameter system. 

Two dimension means the two independent variables of time ( t )  
and space (y) . The system dynamics we consider evolves in time 
and is given by 

x k + l , j  = f ,  ( x k , l ~ x k , ~ ~ " ' x k , j ~ ~ ~ ~ ~ x ~ , M  7 'k . j )  (12) 

The subscripts k accounts for evolution with time (time step) and 
j represents the spatial distribution (nodal number). hf denotes 
the final node number in the spatial distribution. 

3.2 Cost Function 
We consider a general cost function of the following form: 

N - l  M 
= y k . J ( x k . J '  'kJ) (13) 

k = I  J = I  

where N represents the number of discrete time steps and 
Y represents any linear or nonlinear function. In agreement with 
the above definition of the cost function, we denote the cost 
function @om time step k as 

where k is a dummy variable. Finally, we define the CO-state as 

where Ay is the spatial increment. 

3.3 Optimal Control Equation 

given by 
aJk/  a u k , j  = o (16) 
After some algebraic manipulation, the optimal control equation 
obtained is given by 

' Y a k , )  E a J k /  ( 1 5 )  

For optimal control, the necessary condition for optimality is 

3.4 CO-state Dynamics 
Substituting for J ,  from Eq. (14) and doing further algebraic 

manipulation, yields 
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Thus, we have obtained the State Equation, CO-State 
Equation and Optimal Control Equation. These equations have to 
be solved simultaneously to obtain the required optimal control. 
By using Eq.( 17), Eq.( 18) can be simplified to 

3.5 Optimal Diffusion Problem 
In this section we reconsider the development of an infinite 

time controller. In order to do this, recall that the problem is 
described by the PDE and the boundary conditions of Eqs. (1) - 
(3). For the sake of convenience, we represent Eq.(l)-(3) as 
follows: 

Note that x(0,y) represents any initial temperature profile within 
the interest domain. 

Here, the state variable is X(t, y )  and y is the spatial 
variable. The objective is to find the optimal control formulation 
U ( t ,  y ) ,  which minimizes the quadratic costfunction, defined as 

where, u ( t , y )  is the control variable at time tand spatial co- 

ordinate y , Q is the weightingfactor on the state variable, R is 

the weighting factor on the control variable. Further to and 

t ,  + 00 are initial and final times where yo  and Yr  are initial 

and final points on the spatial co-ordinate axis. 

3.6 Discrete Formulation 

minimized, is given by 
The discretized quadratic cost-function, which is to be 

where 

Q, F At&Q 
RD = AtAyR 

In this case, e, and R ,  are the weighting factors on the state 
and control variables respectively, in the discrete domain. For this 
particular problem, 

1 
v k , j  = 2 [ QD X I f , j  + RD u i , j  

Then, by applying Eq.( 17) and (19), we arrive at the following set 
of equations as the necessary conditions for optimality. The 
following equations are the State, CO-state and Optimal Control 
equations respectively 

li*= % j +  L \ t ~ . ( ~ j + i - ~ j + ~ j . , ) l A y 2  + &I (27) 

j = - R,l Pj'k+l, j (29) 
where At and Ay are the step sizes of discretization in time and 
spatial variables respectively and U' is optimal control. Together 
with the necessary conditions of optimality, we have to satisfy the 
following initial, transversality and boundary conditions. IfX,,, 

can be any point in the domain of interest, then 

aN,j = 0, as N -3 00, 
- 

xk,O = ' k , I ,  X k , M + l  - X k , M  7 and (30) 

'k ,O = ' k , l  ' ' k . M + l  = ' k , M  

4.0 Adaptive-Critic Controller Synthesis 
The adaptive-critic synthesis procedure is discussed, in fair 

detail, in [l]. However the core of the technique, which is the 
iterative training between Critic and Action neural networks, is 
recapitulated here in brief. The philosophical justification for 
adaptive-critic structures has been discussed by Werbos [ 121. 

