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Proceedings of the ThB16.6
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

Dynamic Re-optimization of a MEMS Controller in

Presence of Unmodeled Uncertainties
Nishant Unnikrishnan, Venkat Durbha, S. N. Balakrishnan, Member, IEEE

Abstract Online trained neural networks have become
popular in recent years in designing robust and adaptive
controllers for dynamic systems with uncertainties in their
system equations because of their universal function
approximation property. This paper discusses a technique that
dynamically reoptimizes a Single Network Adaptive Critic
(SNAC) based optimal controller in the presence of unmodeled
uncertainties. The controller design is carried out in two steps:
(i) synthesis of a set of online neural networks that capture the
uncertainties in the plant equations on-line (ii) re-optimization
of the existing optimal controller to drive the states of the plant
to a desired reference by minimizing a predefined cost function.
The neural network weight update rule for the online networks
has been derived using Lyapunov theory that guarantees
stability of the error dynamics as well as boundedness of the
weights. This approach has been applied in the online re-
optimization of a micro-electromechanical device controller
and numerical results from simulation studies are presented
here.

I. INTRODUCTION

M any difficult real-life control design problems can be
formulated in the framework of optimal control

theory. It is well-known that the dynamic programming
formulation offers the most comprehensive solution to
compute nonlinear optimal control in a state feedback form
[1]. An innovative idea was proposed in [2] to get around the
numerical complexity of solving the associated Hamilton-
Jacobi-Bellman (HJB) equation by using an 'Approximate
Dynamic Programming (ADP)' formulation. In one version
of this approach, called the Dual Heuristic Programming
(DHP), one network (called the action network) represents
the mapping between the state and control variables while a
second network (called the critic network) represents the
mapping between the state and costate variables.

A significant improvement to the adaptive critic architecture
was proposed by [3]. It is named Single Network Adaptive
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Critic (SNAC) because it uses only the critic network instead
of the action-critic dual network set up in typical adaptive
critic architecture. SNAC is applicable to a large class of
problems for which the optimal control (stationary) equation
is explicitly solvable for control in terms of state and costate
variables. SNAC eliminates the iterative training loops
between the action and critic networks and consequently
there are computational savings.
In the recent past, there has been a lot of interest in the use
of neural networks for direct closed loop controller design
that guarantee desired performance in presence of
uncertainties and unmodeled dynamics [4]. An adaptive
optimal controller that makes use of online neural networks
to approximate parametric/unmodeled nonlinear
uncertainties for general control affine systems of the form
X = f(X) + g(X)U is discussed in this work. The weight
update rule used in the neural networks in this work is very
similar to the Lyapunov based weight update rule used in
Leitner's work [4]. The uniqueness of the method proposed
in this work is that the online function approximating
network can be used to re-optimize in real time an existing
Single Network Adaptive Critic [3] based optimal controller
that has already been designed for a nominal system. This
method is also unique in that unmatched uncertainties can be
dealt with. Section 2 discusses approximate dynamic
programming and the Single Network Adaptive Critic
technique for optimal control design. Section 3 outlines the
online approximation of system uncertainties and the
Lyapunov based online weight update rule used in this work.
Online re-optimization of the SNAC controller is discussed
in section 4. Simulation studies are performed and results are
given in section 5. The MEMS example considered here
involves the presence of an unmatched parametric
uncertainty in the system model that causes unmodeled
nonlinearities to be present in the tracking error equations.
The objective is dynamic reoptimization of the existing
SNAC controller designed for a nominal MEMS model.
Conclusions are drawn in section 6. Convergence proof of
the SNAC technique for control affine linear systems has
been given in the appendix.

