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Abstract— This paper proposes a new model-following 
adaptive control design technique for nonlinear systems that are 
nonaffine in control. The adaptive controller uses online neural 
networks that guarantee tracking in the presence of unmodeled 
dynamics and/or parameter uncertainties present in the system 
model through an online control adaptation procedure. The 
controller design is carried out in two steps: (i) synthesis of a set 
of neural networks which capture the unmodeled (neglected) 
dynamics or model uncertainties due to parametric variations 
and (ii) synthesis of a controller that drives the state of the 
actual plant to that of a reference model. This method is tested 
using a three degree of freedom model of a UAV. Numerical 
results which demonstrate these features and clearly bring out 
the potential of the proposed approach are presented in this 
paper. 

I. INTRODUCTION

HE field of artificial neural networks and its application 
to control systems has seen phenomenal growth in the 

last two decades. The main philosophy that is exploited 
heavily in system theory applications is the universal 
function approximation property of neural networks [1]. 
Benefits of using neural networks for control applications 
include its ability to effectively control nonlinear plants 
while adapting to unmodeled dynamics (terms in the plant 
equations that were not considered during model synthesis) 
and time-varying parameters.  
A paper by Narendra and Parthasarathy demonstrated the 
potential and applicability of neural networks for the 
identification and control of nonlinear dynamical systems 
[2]. Sanner and Slotine [3] developed a direct adaptive 
tracking control architecture with Gaussian radial basis 
function networks to compensate for plant nonlinearities. In 
1996, Lewis et al. [4] proposed an online neural network that 
approximates unknown functions and it was used in 
designing a controller for a robot. More important, their 
theoretical development also provided a Lyapunov stability 
analysis that guaranteed both tracking performance as well as 
boundedness of weights. However, the applicability of this 
technique is limited to systems which could be expressed in 
the “Brunovsky form” [5] and which are affine in the control 
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variable (in state space form).  
A relatively simpler and popular method of nonlinear control 
design is the technique of dynamic inversion, which is 
essentially based on the philosophy of feedback linearization 
[5,6]. A drawback of this approach is its sensitivity to 
modeling errors and parameter inaccuracies. Important 
contributions have come from Calise and his co-workers in a 
number of publications (e.g. [7, 8]), who have proposed to 
augment the dynamic inversion technique with neural 
networks so that the inversion error is cancelled out.  
There always has been a need to develop efficient control 
design techniques to address modeling errors issues. Almost 
all the techniques mentioned above are applicable only for 
certain classes of nonlinear systems (control-affine systems, 
SISO systems etc). In this context, a more powerful tool is 
one that can address nonlinear systems in a more general 
form. An approach was first presented in [9], where the 
authors followed a model-following approach. The idea was 
to design an ‘extra control’ online, which when added to a 
nominal controller (designed off-line), lead to overall 
stability and improved the overall performance of the plant.  
An approach, by Lang and Stengel [10] suggested the 
transformation of the nonaffine state equation to an 
augmented form where the control variable appears in a 
linear form which can then be solved. A systematic 
procedure to implement this approach on plants where the 
control appears in a nonaffine fashion is given in [11].  
The objective of this paper is to present an approach to 
design adaptive controllers for nonaffine systems with 
uncertain parameters or unmodeled dynamics (nonlinearities) 
in the state equations relying on the philosophy presented in 
[10]. The controller design is carried out in two steps: (i)
synthesis of a set of neural networks which capture the 
unmodeled (neglected) dynamics due to neglected terms or 
due to uncertainties in the parameters and (ii) computation of 
a controller that drives the state of the actual plant to that of 
a reference model. The weight update rule for the online 
networks is derived using a Lyapunov-based approach, 
which guarantees both stability of the error as well as 
boundedness of weights.  
In this study, numerical results based on the UAV model 
provided in [11] are provided. Simulations not only consider 
parametric uncertainties present in the system model but also 
account for modeling nonlinearities that were neglected 
during modeling or that manifested during plant operation. 
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The results obtained from this research bring out the 
potential of this approach. Rest of the paper is organized as 
follows. In Section 2, the control design technique and the 
two step process proposed in this paper are discussed. The 
neural network structure and the derivation of the weight 
update rule are also outlined in this section.  Simulation 
studies on the UAV model and results are given in Section 3. 
Conclusions are drawn in section 4. 

