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Inherent and Model-Form Uncertainty Analysis for

CFD Simulation of Synthetic Jet Actuators

Daoru Han� and Serhat Hosdery

Missouri University of Science and Technology, Rolla, MO, 65409, USA

A mixed (aleatory and epistemic) uncertainty quanti�cation (UQ) method was applied
to computational uid dynamics (CFD) modeling of a synthetic jet actuator. A test case,
(ow over a hump model with synthetic jet actuator control) from the CFDVAL2004 work-
shop was selected to apply the Second-Order Probability framework implemented with
a stochastic response surface obtained from Quadrature-Based Non-Intrusive Polynomial
Chaos (NIPC). Three uncertainty sources were considered: (1) epistemic (model-form)
uncertainty in turbulence model, (2) aleatory (inherent) uncertainty in free stream veloc-
ity and (3) aleatory uncertainty in actuation frequency. Uncertainties in both long-time
averaged and phase averaged quantities were quanti�ed using a fourth order polynomial
chaos expansion (PCE). A global sensitivity analysis with Sobol indices was utilized to
rank the importance of each uncertainty source to the overall output uncertainty. The
results indicated that for the long-time averaged separation bubble size, the uncertainty in
turbulence model had a dominant contribution, which was also observed in the long-time
averaged skin friction coe�cients at three selected locations. The mixed uncertainty results
for phase averaged x-velocity distributions at three selected locations showed that the 95%
con�dence interval (CI) could generally envelope the experimental data. The Sobol indices
showed that near the wall, the uncertainty in turbulence model had a main inuence on the
x-velocity, while approaching the main stream, the uncertainty in free stream velocity be-
came a larger contributor. The mixed uncertainty quanti�cation approach demonstrated
in this study can also be applied to other computational uid dynamics problems with
inherent and model-form input uncertainities.

Nomenclature

c = Characteristic reference length V = Velocity in y-direction (m=s)
Cf = Skin friction coe�cient � = Spectral modes
Cp = Pressure coe�cient �� = Stochastic output variable
CoV = Coe�cient of Variation �t = Turbulent (eddy) viscosity (kg=(m�s))
D = Statistical variance � = Standard random variable
f = Frequency (Hz) ~�a = Standard aleatory random variable(s)
K = Factor in S-A turbulence model ~�e = Standard epistemic random variable(s)
n = Number of random variables � = Shear stress (N=m2)
Nt = Number of output modes 	 = Random basis function
p = Pressure (N=m2) or Order of PCE Subscript

S = Sobol index ref = Reference condition
ST = Total Sobol index w = Wall condition
U = Velocity in x-direction (m=s) 1 = Free stream condition

�Graduate Student, Aerospace Engineering, 400 West 13th Street, Rolla, MO 65409,AIAA Student Member.
yAssistant Professor, Aerospace Engineering, 400 West 13th Street, Rolla, MO 65409, AIAA Senior Member.
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I. Introduction

Synthetic jet actuators are one of the most-frequently studied ow control con�gurations since they are
highly promising in terms of realizing actual ow control system on an aircraft. In a typical synthetic jet
actuator con�guration, the jet is produced by a moving membrane that is built into the wall of the cavity.
This jet is ejected out through an ori�ce that can be directly mounted on the control surface. The simplicity
of the design obviates the need for complex ducting and packaging and hence a more attractive solution.
Unique to synthetic jet, is also the fact that, they are formed by the working uid in the ow system in which
they are employed. This results in addition of momentum to the system without adding any mass, hence the
name zero net-mass ux jets. During the ejection half of the membrane motion, for a two-dimensional ori�ce,
the ow separates at the sharp edges of the ori�ce and rolls into a pair of counter rotating vortices. These
vortical structures then move away from the ori�ce under their own self induced velocity. In the presence
of a cross-ow, these vortex pairs convect downstream entraining uid from the free stream, resulting in
favorable local displacement of the streamlines and pressure distribution changes at these regions. In recent
years there have been a number of experimental and numerical investigations of the pulsating synthetic jets.
A comprehensive list of these works can be found in a review paper by Glezer and Amitay.1

Among all the investigations in the ow phenomenon involved in a synthetic jet application, computa-
tional uid dynamics (CFD) simulations are becoming more and more important with the aim of accurately
predicting the ow �eld quantities and being able to perform robust and reliable designs. In order to assess
the state-of-the-art CFD modeling of synthetic jet ows, a validation workshop2 (referred as \CFDVAL2004"
in the rest of this paper) was held in 2004 where several synthetic jet con�gurations were selected as test
cases. Summary of the workshop results and conclusions can be found in Rumsey et al.3 One of the con-
clusions was that, due to the unknown uncertainties in the modeling of the con�guration, the CFD results
failed to consistently agree with the experiments.4 The time-dependent ow �eld quantities, such as phase
averaged velocities, as well as the long-time averaged quantities can be a�ected by the uncertainties in the
initial conditions, the unsteady boundary conditions, and physical models (e.g., turbulence model) used in
simulations. In addition, the ow �eld can be also a�ected by the variations in operating conditions such
as the main stream velocity in the presence of cross ow. All these uncertainties associated with the CFD
modeling of synthetic jet actuators motivate an uncertainty quanti�cation (UQ) study to asses the accuracy
of the results.

The objective of this study is to introduce and demonstrate an e�cient methodology for the quanti�cation
of uncertainties and global non-linear sensitivity analysis in CFD modeling of Synthetic Jet Actuators, which
include both inherent (aleatory) and model-form (epistemic) uncertainty sources. One unique aspect of the
current study is to consider both aleatory and epistemic input uncertainties and quantify the contribution
of each uncertainty source to the overall uncertainty in a selected output quantity. Although we focus
on the uncertainty quanti�cation of a synthetic jet problem in the current study, the mixed uncertainty
quanti�cation approach demonstrated in this study can also be applied to other computational uid dynamics
problems with inherent and model-form input uncertainities.