II. APPROXIMATE DYNAMIC PROGRAMMING
A. Outline
In this section, we attempt to outline the principles of
approximate (discrete) dynamic programming, on which the
SNAC approach is based on. An interested reader can find
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more details about the derivations in [5]. In discrete-time
formulation, the aim is to find an admissible control Ut,
which causes the system described by the state equation

Xk+, =k (Xk7 Uk )(1

to follow an admissible trajectory that optimizes a sensible
performance index J given by

N-1

J =, Tk (Xk, Uk) (2)
k=1

where, the subscript k denotes the time step. XK and U.,
represent the n xl state vector and m xl control vector,
respectively, at time step k. One can notice that when
N -*00, this leads to the infinite time problem. First, the cost
function from time step k is denoted as

N-1

Jk = YE 'Vk (Xk kUj
k=k

III. NEURAL NETWORK BASED ADAPTATION AND ONLINE
WEIGHT UPDATE RULE

In this section, a novel technique that is used to capture
parametric uncertainties or unmodeled nonlinearities that
may be present in the plant dynamics but are not considered
in the system model used for controller design is briefly
discussed. This method has been elaborated in [6]. The
uncertainty approximation is achieved using an online neural
network in each system equation. Consider a general
nonlinear system with the following structure

x = f (X) +g(X)U (9)
The control vector drives the system from an initial point to
a final desired point optimizing a sensible performance
index J given by

(3)
Then J, can be rewritten as

Jk=Tk + Jk+I (4)
where TPk and Jk+I T'k represent the utility function at

k=k+l

time step k and the cost-to-go from time step k +1 to N,
respectively. The costate vector is defined as

,k =ajk (5)

For optimal control (stationary) equation, the necessary
condition for optimality is given by

a ok=0 (6)
aJUk

The optimal control equation can be written as

(ak( aXk+l = (7)

Using Eq.(7), on the optimal path, the costate equation can
be expressed as

(k=aTk ) axk k+I (8)
Eqs.(1), (7) and (8) have to be solved simultaneously, along
with appropriate boundary conditions, for the synthesis of
optimal control.
B. Single Network Adaptive Critic(SNAC)

The SNAC technique retains all powerful features of the
dual network Adaptive Critic (AC) methodology, while
eliminating the action network completely. Details of the AC
methodology have been provided in [5]. Note that in SNAC
design, the critic network captures the functional
relationship between Xk and Pk+ , whereas in AC design the
critic network capture the relationship between Xk and Pk .

Note that the SNAC method is valid only for the class of
problems where the optimal control equation Eq.(7) is
explicitly solvable for control variable Uk in terms of the
state variable Xk and costate variable k+I . Details
regarding the neural network training and convergence
checks can be obtained from [3].

J = fP(X, U)dt
0

(10)

It is assumed that a pre-designed SNAC optimal control U
is available to drive the modeled system along a desired
trajectory. Let the actual plant have the structure

X f(X)+g(X)U+d(X) (11)

where the controller U will have to be re-optimized to
optimize the plant performance with the unmodeled
dynamics d(X) present. Since the term d(X) in the plant
equation is unknown, the first step in controller re-
optimization is to approximate the uncertainty in the plant
equation. For this purpose, a virtual plant is defined. The
dynamics of this virtual plant is governed by

Xa f(X) + g(X)U + d(X) + XA-aX ATa(0) = X(O) (12)
We assume that we have all the actual plant states, X,
available for measurement at every step. The term d(X) is
the neural network approximation of the unmodeled
dynamics of the system which is a function of the actual
plant state. Subtracting Eq.(12) from Eq. (11) we have
XA d(X) -d(X) -X +Xa or Ea = d(X) -d(X)-Ea

where Ea AX-X. It can be seen that as d(X) -d(X)
approaches zero, the expression becomes an exponentially
stable differential equation, i.e. Ea -* 0 as time t --oo .

Defining d(X) _[d(X) ...d (X)], where d ((X) denotes the

unmodeled dynamics in the differential equation for the ith
state of the system. The approach in this study is to have ' n'
neural networks (one for each component of the unmodeled
dynamics) so as allow for simpler development and analysis.
Let us assume that there exists a neural network with an
optimum set of weights Wf and a basis function vector,

q( (X) that approximates d ((X) within a certain accuracy i.
Thus we have

di(X) = WT(f(X)+£ (13)
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Also d, (X) X), where kf/7 (X) is the output of the

actual neural network. updarepresents the actual network

weights. A stable weight update rule is

W = F e ipq(o (X) (14)

which can be obtained from a quadratic Lyapunov function
of the form L (112)e pi +(1/2)(W[17 14) where

ea- Xi - Xai andWU _w - W,
IV. DYNAMIC RE-OPTIMIZATION OF THE SNAC

CONTROLLER
In this section we discuss how the state and costate
equations get updated online that help in reoptimizing the
critic network. The steps ofthis process are detailed below.
It can be seen in subsection II.B that the main components of
the SNAC controller design architecture are the Critic
Network, the optimal control equations, the state equations
and the costate equations. For implementation purposes, the
state equation Eq. (9) is rewritten in a discrete form as