II. CONTROL DESIGN PROCEDURE

The control design procedure proposed in this paper has two 
main components. In one part, the aim is to train the weights 
of the neural networks, so as to capture the unknown 
function that appears in the plant dynamics. In the other part, 
assuming a neural network approximation of the unknown 
algebraic function, the objective is to get the solution for the 
control variable that guarantees model-following. These two 
components of the control design procedure, starting with a 
mathematical description of the problem, are discussed in 
detail in the following subsections. 

A. Problem Description 

Let us consider a reference nonlinear system, which has the 
following representation 

( )d dX f X∗=                           (1) 

where n
dX R∈  is the desired state vector. We assume that 

the order of the system n  is known. The actual plant is 
assumed to have the following structure 

( ) ( ), ,X f X U d X U= +                   (2) 

where nX R∈  is the state of the actual plant and nU R∈  is 
the controller (to be discussed later). The algebraic function 

( ), nd X U R∈  arises because of two reasons: (i) there may be 

neglected algebraic terms in the model and (ii) the numerical 
values of the parameters may not perfectly represent the 
actual plant and this error results in unknown functions in the 
model. The controller U  needs to be designed online such 
that the states of the actual plant follow the respective states 
of the reference model. In other words, the goal is to ensure 
that dX X→  as t → ∞ .  As a means to achieve this, a 

prerequisite is to capture the unknown function ( ),d X U ,

which is accomplished through a neural network 

approximation ( )ˆ ,d X U  in this study. A needed intermediate 

step towards this is to define an ‘approximate system’ as 
follows 

( ) ( ) ( ) ( ) ( )ˆ, , , 0 0a a aX f X U d X U X X X X= + + − =             (3) 

Through this artifice, we ensure that  a dX X X→ →  as 

t → ∞ . Obviously this introduces two tasks:  (i) ensuring 

aX X→  as t → ∞  and (ii) ensuring a dX X→  as t → ∞ .

We discuss these two steps separately in the following 
subsections. The reason of choosing an approximate system 

of the form in Eq. (3) is to facilitate meaningful bounds on 
the errors and weights. 

B. Capturing the Unknown Function 

First, we define ( ) ( )1( , ) , ,
T

nd X U d X U d X U≡ , where 

( ), , 1, ,id X U i n=  is the thi  component of ( ),d X U . In this 

study, each element of ( ),d X U  is represented by a separate 

neural network. The idea is to have n  neural networks for n
independent channels, which facilitates easier mathematical 
analysis. Various researchers have worked on using one 
neural network to approximate the unknown nonlinearities 
using a single network in aerospace applications [7, 8]. Such 
an approach leads to one single network with a large number 
of hidden neurons in its structure. The approach of using a 
network for each state equation can be helpful in dealing 
with situations where the unknown terms in each state 
equation are of different magnitudes. Polynomial basis 
neural networks [12, 13] are used in this study for 
approximating each of the unknown functions ( ),id X U . In 

order to form the vector of basis functions, the input data is 
first pre-processed. In our numerical experiments, we created 

iC , 1, ,i n=  which have a structure 

21
T

i i iC x x= (the highest power depends on the 

application and was fixed by trial-and-error). The vector of 
basis functions  is selected as 

( )( )( )3 1 2, , , , ,nkron C kron C kron C CΦ =             (4) 

( ),kron  represent the “Kronecker product” and is defined 

as [12] 

( ) [ ]1 1 1 2,
T

n mkron Y Z y z y z y z=                    (5) 

where nY R∈  and mZ R∈ . The dimension of the neural 
network weight vector is same as the dimension of Φ .
The technique for updating the weights of the neural 
networks (i.e. training the networks) for accurate 
representations of the unknown functions ( ), , 1, ,id X U i n=

is discussed here. Define 

( )
i ia a ie x x≡ −                           (6) 

From Eqs. (2-3), equations for the i th channel can be 
decomposed as  

( ), ( , )i i ix f X U d X U= +                            (7) 

( ) ( )ˆ, ,
i ia i i ax f X U d X U e= + −                  (8) 

Subtracting Eq.(7) from Eq.(8) and using the definition in 
Eq.(6) gives 

ˆ ( , ) ( , )
i ia i i ae d X U d X U e= − −                     (9) 

From the universal function approximation property of 
neural networks [13], it can be stated that there exists an 
ideal neural network with an optimum weight vector iW  and 

basis function vector ( )i XΦ  that approximates ( )id X  to an 
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accuracy of iε ; i.e.