The Second-Order Probability Theory can be used to propagate mixed (aleatory and epistemic) uncer-
tainties through a simulation code. However, numerical computations can be intensive for this particular
method due to the use of nested loops, especially if the simulation code is expensive to evaluate (such as
a high-�delity CFD code). To address this issue, a more e�cient approach to Second-Order Probability is
described in this work. In particular, a stochastic response surface which is obtained using a Non-Intrusive
Polynomial Chaos (NIPC) Method (Hosder et al.5) is utilized in the Second-Order Probability framework.
The stochastic response surface is a surrogate model for the original simulation code, and is computationally
less expensive to evaluate. Therefore, the utilization of the stochastic response surface, formulated with
NIPC methods, enables the propagation of mixed uncertainties through the simulation code with much less
computational cost compared to the expense of a traditional direct sampling approach (e.g., Monta Carlo
methods).

In the current work, a synthetic jet issued into a cross ow over a two dimensional wall-mounted hump-
shaped body (Case 3 of CFDVAL2004) is selected as the CFD modeling problem with both epistemic and
aleatory uncertain inputs. Three uncertain variables are considered: turbulent (eddy) viscosity coe�cient ob-
tained from the turbulence model (epistemic or model-form uncertainty), free stream velocity (aleatory), and
the frequency used in the unsteady velocity-inlet boundary condition imposed at the bottom of the synthetic
jet actuator cavity (aleatory uncertainty), which represent the variations in the frequency of the oscillating
piston. Both aleatory uncertain inputs are described with uniform probability distributions, whereas the un-
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certainty in the turbulent viscosity is represented with an interval due to its epistemic nature. The quantities
of interest for uncertainty quanti�cation in the CFD simulations include the long-time averaged separation
bubble characteristics, pressure and skin friction coe�cients, as well as the phase averaged x-velocity distri-
butions at selected locations. A previous study on another synthetic jet case (Case 1 of CFDVAL2004) by
Adya et al.6 conducted the UQ analysis with two aleatory uncertainty variables (amplitude and frequency
of actuation). The synthetic jet con�guration studied in the current work extends the ow phenomenon
to the presence of a cross ow, with a more comprehensive treatment of uncertainty sources including the
turbulence model (epistemic uncertainty).

The paper is organized as follows: in the next section, the mixed uncertainty quanti�cation approach
will be described. The computational model and stochastic problem with uncertain inputs will be described
in Section III. In Section IV, the uncertainty quanti�cation results will be outlined and discussed. The
conclusions will be given in Section V.

II. Uncertainty Quanti�cation Approach

A. Types of Uncertainties in Computational Simulations

Generally, there can be three types of uncertainty and error in a computational simulation: (1) aleatory
uncertainty, (2) epistemic uncertainty and (3) numerical error. A detailed description of these uncertainties
can be found in Oberkampf et al.7

Aleatory uncertainty, or inherent uncertainty, originates from the random nature of a physical system and
thus can be mathematically represented by a probability density function (PDF) if knowledge is available
to estimate the distribution type (e.g., uniform, normal, etc.). Such knowledge can be from the substantial
experimental data, statistical study of the survey, etc. The uncertainty in free stream velocity or geometry
can be treated as examples of aleatory uncertainties in a stochastic aerodynamics problem.

Epistemic uncertainty, also referred as model-from uncertainty, is due to ignorance, lack of knowledge or
incomplete information of some characteristics from a non-deterministic system. By this feature, an increase
in knowledge or understanding of a system can lead to a decrease in the epistemic uncertainty. Similar
to aleatory uncertainty, epistemic uncertainty can be also modeled with probabilistic approach. However,
studies8 have shown that this may cause inaccurate predictions in the amount of uncertainty in the responses.
Another method to treat the epistemic uncertain variables is to use intervals by giving the lower and upper
bounds with the information from limited experimental data, expert judgment, or an empirical model.

Numerical error is from the de�ciency in the modeling of the simulation. Di�erent from epistemic
uncertainty, numerical error is recognizable. Usually the discretization error in spatial or temporal domain
when solving governing partial di�erential equations of a physical model on a computational mesh can be
treated as an example of numerical error.

B. Mixed (Aleatory-Epistemic) Uncertainty Propagation

1. Second-Order Probability

In the current work, Second-Order Probability9;10 is employed to propagate mixed aleatory and epistemic
uncertainty through CFD simulations. As described in Bettis et al.,11 Second-Order Probability (Figure 1)
approach uses an outer loop where a speci�c value of the epistemic variable is selected and an inner loop
where any traditional aleatory uncertainty quanti�cation method can be performed for uncertainty analysis
at that speci�c value of the epistemic variable. Each iteration of the outer loop will produce a cumulative
distribution function (CDF) based on the aleatory uncertainty analysis in the inner loop. So the Second-
Order Probability approach will produce a family of CDFs and give intervals of the output at di�erent
probability levels. Since the epistemic and aleatory variables are treated in di�erent loops, it is easy to
separate and identify each of them from the output horsetail plots. However, this method can be relatively
computationally expensive due to the two sampling loops especially when traditional sampling approach
such as Monte Carlo is used.

In this study, �rst a stochastic response surface (function of both epistemic and aleatory variables) for
the output quantity of interest is obtained using a Quadrature-Based NIPC method (described below).
Then the Second-Order Probability is employed by sampling the epistemic uncertain variables in the outer
loop; sampling the aleatory uncertain variables in the inner loop (with �xed values of epistemic uncertain
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Outer Loop 

(Epistemic Sampling) 

Inner Loop  

(Aleatory UQ) 

“Black Box”  

Simulation 

Figure 1. Schematic of Second-Order Probability(Taken from Bettis et al.11)

variables), and �nally evaluating the output from the NIPC response surface approximation.

2. Quadrature-Based Non-Intrusive Polynomial Chaos

In the current study, the Quadrature-Based Non-Intrusive Polynomial Chaos (NIPC) is employed which is
derived from the polynomial chaos theory based on the spectral representation of the uncertainty. As an
important aspect of spectral representation of uncertainty, one can decompose a random function or variable
into separable deterministic and stochastic components as shown in Equation (1) where �� can be any
random variable of interest such as long-time averaged or phase averaged velocity, pressure or skin friction
coe�cient in a stochastic uid dynamics problem.