Xk_+, = Xk, + A\t(f(Xk) + g(Xk,)Uk,) (15)
where At is the time step of integration.
The performance index Eq. (10) can be expressed as

J = tTk (Xk Uk) (16)
k=1

In a discrete form, the actual plant equation Eq. (11) is
written as

Xk+A = Xk+ At(f(Xk) + g(Xk)Uk+ d(Xk)) (17)
In this study Euler integration scheme has been followed for
implementation purposes.
The critic network is trained to represent the mapping
between Xk and Ak+1 for the cost function given by Eq. (16)
subject to the nominal state equation Eq. (15). The actual
plant is given by Eq. (17) where the uncertainty d(Xk) is
present in the system dynamics. The critic network has not
been trained with the actual state equation and hence is not
the optimal critic for the actual plant. On close examination
it can be seen that the costate equations will have to be
modified so that an online training routine can help the critic
capture the optimal relation between Xk and Ak+1. The
uncertainty in the actual plant dynamics is captured by the
online neural network and is represented by d(Xk) . It should
be noted here that the inputs to the neural network are the
states of the actual plant which we assume are readily
available for measurement at every time step. In a discrete
format, the weight update rule of the network that
approximates the plant uncertainty is expressed as

I I

Wi k+l = Wi,k + A\t(F,eai k+l Pi (Pi (Xk ))(1l8)
Revisiting the costate equation (Eq. (8)), it can be seen that

there is a term that involves axk . An essential part of

the actual plant equation is the uncertainty d(Xk) . This term
will have to be incorporated into the costate equation to

ensure optimality of the costate. On replacing d(X,) with

d(X,) in Eq. (17) and using it in the costate equation, the
new costate equation can be written as

J [) atjf(Xk) ag(Xk) ad(Xk) T

(19)
The uncertainty approximation d(X,) is given by WIT'(X )
(output of the online neural network). The partial derivative

term ad(X( xtX )can be written as ;Ti)q(X )
. Since the

basis functions, q(Xf) are chosen by the control designer,
the partial derivative of the basis functions can be calculated
offline. This ensures that the costate equation gets updated
online as the online neural network approximates the
uncertainty. The reoptimization scheme is represented in
Figure 1.
The steps for dynamic (online) critic re-optimization are as
follows:
1. For each step k, follow the steps below:

* Input Xk to the critic network to obtain 2k+j=1 4+l
* Calculate Uk, form the optimal control equation since

Xk and 2k+j are known.
* Get Xk+l from the state Eq.(30) using Xk and Uk

* Get d(Xk) as the output ofthe online neural network
* Input X,+, to the critic network to get 2k+2
* Using X,+, and 2k+2' calculate AJ+j from the updated

costate Eq.(32)
2. Train the critic network for Xk; the output being

corresponding 2j,
3. Updatetime step k to k+1
4. Continue steps 1-3.

Figure 1: Dynamic Reoptimization ofSNAC Controller
V. SIMULATION STuDY: AMEMS ACTUATOR

A. Problem Description and Optimality Conditions
The problem considered in this study is a MEMS device,
namely electrostatic actuator [7]. This problem was chosen
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to prove that this technique is applicable for complex
engineering systems of practical significance.
The governing equations are given by

I V -Qg =0
R~~LA} 2(20)

mg + bg + k(g - go) + 0

where Q denotes the charge, g the gap between the plate
and the base (go = 1,um ), and g represents the rate of change
of the gap when the plate moves. ViK is the input voltage that
is used to move the plate to the desired position. The system
parameters for the MEMS actuator are available in [7].
Defining the state variable Z = [z1 z2 z3 ]T = [Q g k]T , and
substituting system parameters, Eq.(20) can be written as

±= 1 0000 b 10Z1Z2
Z2 Z3 (21)