( ) ( ), ,T
i i i id X U W X U ε= Φ +                         (10) 

Let the actual weight of the function approximating network 

be ˆ
iW . The approximated function can be expressed as 

( ) ( )ˆ ˆ, ,T
i i id X U W X U= Φ                      (11) 

The objective now is to derive a weight update rule. On 
substituting Eqs. (10-11) in Eq.(9) we get 

( ),
i i

T
a i i i ae W X U eε= Φ − −                       (12) 

where ( )ˆ
i i iW W W≡ −  is the error between the ideal weight 

and actual weight of the neural network. Note that ˆ
i iW W=

since iW  is constant. 

Next, a weight update law to be implemented online is 
derived. Define a series of Lyapunov functions 

, 1, ... ,iL i n= such that 

( ) ( )2 11 1

2 2i

T
i a i i iL e W Wγ −= +                        (13) 

where 0>iγ  is the learning rate for the thi  network. A 

weight update rule shown in the following equation is used 
to update the function approximating network weights 
online. 

ˆ ˆ( )
ii i a i i i iW e X Wγ ϕ γ σ= − −                               (14) 

 where σ  is a sigma modification term used to prove a 
bound on network weights. Lyapunov derivative based proof 
of error convergence and stability of the weight update rule 
is shown in detail in [14]  

C. Control solution 

In this part, we assume that the neural network 

approximation of the unknown function ( )ˆ ,d X U  is 

available. We attempt to drive a dX X→  as t → ∞  by 

enforcing the following second order error dynamics 

( ) ( ) ( ) 0a d d a d p a dX X K X X K X X− + − + − =                  (15) 

with positive definite gain matrices dK  and pK . This scheme 

allows the designer to shape the transient response of the 
error dynamics in Eq. (15).  
The approach presented here is based on taking the time 
derivative of Eq. (3) thus obtaining an affine model where 
U  appears in a linear fashion. This method of getting 
affinity in the derivative of the control is not new [10, 11]. 
On differentiating aX  ,we get 

ˆ ˆ
a a

f f d d
X X U X U X X

X U X U

∂ ∂ ∂ ∂= + + + + −
∂ ∂ ∂ ∂

     (16) 

Next, substituting Eqs. (1), (3)  and (16) in Eq.(15) leads to 

( ) ( ) ( ) ( )( ) ( )*

ˆ ˆ
...

ˆ... , 0

a d

d a d p a d

f f d d
X U X U X X X

X U X U

K f X U d X X X f X K X X

∂ ∂ ∂ ∂+ + + + − − +
∂ ∂ ∂ ∂

+ + − − + − =

  (17) 

Solving for the control law U  from Eq. (17), and 
substituting  ˆ( , ) ( , )f X U d X U+  for X , we obtain 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

1

*

ˆ
ˆ ˆ ˆ ...ˆ

ˆ... ,

d a

d a d p a d

f d
X X f d f d f df d X XU

U U
K f X U d X X X f X K X X

− ∂ ∂+ − + − + − + −∂ ∂ ∂ ∂= +
∂ ∂

+ + − − − −

(18)

Note that the nU R∈  in this formulation. 

III. SIMULATION STUDIES

The system considered in this study is a three degree of 
freedom model of an unmanned aerial vehicle (UAV).The 
system equations used in this study are taken from [11]. The 
system equations governing the UAV dynamics are  

( )

sin( )

cos( ) cos( )

sin( )

cos( )

n

n

T D
V g

W

g
k n

V
g k n

V

γ

γ μ γ

μχ
γ

−= −

= −

=

                             (19) 

The state variables of the UAV under consideration here are 
the airspeed V , flight path angle γ , and flight path heading 
χ . The control inputs in the state model are the thrust 
applied T , load factor n , and bank angle μ . g  represents 
the gravitational constant,  W is the weight, and D  is the 
drag force. The drag force is given by a simple model as 
shown below. 