��(t; ~x; ~�) �
PX
j=0

�j(t; ~x)	j(~�) (1)

In the equation above, �j(t; ~x) is the deterministic component and 	j(~�) is the random basis function
corresponding to the jth mode. Here �� is assumed to be a function of the independent deterministic variable
vector (t; ~x) and the n-dimensional random variable vector ~� = (�1; :::; �n), which can include both aleatory
and epistemic uncertain variables. In theory, the polynomial chaos expansion (PCE) given by Equation (1)
should have in�nite number of terms, however in practice a discrete summation is taken over a �nite number
of output modes. For a total order expansion, the number of output modes (Nt) is given by,

Nt = P + 1 =
(n+ p)!
n!p!

(2)

which is a function of the order of PCE (p) and the number of random dimensions (n). Ideally, the basis
function takes the form of multi-dimensional Hermite Polynomial to span the n-dimensional random space
when the input uncertainty is Gaussian (unbounded), which was �rst introduced by Wiener12 in his original
work of polynomial chaos. To extend the application of the polynomial chaos theory to the propagation
of continuous non-normal-distributed input uncertainties, Xiu and Karniadakis13 used a set of polynomials
known as the Askey scheme to obtain the Wiener-Askey Generalized Polynomial Chaos. Among the
polynomials included in the Askey scheme, the Legendre and Laguerre polynomials are optimal basis func-
tions for bounded (uniform) and semi-bounded (exponential) input uncertainty distributions respectively in
terms of the convergence of the statistics. For problems having more than one uncertainty variable, the
multivariate basis functions can be obtained from the product of univariate orthogonal polynomials (see
Eldred et al.14). If the probability distribution of each random variable is di�erent, the optimal multivariate
basis functions can be again obtained from the product of univariate orthogonal polynomials employing the
optimal univariate polynomial at each random dimension. In this approach, it is required that the input
uncertainties are independent standard random variables, which also allows the calculation of the multivari-
ate weight functions by taking the product of univariate weight functions associated with the probability
distribution at each random dimension. More detailed information on PCE can be found in Walters and
Huyse,15 Najm,16 and Hosder and Walters.5

Generally there are intrusive and non-intrusive approaches to model the uncertainty propagation in
computational simulation via PCE. In the intrusive approach, all dependent variables and random parameters
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in the governing equations are replaced with their PCEs. Taking the inner product of the equations, or
projecting each equation onto jth basis, yields P + 1 times the number of deterministic equations which
can be solved by the same numerical methods applied to the original deterministic system (computational
simulation). Although straightforward in theory, an intrusive formulation for complicated problems can be
relatively di�cult, expensive, and time-consuming to implement. To overcome such inconveniences associated
with the intrusive approach, non-intrusive polynomial chaos formulations are considered for uncertainty
propagation in this study.

The Quadrature-Based NIPC method employed in this paper uses spectral projection to �nd the poly-
nomial coe�cients �k = �k (t; ~x) in Equation (1). Projecting Equation (1) onto the kth basis yields:

D
��(t; ~x; ~�);	k(~�)

E
=

*
PX
j=0

�j(t; ~x)	j(~�)	k(~�)

+
(3)

then, from the virtue of orthogonality,D
��(t; ~x; ~�);	k(~�)

E
= �k(t; ~x)

D
	2
k(~�)

E
(4)

which leads to

�k(t; ~x) =

D
��(t; ~x; ~�);	k(~�)

E
D

	2
k(~�)

E =
1D

	2
k(~�)

E Z
R

��(t; ~x; ~�)	k(~�)p(~�)d~� (5)

The objective of the spectral projection method is to predict the polynomial coe�cients by evaluating
the numerator (

D
��(t; ~x; ~�);	k(~�)

E
) in Equation (5), while the denominator (

D
	2
k(~�)

E
) can be computed

analytically for multivariate orthogonal polynomials.
In the quadrature-based non-intrusive approach, the multi-dimensional integral in the numerator of Equa-

tion (5) is evaluated with numerical quadrature14 in the support range (R) where input uncertain variables
are de�ned. For the integration of one-dimensional problems, the straightforward approach will be to use
Gaussian quadrature points, which are zeros of the orthogonal polynomials that are optimal for the given
input uncertainty distribution (e.g., Gauss-Hermite, Gauss-Legendre, and Gauss-Laguerre points for normal,
uniform, and exponential distributions, respectively). The extension of this approach to multi-dimensional
problems can be achieved via tensor product of one-dimensional quadrature formulas. In one-dimensional
problems, a Gauss quadrature formula of np points will evaluate a polynomial of degree 2np � 1 (or less)
exactly and the polynomial degree of the product of the function approximation and the basis in the inte-
grand of the numerator in Equation (5) will be 2p for the evaluation of the coe�cient of the highest degree
if the degree of the PCE is chosen as p. Therefore, the minimum number of quadrature points required to
exactly evaluate the integral will be p + 1. For stochastic problems with relatively small number of input
uncertain variables (i.e., n � 4), this approach will be computationally e�cient compared to a typical Monte
Carlo approach. However, for multi-dimensional problems with large number of uncertain variables, the
computational expense may become signi�cant due to its exponential growth with the number of random
dimensions, since the required number of deterministic function evaluations will be (p+ 1)n for a stochastic
problem with n random variables having the same degree of PCE (p) in each dimension. It is important
to emphasize that the computational expense of propagating mixed input uncertainties can be high even
if the number of aleatory and epistemic uncertain variables is not large when the \deterministic function
evaluation" is actually CFD simulation. Therefore constructing and evaluating a stochastic (polynomial
chaos) response surface will signi�cantly reduce the required number of deterministic CFD simulations for
the propagation of mixed uncertainties.