The function of the control input in this problem is to bring
the plate to some desired position, i.e. the gap g has to be
maintained at some desired value. The desired value of the
gap was set as 0.5 Am. An optimal controller was designed
to drive the plate to the desired value. At the equilibrium
point, z2 =0.5, Z =0. Solving Eq.(21) for Z1Iz3 and V,,
the values of the states at the equilibrium (operating) point
were obtained as Z0 =[10 0.5 O] and the associated steady
state controller value was given as V,o=0.05. Next, the

deviated state was defined as X = [xi x2 x3 ]T =Z - Z0 and the
deviated control as u =- Vf - Vn0 . In terms of these variables,
the error dynamics of the system were

X1 = -5x1 lOOx2 - 1 Ox1x2 +100Ou
X2 =X3 (22)
X3 0. x- 0.5x3 x2 - 0.005X12

Next, an optimal regulator problem was formulated to drive
X - 0 with a cost function, J as

J =f(XTQ X+R U2)dt
0

(23)

with Q, > 0 and Rw > 0 the weighting matrices for state and
control respectively. The state equation and cost function
were discretized as follows

X1 -5Xlk 1OOx2 lOx kx2k +1000Uk
x2 I Xk+ Atl X3 (24)

_X3k,I -O. I' .53X3k k ° 0xk

= (XkTQW Xk+QRI Uk )At (25)
k=l2

Next, using 'P(XT Q Xk +RWUU) At/2 in Eqs.(7) and (8),
the optimal control and costate equations were obtained as
follows

(26)Uk = wRkI~'
AT[ax (27)

In Eq. (27) Fj represents the expression on the right hand
side of Eq. (24). For this problem we chose At= 0.001,
Q =i3 and R =1. In the SNAC synthesis, we chose three
sub-networks each having a 6-1 structure for the critic
network. In each network, we selected hyperbolic tangent
functions and a linear function as activation functions for the
hidden layer and output layer respectively. The SNAC based
control law was able to make the actuator plate optimally
track the desired reference.
B. Unmatched Uncertainty

In order to test the reoptimization scheme, the value of
permittivity £ was changed from I C2 /N UM2 to
0.5 C2/N uM2. This change was assumed to be an unknown
uncertainty that would introduce additional nonlinearities to
the nominal model represented by Eq. (21). The aim of the
reoptimization scheme was then to reoptimize the existing
optimal SNAC controller (nominal controller) to make the
actuator plate optimally track the desired reference position.
The system model now became

±1 =1000V 2OZ1Z2
Z2 Z3 (28)

(Z1X0)z( ) +

It is assumed that only the nominal model Eq. (21) is
known and Eq. (28) is unknown. Eq. (28) can be expressed
in terms ofthe known model with the uncertainty lumped up
in each state equation as shown in Eq. (29).

±= 1 000kb-1 Zzz2+ d1(Z)
z2 Z3+ d2(Z) (29)

Z-( )- Z/2 )-Z2 +1+ d3 (Z)

where the unknown terms d1 =-oz1z2, d2, d3 I(z /lo).

At the equilibrium point, z2 = 0.5, Z =0. Solving Eq.(29)
for z1, Z3 and Vf,1, the values of the states at equilibrium are

Z2 0.5

Z3 = d2

z =((-(Z3 /2)-z2 ++d3)200)

(30)

and the associated steady state control value is
Vfj = (10°Zz2- dl)11000 (31)

In order to approximate the unknown nonlinear terms in the
state equations we introduce a virtual plant as explained in
Section 3. The structure of the virtual plant used in this
problem was

il = 1O000V,-1 0z1z2 + dl (Z) + Z1-ZI,
A

z2, =Z3+d2(Z)+Z2 -Z2

Z3=- 0 -(Z1-Z2 +1+d3(Z)+z3 -Z3

(32)
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In Eq. (32) d, represents the output of the online neural
network that approximates the uncertainty in the ith state
equation of the system.
Basis function neural networks were used in this study for
approximating the unmodeled dynamics. Vectors C,
i = 1, 2,3 which have a structure C, = [1 zi ]T were created. The
vector of basis functions D was composed of all possible
products of elements of C,'s. By using kronecker products
to represent the neuron interactions, D was composed as
D = kron(kron(Cl, C2), C3) where kron(*, *) represents the

kronecker product. During simulation da, i = 1, 2,3 were used
in Eqs. (30) and (31) to replace d,, i = 1, 2,3 .