2 2 2
2

0 2

2
0.5 n

D

k k n W
D V S C

V S
ρ

ρ
= +                       (20) 

nk  is the load factor effectiveness coefficient and takes 

values such that 0 1nk< ≤  . A value of nk  less than one 

indicates controller failure. If the controller is performing 
satisfactorily, 1nk = . The parameters used in the model are 

given in Table 1 and have been taken directly from [11].  
Table 1: UAV system parameters 

Parameter Value
Density  ρ  1.2251 km/m3

Weight  W  14515 kg 
Reference Area S  37.16 m2

Maximum thrust  maxT  113868.8 N 

Maximum Load Factor  maxn  7 

Induced Drag Coefficient  k  0.1 
Parasite Drag Coefficient  0DC  0.02 

In [11] an adaptive controller for nonaffine plants (CNAP) 
was shown to be effective in capturing three parametric 
uncertainties: uncertainties in the parasite drag coefficient 

0DC , in the induced drag coefficient k  and in the load factor 

effectiveness coefficient nk . In this study, an attempt was 

made to study the effectiveness of the proposed method to 
approximate system uncertainties (unmodeled nonlinear 
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terms and parametric uncertainties) and design a controller 
to make the UAV states track desired reference states. The 
added challenge in this work was the presence of unmodeled 
nonlinear terms in the system model. The term neglected in 
the plant equation for this purpose was the first term in Eq. 
(20) representing drag, namely: 2

00.5 DV S Cρ . As in [11], 

parametric uncertainties were assumed to be present in the 
values of k  and nk  and 0DC .

Define [ ], ,
T

X V γ χ≡ , [ ], ,
T

U T n μ≡ . Also ( )11 00.5 /Dc g SC Wρ≡ ,

12c g≡ , 13 /c g W≡ , ( ) ( )2
14 2 /c gW W Sρ≡ , 21c g≡ − , 22c g≡ ,

31c g≡ . The state equations now become 

( )
( ) ( )
( ) ( )

2 2 2 2
1 11 1 12 2 13 1 14 2 1

2 21 2 1 22 2 3 1

3 31 2 3 1 2

sin( ) /

cos( ) / cos( ) /

sin( ) / cos( )

n

n

n

x c x c x c u c k k u x

x c x x c k u u x

x c k u u x x

= − − + −

= +

=

      (21) 

The desired reference trajectories for the UAV states are 

[ ] [ ]1 2 300 0
T T

d dx x =  and the heading angle is required to 

track the output of a reference model given by 

1 2

2 1 2

3 1

1.4
m m

m m m

d m

x x

x x x r

x x
χ

=
= − − +
=

                                  (22) 

where rχ  is a thirty degree heading angle doublet: 

0, 5

6( 5), 5 10

30, 10 20

30(5 0.2 ), 20 30

30, 30 40

30(9 0.2 ), 40 45

0, 45

t

t t

t

r t t

t

t t

t

χ

≤
− < ≤

< ≤
− = − < ≤

− < ≤
− − < ≤

>

                              (23) 

The simulation is carried out such that the parameters in the 
system model change after twenty seconds in the following 
manner 

( 20)
0

( 20)

( 20)

( ) 0.02(2 )

( ) 20(1 )

( ) 0.5(1 )

t
D

t

t
n

C t e

k t e

k t e

− −

− −

− −

= −

= −
= −

                                (24) 

We assume that the changes in parameters given in Eq. (24) 
and the nonlinear term in the definition of drag ( 2

11 1c x− ) are 

unknown for purposes of controller design. 
The approximate system is defined as follows 

( )
( ) ( )
( ) ( )

2 2 2
1 12 2 13 1 14 2 1 1 1 1

2 21 2 1 22 2 3 1 2 2 2

3 31 2 3 1 2 3 3 3

ˆsin( ) / ( , )