3. Second-Order Probability with Stochastic Response Surface

As described previously, the current study utilizes Second-Order Probability approach to propagate the
mixed aleatory-epistemic uncertainties. With this approach, the stochastic response (e.g., the long-time
averaged separation bubble size) is represented with a PCE as a function of both aleatory and epistemic un-
certain variables. The optimal basis functions are used for the aleatory variables while Legendre polynomials
are used for the epistemic variables. Note that the use of Legendre polynomials should not imply uniform
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probability distributions of the epistemic uncertain variables. This choice is made due to the bounded nature
of epistemic uncertain variables considered in this study. Once the stochastic response surface is constructed,
the stochastic responses can be evaluated for a large number of samples randomly produced based on the
probability distributions of the aleatory input uncertainties (inner loop of Second-Order Probability) with
�xed values of epistemic uncertain variables. Each iteration in the outer loop will produce a single cumu-
lative distribution function (CDF). By repeating the inner loop for a large number of epistemic uncertain
variables sampled from their corresponding intervals (outer loop of Second-Order Probability), a population
of cumulative distribution functions can be obtained (and presented as a "p-box" or \horsetail" plot) thus
the bounds of the stochastic response at di�erent probability levels (e.g., 2.5% and 97.5%) can be calculated.
Figure 2 gives an example of a conservative calculation of 95% con�dence interval (CI) obtained as the
di�erence between the upper limit of 97.5% probability level and the lower limit of the 2.5% probability
level, which will be used in the current study.

97.5%

2.5%

95% Confidence Interval (CI)

Figure 2. A typical probability-box (p-box) used in the representation of mixed uncertainty output and
conservative calculation of 95% Con�dence Interval.

Due to the analytical nature (polynomials) of the stochastic response surface, the described procedure
will be computationally e�cient, especially compared to the direct Monte Carlo sampling which requires
a large number of deterministic CFD simulations. Figure 3 shows the owchart of the entire procedure of
mixed aleatory-epistemic uncertainty analysis employed in this study.

4. Global Sensitivity Analysis with Sobol Indices

In a system where multiple uncertain variables are present, it is often useful to demonstrate and rank the
relative importance of each input uncertain variable to the overall output quantity of interest using a global
sensitivity analysis approach. In the current study, Sobol17 indices are used to perform this analysis.

Once the PCE for an output uncertain variable is formed using Equation (5), Sobol indices can be
derived via Sobol Decomposition which is a variance-based global sensitivity analysis method. First, the
total variance (D) can be written in terms of the PCE:

D =
PX
j=1

�2
j (t; ~x)

D
	2
j (~�)

E
(6)

Then, as shown by Sudret18 and Crestaux et al.,19 the total variance can be decomposed as:

D =
i=nX
i=1

Di +
i=n�1X

1�i<j�n

Di;j +
i=n�2X

1�i<j<k�n

Di;j;k + � � �+D1;2;:::;n (7)
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Inner 

Loop 

Select Quadrature Points 

Evaluate Deterministic CFD Simulation at 

Selected Quadrature Points 

Formulate Stochastic Response Surface 

Using NIPC         

Sample Epistemic Variables 

Sample Aleatory Variables 

Evaluate Stochastic Response Surface 

Outer 

Loop 

Second-Order 

Probability Sampling 

Loop 

Figure 3. Flowchart Showing the Procedure of Propagating Mixed Aleatory-Epistemic Uncertainty with
Second-Order Probability and Quadrature-Based NIPC

where the partial variances (Di1;:::;is) are given by:

Di1;:::;is =
X

�2fi1;:::;isg

�2
�

D
	2
�(~�)

E
; 1 � i1 < : : : < is � n (8)

Then the Sobol indices (Si1���is) are de�ned as,

Si1���is =
Di1;:::;is

D
(9)

which satisfy the following equation:

i=nX
i=1

Si +
i=n�1X

1�i<j�n

Si;j +
i=n�2X

1�i<j<k�n

Si;j;k + � � �+ S1;2;:::;n = 1:0 (10)

The Sobol indices provide a sensitivity measure due to individual contribution from each input uncertain
variable (Si), as well as the mixed contributions (fSi;jg; fSi;j;kg; � � � ). As shown by Sudret18 and Gha�ari
et al.,20 the total (combined) e�ect (STi

) of an input parameter i is de�ned as the summation of the partial
Sobol indices that include the particular parameter:

STi
=

X
Li

Di1;:::;is

D
; Li = f(i1; : : : ; is) : 9 k; 1 � k � s; ik = ig (11)

For example, with n = 3, the total contribution to the overall variance from the �rst uncertain variable
(i = 1) can be written as:

ST1 = S1 + S1;2 + S1;3 + S1;2;3 (12)

From these formulations, it can be seen that the Sobol indices can be used to provide a relative ranking of
each input uncertainty to the overall variation in the output with the consideration of non-linear correlation
between input variables and output quantities of interest. One of the goals of the current work is to calculate
Sobol indices with the PCE and then use them to rank the relative importance of each input uncertain variable
to a speci�c output quantity of interest.
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III. Computational Model

A. CFD Simulations

1. Physical Models and Geometry

The synthetic jet con�guration studied in this paper is ow over a two-dimensional wall-mounted hump-
shaped body which is labeled as \hump model (Case3)" in CFDVAL2004 workshop.2

Figure 4. Experimental Con�guration (Taken from CFDVAL20042)

Figure 4 shows the experimental con�guration2 of the hump model which is mounted between two glass
endplate frames. The width of the tunnel test section is 28" and the nominal test section height is 15.032".
As the workshop indicates, this experiment was nominally two-dimensional except the side wall e�ects near
the endplates.

The characteristic reference length of the model is de�ned as the length of the bump on the wall which is
16.536". The model itself is 23" wide between the endplates at both sides and 2.116" high at its maximum
thickness point. All the experiment test ows were considered under the free stream conditions of Mach=0.1
at a Reynolds number of 9:36 � 105. The model experienced a fully-developed turbulent boundary layer
during the test, which separated over the concave section in the aft part of the hump body. A slot opening
was located at approximately 65% chord station, extending across the entire span of the hump. In the
oscillatory part of the experiment, the two-dimensional oscillatory blowing was achieved by means of a rigid
piston spanning the model with a frequency of 138.5 Hz. More detailed test conditions are documented on
the website of CFDVAL2004.2

2. Numerical Scheme and Computational Grid

The commercial CFD software, ANSYS FLUENT 12,21 is used for the simulation of the ow �eld. The
unsteady Reynolds-Averaged Navier-Stokes (RANS) equations coupled with Spalart-Allmaras22 turbulence
model are solved to compute the unsteady, turbulent, two-dimensional ow �eld including the cavity and
main ow region. Periodic solutions are obtained to calculate the phase averaged and long-time averaged
quantities in the ow �eld. A second-order accurate implicit time-integration scheme is used to advance the
solution in time. The inviscid uxes are approximated with a second-order upwind scheme in space and the
viscous terms are approximated with second-order central di�erencing.