The discretized error equations are

[Xlkl 1 [1000(& +u) 10(zl +Xl )(z2 +x2 )+dl (Xk)

XkK +At (Z3+x3 )+d2 (Xk) (33)

(1 x )2 /200) ((z3 +2x3_X3k+1_( Z, +YXl 0 Z3 +X32k) / Z2 + X22 ) + d3k (Xk )
where de, i = 1,2,3 represent the uncertainties that appears in
the error equation because of the nonlinearities in the plant
equations. A virtual set of error equations were defined that
were used to approximate the uncertainties in the error
equation, Eq. (33). These virtual set of error equations were
given by

Xl k+1 IlOOO(Vin +Uk) 10(z1+x)

'7+At[(z+x+d2ek x2+3)2 (4(z3 +x )2 X
X2 k+1= + t( +X +(Xkz ) + X2k kx 1

-X3 k+1 ((Zi + Xlk) /0(3++X32 ) 2(34)
(Z2 + X2 ) +d1k (Xk) + xX

(Z2 + 2k ) 3k (Xk ) + 3k 3 k

In Eq. (34), d> 1 1,2,3 represent approximations of the
unknown terms in the error equations Eq. (33). The terms
denoted by d are outputs of online neural networks which
have the same structure as the networks described earlier (to
approximate uncertainties in the plant equation). Vectors
Ce , i= 1,2,3 which have a structure C =[1 xi]T were
created. The vector of basis functions (De was
(De = kron(kron(Cl, C2e), C3e) . The outputs of the online neural
networks that approximate uncertainties in the error equation
were expressed as dk=§eT4 (Xk). These outputs were

used to replace the uncertainties denoted by de in Eq. (33).
Next, using P (XT QW Xk + RW U2) At /2 the optimal control
and costate equations was obtained. The expression for
optimal control is the same as Eq. (26). The costate equation
now accommodates the change in the state equation.
During each iteration of the simulation, the critic network
mentioned in subsection V. (A) was updated. This update
was based on the new costate equation. The online training
was carried out using the error vector ( Xk ) at that instant as

the input and the new target costate (2k ) as the output. This
training was performed online made use of only one epoch
of the Levenberg-Marquardt back-propagation scheme
available in the Neural Network Toolbox ofMATLAB v 7.0
for training/ reoptimizing the network at each time step.

VI. RESULTS
Simulation studies were performed for twenty seconds.

The actuator position has been plotted in Figure 2. It details
the nominal state trajectory (state trajectory of the plant if
uncertainties were not accounted for), state trajectory
affected by online reoptimization of the critic network and
optimal state trajectory if the uncertainty were known and
accounted for when the optimal controller was designed. The
last mentioned state trajectory was simulated for comparison
purposes. It can be seen in Figure 2 how well the
reoptimized controller drives the actuator to the desired
position of 0.5,um. Figure 3 illustrates nominal control,
reoptimized control, and optimal control if uncertainties
were known and modeled in the system equations apriori.
The error state uncertainty approximations carried out by the
corresponding networks for the three error state equations
are shown in Figure 4.

VII. CONCLUSIONS
There has not been any concerted effort to dynamically re-
optimize existing controllers in the presence of uncertainties.
In this study, a scheme to re-optimize a pre-designed optimal
SNAC controller for control affine systems in the presence
of unmodeled/parametric uncertainties has been developed.
This methodology has been simulated and results have been
shown for the tracking control of a MEMS actuator. The
results shown are promising. A set of online neural networks
capture plant uncertainty. This information about the
nonlinearity/uncertainty is used to update the costate
equation in the SNAC architecture to further train /adapt the
critic network to optimize itself in presence of the
unmodeled term. This method is unique in that unmatched
uncertainties and nonlinearities can be compensated for as is
shown in the example illustrated in Section 5.

APPENDIX: PROOF OF CONVERGENCE OF SNAC
Let g (.) represent the function approximated by the critic
neural network.