We synthesize a set of M critic networks, for k = N -1 ,  with 
input xN- l , j  and output AN-, ,  as per the following steps. Assume 

xk,j  as some random "smooth" profile. Get uk,j from the trained 

action networks. Then get x ~ + ~ , ~  liom the State Equation Eq.(27). 

Input X k + l  . to the trained set of critic networks at ( k  + 1) lh time 

step, to get Ak+i.j . Now, with the availability of xk, j  and ,lk+l,j , 
calculate Ak,J from the CO-state Eq.(28). Train the set of critic 

networks with input xk,j- i  , xk,,  ,  and output for all 
the networks related to the internal node points. For those 
intended for the boundary node points, we consider either 
xk,l , xk,? or x k , M - l  , xk,M as the input. After that we focus on 
action network synthesis. The training process is carried out in the 
following steps. Assume random xk.j , within the relevant range, 

and input it to the action network,s, to get uk,j . Use State Equation 
Eq.(27) and the boundary condition [Eq.(30)] to get 
~,,,,~uniquely. Input x,,,,, to the trained set of critic networks to 

get Ak+l,j  . Get the optimal coni:rol uL.j from Eq.(29). Train the 

networks at k Ih time step with input xk,,-, , xk,j , x ~ , ~ + ,  and 

output u ; , ~  for all the networks related to the internal node 

points. For those intended for the boundary node points, we 
consider either Xk,l , Xk,*  or X k , M - I  , X k , M  as the input. 

Once this process of action synthesis is over, we revert to 
critic synthesis again. The altemate critic and action network 

.I 
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training process is continued till no noticeable change in the output 
is observed in the outputs in the successive training. Then the 
networks converge to give the true optimal relationship. 

In our controller synthesis, we set the numerical values as 
Q D = l ,  & = I ,  t , = O ,  yo=O and yf=1.143x10~’meters, 

which is the length of the experimental setup in Fig.1. For 
discretization of the system, we used 
At = 0.0lsec and Ay = 1.27xlO~*meters, which is the distance 
between two adjacent heater locations placed equidistant from 
each other. As our experimental setup has ten heaters, we select 
ten node points for neural network synthesis. Thus there are ten 
action and critic networks, one for each of the nodes. The 
convergence criteria were achieved when no noticeable change 
was observed in the output of the networks in successive training. 

It can be noted that the state and co-state equations in Eq.(27) 
and Eq.(28) respectively need aJand bJ values from the 

experimental model of the system. Since, in our modeling aJ is a 
constant value over the entire domain, a value of 
aJ = 8.5x10-’m2 /sec  was used in the equations. However in our 
TDMA model, the fiJ value is not constant. Its value changes with 
every heater model. In fact, every heater model has a distributed 
source term model as shown in Fig.4 for heater 1. It can be 
recapitulated that TDMA used 217 nodes to model the system, 
whereas our current neuro controller synthesis required an 
equivalent 10 nodes representation of the source terms. This was 
achieved by finding the area under the curve of source term (as in 
Fig.4 for heater-]) for each of the heaters and to use this numerical 
value as fiJ for that node of neural network. Since, the /3 term in 
the TDMA represents the rate of heat generation per unit volume, 
for the 1-D heat conduction, integration of this term over the 
length, gives an equivalent representation of rate of heat 
generation term to be incorporated in the neural network by a 
point source. 

In our current implementation, the network structure is 
retained similar to that in [l]. For the interior node points, we have 
used a multi-layer feed forward network of the form R,,,,,,, for the 
critic training and similar network for the action training. Here, 
R~,,,,., denotes a neural network with 3 neurons in the input layer, 
5 neurons each in the two other hidden layers and 1 neuron in the 
output layer. For the boundary node points, however, the network 
structure is taken to be of the form R ~ , ~ , ~ , ,  . This is because we 
have decided not to input the state values at the fictitious node 
points as input to the network, since the associated boundary 
conditions lead to both xo = x, and xM+, = x, . We have taken 
tangent sigmoid function for all the hidden layers and linear 
function for the output layer. 