The grid employed in this paper is labeled as \STRUCTURED 2D GRID #4" on the workshop website
(210,060 grid points total), where top wall shape is adjusted to approximately account for the side plate
blockage e�ect. In this grid, the computational domain extends upstream to �6:39 chord length which
yields a \run" long enough to get the approximate boundary layer thickness matching experimental data.
The internal slot and cavity are also included in the grid. Figure 5 shows the local zoom-in view of the grid
near the slot.2

To get the time-accurate solution, 360 time steps per period are used with 20 inner iterations per time step.
All the simulation results presented are taken from cycles when periodicity is obtained. Phase averaged and
long-time averaged data are calculated to compare the results of CFD simulations with available experimental
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data. The reference phase is de�ned as the maximum blowing occurring at a phase angle of 170� and
maximum suction at a phase angle of 350�.

Figure 5. (a) Zoom-in View of Slot Region Grid (b) Main Flow Domain

3. Boundary Conditions

At the oor and surfaces, as well as the inner side of the cavity, solid non-slip wall conditions are applied.
At the location x=c = �6:39 where velocity-inlet boundary condition is applied, uniform velocity pro�le is
used to get a naturally-developed full-turbulent boundary layer so that it reaches the approximate boundary
layer thickness as experimental data measured at the location of x=c = �2:14. At the downstream boundary,
pressure-outlet boundary type is applied with the pressure p=pref = 0:99962 where pref is the free stream
reference pressure. At top wall of the tunnel, inviscid wall condition is applied for the consideration of side
plate blockage e�ect. The boundary condition at the bottom of the cavity is set as velocity-inlet where the
components of the velocity are given as follows:

U = 0 (13)

V = A0cos(2�ft) (14)

where the amplitude A0 is picked to match the peak velocity out of slot during blowing part of cycle in the
experiment.23Figure 6 shows the schematics of the boundary conditions applied in the CFD simulation.

Velocity-inlet

Non-slip wall

Inviscid wall

Top wall contoured to approximately account 

for side plate blockage effect

Velocity components specified

Pressure-outlet

Figure 6. Overview of Boundary Conditions Applied in CFD Simulation
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B. Description of the Stochastic Problem

For this study, the free stream velocity (U1) and frequency in the unsteady velocity-inlet boundary condition
(f) imposed to the cavity bottom are modeled as aleatory uniformly distributed uncertain variables with a
coe�cient of variance (CoV ) of 10% from their baseline values. The turbulent viscosity coe�cient within
the Spalart-Allmaras (S-A) turbulence model22 is treated as a source of epistemic uncertainty through the
introduction of a factor K as shown below:

�t = K�tSA
(15)

where �tSA
is the turbulent viscosity originally calculated in the S-A model and then scaled by factor K

as the turbulent viscosity used in the whole computational domain in the CFD simulations. The range of
this factor K is chosen based on the turbulent viscosities calculated from di�erent turbulence models (i.e.,
standard k-�, standard k-! and SST k-!)21 for the baseline case to reect the uncertainty due to the use of
di�erent turbulence models. All other parameters in the CFD simulations are kept constant at their baseline
values. An overview of the ranges of the uncertain parameters considered in this study is shown in Table 1.

Table 1. Uncertainty Ranges for Parameters Used in CFD Simulations

Uncertain Parameter Uncertainty Type Uncertainty Range

U1 Aleatory (Uniform) [31.14, 38.06] m=s
f Aleatory (Uniform) [124.65, 152.35] Hz
K Epistemic [0.5, 2.0]

IV. Uncertainty Quanti�cation Results

In this study, long-time averaged separation bubble size, pressure and skin friction coe�cients and phase
averaged x-velocity distributions at several locations are selected as the output quantities of interest to
perform the uncertainty quanti�cation analysis.

A. Uncertainty Quanti�cation in Long-time Averaged Bubble Size

Figure 7 is a sample CFD result from the CFDVAL2004 workshop showing the main ow structure near the
separation bubble region. In this study, the long-time averaged separation bubble size (calculated with sepa-
ration and reattachment locations) is chosen to represent the bubble characteristics. The preliminary results
of the current study, as well as Rumsey,23 showed that the location of separation is relatively insensitive to
the parameters considered. The reattachment location is found to have a large variance. The separation
bubble size is the di�erence between separation and reattachment locations and obtained by locating the
points on the wall where the long-time averaged skin-friction values are equal to zero.

Separation Bubble

Figure 7. A Sample CFD Result from CFDVAL20042
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1. Results with Pure Aleatory Uncertainty Assumption

Before mixed aleatory-epistemic uncertainty quanti�cation, the analysis with pure aleatory uncertainty as-
sumption is conducted where all three uncertain input variables are treated as aleatory with uniform uncer-
tainty distributions with the bounds given in previous section. The CDFs obtained from di�erent degrees of
PCE are compared. The Quadrature-Based NIPC method described in previous section is used to construct
the response surface as a function of all three uncertain input variables. It is important to ensure that the
order of PCE is high enough to capture the non-linear relations between input and output quantities of
interest. Therefore, a degree convergence study is performed where the PCE order is increased up to 4 and
the response surface is constructed and evaluated at each order. Figure 8 gives an example of the CDF plots
to show the degree convergence of the PCE with respect to long-time averaged separation bubble size. 10,000
random samples are selected fro the stochastic response surface to evaluate the CDF the at each polynomial
degree. The �gure shows that there is no obvious di�erence in the CDFs between 3rd and 4th orders of PCE.
Thus it can be concluded that the response surface obtained via the Quadrature-Based NIPC converges at
the 3rd order PCE. The results presented in this paper utilize the 4th order PCE.
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Long−time Averaged Bubble Size, x/c
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Pure Aleatory Expansion