Ak,l =g(xk) (la)
The control is then given by,

u -R bTg(x ) (2a)
Using Eq(2a) in state propagation equation we get

Xk+I =Axk-bRlbTg(Xk) (3a)

Let wf and wR represent the weight matrices ofthe input and
output layers of a two layer neural network respectively. Let
v'(.) be the activation function of the hidden layer. g (.) can

be expressed as g (x) = w¾o(V§Tx) .

Let g,+1 (xk) represent the desired output of the network in

(n+1)th iteration. g,1 (xk) can be expressed as
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9n+I (x(k)) = Qxn (k+ 1)+ A g, (x)n (k+ 1)) (4a)
To prove that SNAC training converges, it is sufficient to
prove that g, (.) is a contraction mapping.
From Eq. (4a) we can write

g, (X(k)) = Qxn_1 (k + 1) + A g'_j X_ (k + 1)) (5a)
Subtracting Eq. (5a) from Eq. (4a) we get

(9n+I (x (k)))gn (X (k) )) =Q (x, (k +1))x,_1 (k +1 )) +... (6a)
... AT (gn (xn (k+1))- g,_ (xn_1 (k+1)))

Taking norm on both sides ofEq (6a) yields

|(&n+, (x(k))-g, (x(k)))ll < |IQ(X, (k + 1)-x,_1 (k + 1))lI+ *-

||AT (gn (xn (k+1))- gn- (x, (k+ 1)))||

On substituting the state propagation equation, Eq. (3a) in
the first term on the right hand side of Eq. (7a), the first term
gets modified to ||QbR-VbT (g, (xk) - gn_, (Xk))|| -

Now, consider the second term on the right hand side of Eq.
(7a). The term, (g, (x, (k + 1)) - gn-, (x,-, (k + 1)))

< gn- (xn (k+ 1))-gn_ (xn- (k+1)) + gn (xn(k+1))-gn- (xn (k+1)) (8a)

Consider the first term in the above inequality,
||g9,1 (xn (k + 1))-g, (x,- (k + 1))ll

(9a)

As ,(.) is a Lipschitz function, (o(x)-(o(y)<7(x-y) where,
1i is any positive number. Using this relation, Eq. (9a)

< |FWT_7 Wi|| |W|bR T
b |(g, (x (k))-g, (x(kg)))|

The second term in Eq. (8a) represents the change in the
network output due to change in weights. Let the change of
weights in the input layer be Aw, and that in output layer be
Awv . It can be seen that, g (x (k + 1)) - g, (x, (k + 1))||

= |(WTQ(wCx (k + 1)) -T/f(WT > x, (k + 1)))11
< W 7 (Awi, )T (k + 1))|| + (Aw°,_ )T (I Oa)

Based on backpropagation algorithm, we get

(A_VV" )T <- llkj ll ||(g (x (k))-g , (X (k)))||

(Awi , ) < llk2 ll ||(g, (x(k))- g,1 (x(k)))
where kj = a (.)y, (n) and k2= aWT On
Therefore, the second term in Eq. (8a),

gn(xn(k+1)) -g_l (x(k+1)) < WOni k2 (gn(x(k))- g_ (x(k))) (1 a)

*. + ~kl ~~(g, (x(k))-g,,(x(k))) ( a

Eq. (7a) can be rewritten as

(gn (xn (k+1))-g& 1 (x 1 (k+1))) < W 7 k2~(gn (x(k))-gn (x(k)))
*.+ kl (gn (x(k))-gn 1 (x(k))) + F< <_bRi'bT ...nb (g, (x(k)) -gn (x(k)))

(13a)
|gn+i (X (k))-gn (x(k)))ll < kQbR-lb)T (g< (Xg)-gn_l (X, ))g |+--

*. TI || IIPII~||(g (X (k)))-g,- (X (k )) )|| < T ||(g, (xk) -g,_1 (xk ) )||
The above is a contraction mapping if 'PTl <1 -n. This
condition can be met by selecting appropriate values ofR and
a .
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Figure 2: Actuator Position vs. Time
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Figure 3: Control Voltage vs. Time
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= IIPII lI(g, (x (k))- g,1 (x (k)))11
Now, we can write

,p<l (12a)
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Figure 4: Error state uncertainty vs. Time
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