ˆcos( ) / cos( ) / ( , )

ˆsin( ) / cos( ) ( , )

a n a

a n a

a n a

x c x c u c k k u x d X U x x

x c x x c k u u x d X U x x

x c k u u x x d X U x x

= − + − + + −

= + + + −

= + + −

    (25) 

Notice that the nonlinear term and the parametric uncertainty 
in the first equation of the state model is captured by the 
neural network 1̂( , )d X U . Similarly, the terms that appear due 

to parametric uncertainties in the second and third equations 
of the state model are approximated by 2

ˆ ( , )d X U  and 3
ˆ ( , )d X U

respectively. Basis function neural networks were used in 
this study for approximating the unmodeled dynamics. For 

the first network, vectors 1iC , 1,2i =  which have a structure 
2

11 1 1[0.001 0.001 0.001 ]TC x x=  and 
2

12 2 2[0.001 0.001 0.001 ]TC u u=  were created. The vector of 

basis functions Φ  was composed of all possible products of 
elements of 'iC s . By using kronecker products to represent 

the neuron interactions, Φ  was composed as 

1 11 12( , )kron C CΦ =  where ( , )kron ∗ ∗  represents the kronecker 

product. The neural network that approximated the 
uncertainties in the first state equation consisted of nine 
neurons. The second network had eight neurons and vectors 

2iC , 1,2,3i =  were created to preprocess the data to form a 

set of polynomial basis. The vectors had a structure 

21 1[0.1 0.01 ]TC x= , 22 2[0.1 0.01 ]TC u= , 23 3[0.1 0.01 ]TC u= . The 

basis function vector was synthesized to have a structure 

2 21 22 23( ( , ), )kron kron C C CΦ = . The basis function vector for 

the third network had a structure  

3 31 32 33 34( ( ( , ), ), )kron kron kron C C C CΦ =  where 

31 1[0.1 0.02 ]TC x= , 32 2[0.1 0.02 ]TC x= , 33 1[0.1 0.01 ]TC u=  and 

34 2[0.1 0.01 ]TC u= .The third network was composed of 

sixteen neurons. Neural network training parameters used 
were [ ] [ ]1 2 3 10 100 500T Tp p p =  and [ ] [ ]1 2 3 100 100 100T Tγ γ γ = .

The second stage of the controller design was to ensure 

a dX X→  where dX  was the vector of desired trajectories. 

This was achieved through a second order error equation as 
given by Eq. (15). On differentiating Eq. (3) to obtain an 
expression for aX  in the error dynamic equation, it was seen 

that 

( )
( )
( )

( )
( )
( )

1 11 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ˆˆ ˆ/ /

ˆ ˆ ˆ/ /

ˆ ˆ ˆ/ /

TT T

T T T
a a

T T T

WW X W U
f f

X X U W X X W U U W X X
X U

W X W U W

Φ∂Φ ∂ ∂Φ ∂
∂ ∂= + + ∂Φ ∂ + ∂Φ ∂ + Φ + −
∂ ∂

∂Φ ∂ ∂Φ ∂ Φ

(26)

Define
( )
( )
( )

1 1

2 2

3 3

ˆ /

ˆ /

ˆ /

T

T

T

W X

Q W X

W X

∂Φ ∂

≡ ∂Φ ∂

∂Φ ∂

,
( )
( )
( )

1 1

2 2

3 3

ˆ /

ˆ /

ˆ /

T

T

T

W U

R W U

W U

∂Φ ∂

≡ ∂Φ ∂

∂Φ ∂

, and 
1 1

2 2

3 3

ˆ

ˆ

ˆ

T

T

T

W

T W

W

Φ

≡ Φ

Φ

.