 

p = 1
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Figure 8. PCE Degree Convergence Check of Long-time Averaged Bubble Size

2. Results with Mixed (Aleatory-Epistemic) Uncertainty Assumption

For the mixed (aleatory-epistemic) uncertainty quanti�cation, Second-Order Probability approach described
previously is used with the same response surface obtained for pure aleatory uncertainty assumption (4th

order PCE). Random samples from the speci�ed bounds (Table 1) are utilized for the epistemic uncertain
variable in the outer loop while in the inner loop, for each speci�c value of the epistemic uncertain variable,
samples of aleatory uncertain variables based on the uniform probability distributions are utilized to evaluate
the stochastic response surface. Two sets of samples are selected to check the sample size independence.
The �rst set takes 100 samples in the outer (epistemic) loop and 1,000 samples in the inner (aleatory)
loop; the second set takes 1,000 and 10,000 samples in the outer and inner loops, respectively. The CDFs
produced are shown in Figure 9. For each set of samples, it is obvious that at a particular probability level,
the variation in the long-time averaged separation bubble size is due to the epistemic uncertain input (K
factor), which is represented by the interval bounded by the minimum and maximum values obtained from
the CDFs at the same probability level. The width of the interval is nearly constant at each probability
level. The overall agreement of the horsetail plots obtained from the two sets of samples also shows the
sample size independence in the Second-Order Probability framework. Thus in the following part of this
study, 100 samples for the epistemic loop and 1,000 samples for the aleatory loop are utilized considering
the computational expenses.
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Figure 9. P-Box Plots for Long-time Averaged Bubble Size

3. Global Sensitivity Analysis with Sobol Indices

In order to have a relative ranking of the importance of each input uncertain variable on the overall output
uncertainty in the long-time averaged separation bubble size, global sensitivity analysis with Sobol indices is
conducted to quantitatively account for the non-linear dependencies between input and output uncertainties.
These indices obtained from the same order of PCE (4th) in previous sections are shown in Table 2. The
results show that the epistemic input uncertain variable K factor, thus the turbulent eddy viscosityl, has a
dominant inuence on the output uncertainty in the long-time averaged bubble size while the two aleatory
input uncertain variables have much less contributions to the output uncertainty. This is consistent with
the observation from the horsetail plots shown in Figure 9. This result also agrees qualitatively well with
a similar study by Rumsey.23 Furthermore, the results also indicate that the combined contributions of
di�erent uncertainty sources (e.g., S1;2) are very small when comparing the total indices (e.g., ST1) with
their corresponding individual (non-combined) indices (e.g., S1).

Table 2. Sobol Indices of Each Uncertain Input in Long-time Averaged Bubble Size.

Index Parameter Sobol Indices

S1 K 0.9948
S2 U1 0.0022
S3 f 0.0025
ST1 K 0.9951
ST2 U1 0.0026
ST3 f 0.0029

B. Uncertainty Quanti�cation in Long-time Averaged Pressure and Skin Friction Coe�cients

1. Results with Pure Aleatory Uncertainty Assumption

Before the mixed uncertainty quanti�cation, analysis with pure aleatory uncertainty assumption is conducted
where all three uncertain input variables are treated as aleatory with uniform uncertainty distributions with
the bounds given in previous section. The CDFs obtained from di�erent degrees of PCE are also compared.
Again the Quadrature-Based NIPC method described in previous section is used to construct the response
surface as a function of all three uncertain input variables. A degree convergence check study is performed
where the PCE order is increased up to 4 and the response surface is constructed and evaluated at each
order. Figure 10, 11, 12 are the CDF plots showing the degree convergence of the PCE with respect to long-
time averaged pressure and skin friction coe�cients at three selected locations (x=c = 0:62693, upstream
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separation bubble; x=c = 0:994, inside separation bubble; x=c = 1:5212, downstream separation bubble),
respectively. It is shown again that there is no obvious di�erence in the CDFs between 3rd and 4th orders
of PCE. Thus it can be concluded that the response surfaces obtained via the Quadrature-Based NIPC for
long-time averaged pressure and skin friction coe�cients again converge at the 3rd order PCE.

Figure 10. PCE Degree Convergence Check of Long-time Averaged Pressure Coe�cient and Skin-Friction
Coe�cient at Location x=c = 0:62693 (upstream of the separation bubble).

Figure 11. PCE Degree Convergence Check of Long-time Averaged Pressure Coe�cient and Skin-Friction
Coe�cient at Location x=c = 0:994 (inside the separation bubble).

Figure 12. PCE Degree Convergence Check of Long-time Averaged Pressure Coe�cient and Skin-Friction
Coe�cient at Location x=c = 1:5212 (downstream of the separation bubble).
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2. Results with Mixed (Aleatory-Epistemic) Uncertainty Assumption

For the mixed aleatory-epistemic uncertainty quanti�cation in long-time averaged pressure and skin friction
coe�cients along the wall, Second-Order Probability approach is used again with the same response surface
obtained for pure aleatory uncertainty assumption (4th order PCE). 100 random samples from the speci�ed
bounds (Table 1) are selected for the epistemic uncertain variable in the outer loop. In the inner loop,
for each speci�c value of the epistemic uncertain variable, 1,000 randomly produced samples of aleatory
uncertain variables based on the uniform probability distributions are utilized to evaluate the stochastic
response surface. This procedure produced 100 CDFs which were then evaluated to �nd the lower and upper
bounds of the interval at each probability level. The 95% con�dence intervals (CI) of both pressure and skin
friction coe�cients are then calculated and plotted as shown in Figure 13 (note that the axis for long-time
averaged pressure coe�cient is reversed). It is obvious that for long-time averaged pressure coe�cient, the
mixed uncertainty intervals are signi�cant over the hump and near the separation bubble region. The 95% CI
for the long-time averaged skin-friction coe�cients become signi�cant starting from just downstream of the
separation point indicating also the large uncertainty in the location of reattachment (i.e., where Cf = 0).