To achieve convergence in training the networks the choice 
of the X k , j  value plays an important role. Based on the 

understanding of the system where the neuro-controller is to be 
implemented, Xk, , the state information should be such that it 

represents a “feasible” state. So a Fourier series based algorithm 
was developed to generate “smooth state profiles”, for training the 
networks. Using this algorithm, Xk, profile has smooth gradient 

over the entire length. 

5.0 Online Implementation Of The Neuro Controller 
After synthesizing the neuro-controller it was implemented in 

LabVIEW for online optimal control of desired temperature 
profile. As we synthesize a regulator problem, the error in 
temperature at each node location with respect to the desired 
temperature is feed to the neuro-controller after normalization. 
Since no sensors were available at exact heater locations, the 
temperature at the heater location was approximated by linear 
interpolation of temperature of two adjacent thermocouple 
readings. This was not true for the heaters placed at two ends 
(Heater-1 and Heater-I 0), where the thermocouples were placed 
on the top of the heaters. The action network, as discussed in Sec 
4.0 was implemented in LabVIEW and states were feed to the 
network to achieve control. 

The sequence of activities in neuro-controller implementation 
are as follows: get the temperature readings from the setup, find 
error with respect to desired temperature profile, normalize the 
error to get states. Feed the states to the neuro controller. Get the 
control from neuro-controller. Implement the control to the 
heaters. It should be noted that, since our current setup did not 
have any cooling or sinks additional constraints were implemented 
in the above algorithm for implementation. Whenever there was an 
overshoot from the desired temperature profile or whenever the 
controller demanded cooling at any of the heater locations, the 
heater was shut off during that particular cycle time. 

6.0 Results and discussion 
The desired final profile in the current experiment was 

parabolic with the maximum desired temperature at the center of 
the setup. Fig.7 shows a plot of the dynamic temperature readings 
at 10 heater locations. The desired profile is plotted as “*” in the 
figure. The experiment was started from an arbitrary initial profile, 
where all the thermocouple readings are close to of 50’ + / - 5 O  C. A 
plot of the actual control that was directed by the neuro controller 
to achieve the desired profile is presented in Fig.8. 

I I 

w. 
*rr-t. 

Fig. 7 Experimental results for desired parabolic profile 

Fig. 8 Control (?A Load of heaters) 
It can be noted that the neuro-controller achieved the desired 

profile in the steady state. The results are within the limits of 
predicted physical system behavior. 

Fig.9 and Fig. 10 are the temperature and corresponding 
control plots of the experimentation, when it is was desired to 
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drive the system to a uniform temperature of 75' C. The 
experiment was started with the initial temperature readings 
between 35' C and 4OoC. 

0 

10 mm 
H.u Hlmdn 

Fig. 9 Experimental results for desired linear profile 

10 Tm. 

wrHMbr 

Fig. 10 Control (?IO Load of heaters) 
Fig. I 1  represents the experimental results when it was desired to 
achieve a parabolic temperature profile over the domain, with the 
difference in reading between two end nodes as 10' C. The 
corresponding control is shown in Fig.12. 

10 

HOM- Tim 

Fig. 11 Experimental results for desired parabolic profile 

"rr h*mbs nnm 

Fig. 12 Control (YO Load of heaters) 

7.0 Conclusions 
An experimental setup representing the linear heat diffusion 

equation with Neumann boundary condition was built, its 
mathematical model was developed and finally the model was 
incorporated in an adaptive critic neuro-controller to develop an 
optimal controller. This controller was implemented online and the 
desired temperature profiles were successfully achieved in the 
experimental setup with this infinite time optimal regulator. 
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From the experimental results it can be observed that the 
optimal neuro-controller can drive the experimental setup from 
any initial temperature to the desired profile. 
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