Eq. (26) could now be rewritten as  

a a

f f
X Q X R U T X X

X U

∂ ∂= + + + + + −
∂ ∂

                 (27) 

The expansion of Eq. (15) for this problem was 

( ) ( ) 0a d d a d p a d

f f
Q X R U T X X X K X X K X X

X U

∂ ∂+ + + + + − − + − + − =
∂ ∂

(28)

Define a

f
H Q X T X X

X

∂≡ + + + −
∂

. Now, the control term 

could be solved by rearranging Eq. (28) and expressed as 

( ) ( )( )
1

d d a d p a d

f
U R X H K X X K X X

U

−∂= + − − − − −
∂

       (29) 

In this work,  
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( ) ( )2
14 2 12 2

22 2 321 2 21 2
2 2
1 1 1

31 2 2 31 2 3 2
2 2

2 1 1 2

0.2 cos( ) 0

cos( )cos( ) sin( )
0

sin( ) sin( )sin( )
0

cos( ) cos( )

c u c x

c u uc x c xf

X x x x

c u u c u u x

x x x x

−

∂ = − − −
∂

−

 (30) 

and 

( ) 14 2
13 2

1

22 3 22 2 3

1 1

31 3 31 2 3

2 1 1 2

0.2
0

cos( ) sin( )
0

sin( ) cos( )
0

cos( ) cos( )

c u
c

x

c u c u uf

U x x

c u c u u

x x x x

−

∂ = −
∂

     (31) 

Once the control variable in this problem U  was obtained 
the actual control U  could be obtained by a numerical 
integration procedure. In this work, Euler integration was 
performed to obtain the actual control signal U . The design 
parameters dK  and pK  were chosen as  

[80 40 40], [80 40 40]d pK diag K diag= =         (32) 

A time simulation of eighty seconds was carried out. Euler 
integraton with a step size of 0.01tΔ =  was used for 
simulation purposes. Figure 1 is a plot containing errors in 
state variables and the control variables for the scheme if the 
approximations for uncertainties in the system equations 
were not carried out. Error in velocity is given in /m s , errors 
in flight path angle and in flight path heading angle are given 
in degrees. It can be seen that the state variable tracking is 
not satisfactory. The next three plots in Figure 1 are control 
trajectories. Thrust is plotted in KN , and bank angle is 
expressed in degrees. Figure 2 is an illustration of the errors 
in the state variables and control signals with the 
neuroadaptive scheme employed in control synthesis. The 
significant improvement in performance can be immediately 
noticed. Velocity tracking error does not exceed 40 m/s. 
Flight path angle and heading angle tracking errors are very 
small. Thus satisfactory tracking performance has been 
obtained. The small tracking error could be achieved due to 
the good function approximation properties of the three 
online neural networks attached to the approximate system 
dynamics and later on used for control synthesis. The last 
three plots in Figure 2 illustrate control histories with the 
neuroadaptive scheme. The three plots in Figure 3 show how 
well the neural networks capture the three unknown 
uncertainties/nonlinearities present in the actual plant 
equations.   

IV. CONCLUSIONS

Dynamic systems and processes are difficult to model 
accurately. They may also change with time. It is essential 
that these unmodeled terms or changes in parameters are 
captured and are used to adapt the controller. A model-
following adaptive controller using neural networks has been 

developed in this study for a fairly general class of nonlinear 
systems which are non-affine in the control variable. 
Although the idea of taking the time derivative of the state 
variable equation and obtaining a linear form for the 
derivative of the control is not new, there had been no 
attempt to couple this technique with adaptive control 
methods. This work uses a neuroadaptive scheme to account 
for parametric and unmodeled uncertainties (nonlinearities) 
and then in a separate step converts the nonaffine system to 
an affine in control system to solve for control. The 
nonlinear system for which the method is applicable is 
assumed to be of known order and has the same number of 
control inputs as there are states in the system, but it may 
contain unmodeled dynamics and/or parameter uncertainties. 
Tracking performance of the neuroadaptive control scheme 
has been shown through simulation studies on a three degree 
of freedom UAV model. The results of simulation studies 
performed show the potential of this technique.  
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Figure 1: Tracking errors in state variables and control signals 
(nominal control scheme)
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Figure 2: Tracking errors in state variables and control signals 
(neuroadaptive control scheme) 
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Figure 3: Uncertainty approximations in state equations 

2956


	Neuroadaptive Model Following Controller Design for a Nonaffine UAV Model
	Recommended Citation

	Title