Figure 13. 95% Con�dence Interval for Long-time Averaged Pressure and Skin Friction Coe�cients.

3. Global Sensitivity Analysis with Sobol Indices

The Sobol indices for the long-time averaged pressure and skin friction coe�cients at the three selected
locations are also computed with the 4th order PCE. These indices are shown in Tables 3, 4, 5, respectively.
The results indicate again that the combined contributions of di�erent uncertainty sources (e.g., S1;2) are
very small when comparing the total indices (e.g., ST1) with their corresponding individual (non-combined)
indices (e.g., S1) for both long-time averaged pressure and skin friction coe�cients at all three locations.
Furthermore, it can be seen that at a location upstream of the separation bubble (Table 3), the aleatory
uncertainty input variable free stream velocity, U1, is the main contributor to the output uncertainty in
long-time averaged pressure coe�cient while at a location inside separation bubble (Table 4), the epistemic
uncertainty variable, K factor, becomes the main contributor. The contributions from U1 and K factor
to the long-time averaged pressure coe�cient are comparable at a location downstream of the separation
bubble (Table 5). For long-time averaged skin friction coe�cient, the epistemic uncertainty input variable,
K factor, has a main contribution at all three selected locations. It is also noticeable that the uncertainty
in the aleatory input variable frequency, f , has the least inuence on both long-time averaged pressure and
skin friction coe�cients at all three selected locations.
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Table 3. Sobol Indices of Each Uncertain Input in Long-time Averaged Pressure and Skin Friction Coe�cients
at Location x=c = 0:62693 (upstream of the separation bubble).

Index Parameter Sobol Indices for Cp Sobol Indices for Cf

S1 K 0.2535 0.7656
S2 U1 0.7423 0.2249
S3 f 3.1460E-4 6.1673E-5
ST1 K 0.2574 0.7750
ST2 U1 0.7462 0.2343
ST3 f 3.3027E-4 6.6998E-5

Table 4. Sobol Indices of Each Uncertain Input in Long-time Averaged Pressure and Skin Friction Coe�cients
at Location x=c = 0:994 (inside the separation bubble).

Index Parameter Sobol Indices for Cp Sobol Indices for Cf

S1 K 0.8805 0.6589
S2 U1 0.0951 0.2773
S3 f 4.3054E-4 0.0214
ST1 K 0.9042 0.7002
ST2 U1 0.1181 0.3134
ST3 f 0.0017 0.0291

Table 5. Sobol Indices of Each Uncertain Input in Long-time Averaged Pressure and Skin Friction Coe�cients
at Location x=c = 1:5212 (downstream of the separation bubble).

Index Parameter Sobol Indices for Cp Sobol Indices for Cf

S1 K 0.5976 0.8272
S2 U1 0.3522 0.1611
S3 f 0.0300 0.0024
ST1 K 0.6102 0.8361
ST2 U1 0.3721 0.1705
ST3 f 0.0385 0.0028

C. Uncertainty Quanti�cation in Phase Averaged Velocity Distributions

For the phase averaged quantities, the x-velocity distributions at three selected locations are picked to perform
the uncertainty quanti�cation analysis. At locations of x=c = 0:66 (just downstream of slot), x=c = 0:80
(inside separation bubble) and x=c = 1:00 (near the end of separation bubble), phase averaged x-velocity
distributions at phase angles of 80�, 170�, 260� and 350� are analyzed with mixed (aleatory-epistemic)
uncertainty assumption. Figure 14 shows a schematic of the three selected locations. The color in the
contour represents the x-velocity.

1. Results with Mixed (Aleatory-Epistemic) Uncertainty Assumption

Similar to the uncertainty quanti�cation analysis approach for the long-time averaged pressure and skin
friction coe�cients, phase averaged x-velocity distributions at selected locations are picked to perform the
mixed uncertainty quanti�cation. Second-Order Probability approach is used again with a constructed
stochastic response surface (4th order PCE). Second-Order Probability framework was used to produce 100
CDFs which was evaluated to �nd the lower and upper bounds of the interval at each probability level, as
well as the 95% con�dence intervals. Figure 15, 16, 17 show the Second-Order Probability results for the
phase averaged x-velocity distributions at locations of x=c = 0:66; 0:80; 1:00, respectively. For comparison,
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Figure 14. Schematic of Three Selected Locations to Perform UQ Analysis of Phase Averaged X-velocity
Distributions.

the experimental data2 are also included in the plots. The results show that with the uncertainty ranges
considered, the output statistics are able to generally envelope the experimental data with 95% con�dence
intervals (CI) especially at locations of x=c = 0:66 and x=c = 0:80. At location of x=c = 1:00, some of the
experimental data close to the wall are still not captured by the con�dence intervals at phase angles of 80�

and 350�.

2. Global Sensitivity Analysis with Sobol Indices

For the global sensitivity analysis, the x-velocity distributions at three selected points at each location and
phase angle are picked to calculate the Sobol indices with 4th order PCE. The results are tabulated in
Table 6, 7, 8, respectively. The sensitivity analysis results show that, for each of the three x=c locations,
at a y=c location near the wall, the epistemic uncertain input variable, K factor (turbulence model), has
the main contribution to the uncertainty in the x-velocity. Approaching the main stream, the contribution

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.11

0.12

0.13

0.14

0.15

U/Uinf−mean

y/
c

95% CI for p = 4, x/c = 0.66, phase = 80 deg

 

Exp
Lower bound
Upper bound

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.11

0.12

0.13

0.14

0.15

U/Uinf−mean

y/
c

95% CI for p = 4, x/c = 0.66, phase = 170 deg

 

Exp
Lower bound
Upper bound

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.11

0.12

0.13

0.14

0.15

U/Uinf−mean

y/
c

95% CI for p = 4, x/c = 0.66, phase = 260 deg

 

Exp
Lower bound
Upper bound

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.11

0.12

0.13

0.14

0.15

U/Uinf−mean

y/
c

95% CI for p = 4, x/c = 0.66, phase = 350 deg

 

Exp
Lower bound
Upper bound

Figure 15. 95% CI for Phase Averaged X-velocity Distribution at Location x=c = 0:66.
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Figure 16. 95% CI for Phase Averaged X-velocity Distribution at Location x=c = 0:80.
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Figure 17. 95% CI for Phase Averaged X-velocity Distribution at Location x=c = 1:00.

from the aleatory uncertain input variable, free stream velocity, U1, becomes the dominant contributor to
the uncertainty in the output x-velocity. The results also show that the contribution from the other aleatory
uncertain variable, frequency, f , is signi�cantly small compared to the other two uncertain variables for most
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regions of the velocity pro�le at three x=c locations and four phase angles considered.

Table 6. Sobol Indices for Phase Averaged X-velocity Distribution at Location x=c = 0:66.

Phase Index Parameter

y=c Locations
y=c = 0:11322 y=c = 0:11876 y=c = 0:14792

(near (between wall (near
the wall) and main stream) main stream)

ST1 K 0.8663 0.2827 0.0026
80� ST2 U1 0.1378 0.7167 0.9974

ST3 f 7.1667E-4 0.0013 1.1044E-4

ST1 K 0.9961 0.5400 0.0032
170� ST2 U1 0.0614 0.4631 0.9967

ST3 f 0.0031 4.8004E-4 1.0968E-4

ST1 K 0.9919 0.7318 0.0012
260� ST2 U1 0.0063 0.2654 0.9990

ST3 f 0.0272 0.0060 2.5496E-4

ST1 K 0.9123 0.4754 0.0091
350� ST2 U1 0.0899 0.5249 0.9903

ST3 f 0.0012 6.0735E-4 7.0411E-4

Table 7. Sobol Indices for Phase Averaged X-velocity Distribution at Location x=c = 0:80.

Phase Index Parameter

y=c Locations
y=c = 0:026463 y=c = 0:10869 y=c = 0:20204

(near (between wall (near
the wall) and main stream) main stream)

ST1 K 0.8786 0.8704 0.0258
80� ST2 U1 0.1630 0.0230 0.9749

ST3 f 0.1969 0.1270 0.0029

ST1 K 0.9122 0.4747 0.0025
170� ST2 U1 0.0582 0.5184 0.9925

ST3 f 0.0719 0.0291 0.0060

ST1 K 0.9181 0.0932 0.0051
260� ST2 U1 0.0712 0.8492 0.9957

ST3 f 0.0411 0.1492 0.0014

ST1 K 0.5113 0.7053 0.0502
350� ST2 U1 0.3834 0.4914 0.9449

ST3 f 0.1296 0.2004 0.0086
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Table 8. Sobol Indices for Phase Averaged X-velocity Distribution at Location x=c = 1:00.

Phase Index Parameter

y=c Locations
y=c = 0:0064552 y=c = 0:082942 y=c = 0:19335

(near (between wall (near
the wall) and main stream) main stream)

ST1 K 0.8262 0.3108 0.0209
80� ST2 U1 0.0595 0.7156 0.9679

ST3 f 0.1416 0.0306 0.0204

ST1 K 0.8711 0.7879 0.1172
170� ST2 U1 0.1401 0.1791 0.8708

ST3 f 0.0767 0.0945 0.0320

ST1 K 0.7492 0.5848 0.1554
260� ST2 U1 0.1823 0.4050 0.8411

ST3 f 0.0797 0.0230 0.0106

ST1 K 0.9296 0.3370 0.0708
350� ST2 U1 0.0426 0.6718 0.9077

ST3 f 0.0656 0.0378 0.0366

V. Conclusions

In this study, an e�cient methodology for the quanti�cation of mixed (epistemic and aleatory) un-
certainties in CFD modeling of synthetic jet actuators is introduced and demonstrated. The uncertainty
quanti�cation methodology is based on Second-Order Probability theory implemented with a stochastic
response surface obtained from Quadrature-Based Non-Intrusive Polynomial Chaos (NIPC). A global non-
linear sensitivity analysis is also utilized to quantify the contribution of each uncertainty source to the overall
uncertainty in a selected output quantity. A test case, (ow over a hump model with synthetic jet actuator
control) from the CFDVAL2004 workshop was selected to demonstrate the application of the uncertainty
quanti�cation approach. Three uncertainty sources were considered: (1) epistemic (model-form) uncertainty
in turbulence model by the introduction of a K factor which is multiplied with the eddy viscosity coe�cient
in Spalart-Allmaras turbulence model, (2) aleatory (inherent) uncertainty in free stream velocity, and (3)
aleatory uncertainty in actuation frequency.

The uncertainty quanti�cation and sensitivity analysis results show that, for the uncertainty in long-time
averaged separation bubble size, the K factor which reects the turbulence model uncertainty through the
turbulent viscosity plays a dominant role compared to the other two uncertain input variables.

For the uncertainty in long-time averaged pressure coe�cient, the free stream velocity, U1, is the main
contributor at a location upstream of the ow separation while at a location inside separation bubble, the
epistemic uncertain variable, K becomes the main contributor. The contributions from U1 and K factor
are comparable at a location downstream of the ow separation. For the uncertainty in long-time averaged
skin friction coe�cient, the K factor has the main contribution at all three selected locations.

The sensitivity analysis results show that, for each of the three x=c locations, at a y=c location near
the wall, the epistemic uncertain input variable, K factor (turbulence model), has the main contribution
to the uncertainty in the x-velocity. Approaching the main stream, the contribution from the free stream
velocity becomes the dominant contributor to the uncertainty in the x-velocity. The results also show that
the contribution from the other aleatory uncertain variable, frequency, f , is signi�cantly small compared
to the other two uncertain variables for most regions of the velocity pro�le at three x=c locations and four
phase angles considered.

Although we focus on the uncertainty quanti�cation of a synthetic jet problem in the current study,
the mixed uncertainty quanti�cation approach demonstrated in this study can also be applied to other
computational uid dynamics problems with inherent and model-form input uncertainities.
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